
Citation: Sun, P.; Liu, Q.; Wang, J.;

Yin, Z.; Wang, L. Rotation-Angle

Solution and Singularity Handling of

Five-Axis Machine Tools for Dual

NURBS Interpolation. Machines 2023,

11, 281. https://doi.org/10.3390/

machines11020281

Academic Editor: Sever-Gabriel Racz

Received: 17 January 2023

Revised: 7 February 2023

Accepted: 10 February 2023

Published: 13 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

Rotation-Angle Solution and Singularity Handling of Five-Axis
Machine Tools for Dual NURBS Interpolation
Pengpeng Sun 1,2 , Qiang Liu 1,3,*, Jian Wang 1,4, Zhenshuo Yin 1,2 and Liuquan Wang 1,2

1 School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
2 Research and Application Center of Advanced CNC Machining Technology and Innovation,

Beijing 100191, China
3 Jiangxi Research Institute, Beihang University, Nanchang 330096, China
4 National Center for Science & Technology Evaluation, Beijing 100081, China
* Correspondence: qliusmea@buaa.edu.cn

Abstract: Dual NURBS interpolation has been proven an essential technique for high-speed precision
machining of complex surfaces. The solution of rotation angles and their derivatives is the basis of
kinematic transformation and feedrate optimization in dual NURBS interpolation. The characteristics
of the rotation motion of five-axis machine tools with different structures are analyzed. A generic
model of dual heads of the vertical five-axis machine tool is established to unify the solution of
rotation angles. Then, a generic method for solving the rotation angles and derivatives based on
the vector inner product is proposed, and the solution space is analyzed. A singularity handling is
given to avoid abrupt rotation angles based on the higher derivatives of the tool orientation vector.
The proposed method obtained smooth rotation angles at the singularity points in the cardioid dual
NURBS interpolation experiment. It reduced the machining time by 43.3% compared with the simple
inverse trigonometric method based on kinematic transformation. Experiment results demonstrate
that the proposed method is feasible and effective, and has significant theoretical and practical value
for optimizing five-axis CNC machining.

Keywords: five-axis machine tool; dual NURBS interpolation; rotation-angle solution; singular-
ity handling

1. Introduction

With the application of complex surface structural parts in aerospace, automobile,
shipbuilding, energy, and power industries, five-axis CNC machining has become an
essential method of high-efficiency and quality machining of complex surface parts. As
one of the critical technologies of five-axis NC machining, kinematic transformation is to
determine the relationship between the tool path and the feeding axis according to the
structural form and parameters of the machine tool. At the same time, to realize high-order
continuous smoothing of the machining trajectory and further improve the machining
accuracy and efficiency, the direct interpolation of dual NURBS curves has become the
focus research topic in five-axis machining [1,2]. The tool orientation vector is changed from
the original discrete vector to a high-order continuous vector in the representation of the
tool path using dual NURBS curves. The CNC system needs to calculate the rotation angles
corresponding to the tool orientation vector and the derivatives of the rotation angles with
respect to the curve parameter, which becomes the difficulty and emphasis in five-axis
kinematic transformation [3]. Therefore, it is of great significance to study five-axis linkage
kinematic models with different structural forms and to realize the method of solving the
rotation angles for direct interpolation of dual NURBS curves.
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The solution of the rotation angles of a five-axis machine tool is generally a part of
the solution of the five-axis inverse kinematics. For five-axis CNC machine tools with
different structural forms, kinematic solving methods mainly include the following three
types: (1) a model based on mechanism and homogeneous coordinate transformation [4–9];
(2) a generic model based on multi-body kinematics theory [10,11]; (3) a general kinematic
solution method based on a decoupling and differential method [12–14]. Although the
above methods can realize the solution of the rotation angles, they may lead to an abrupt
rotation angle at the singular point [15,16]. Scholars have also researched the smoothing
of the rotation axis and the optimization of singular points of five-axis machine tools.
Farouki, R.T. et al. [17] studied the inverse kinematic solution problem to minimize the
orientation change between the tool axis and the surface normal under the constraint of
constant cutting speed, while the solution is dependent upon the surface normal along
the toolpath. Lin, T.K. et al. [18] proposed a general method to convert the tool position
(CL) data into NC data for the non-orthogonal worktable type five-axis machine tool. The
rotation angles of two rotation axes can be directly derived from the tool orientation vector.
Yu, D. et al. [19] proposed a method of integrating corner selection, optimization, and
singular region processing to solve the problems of the collision. Although this method
is effective in solving the problems of rotation-angle optimization of linear segments and
singularity processing, it cannot be used in curve direct interpolation. Hong, X.Y. et al. [20]
proposed a singularity optimization method based on the rotation change rate which
adjusts the tool orientation vector by controlling the rotation change rate to avoid the
singular problem in five-axis machining. Beudaert, X. et al. [21] proposed a decoupling
method for separating the geometric processing of the programmed tool path from the
feedrate interpolation, and the algorithm is complicated to calculate. Through the iterative
algorithm, the motion parameters of each axis are solved. In addition, scholars also
realized smoothing by adjusting the discrete tool direction change of the tool path [22]. Li,
Z. [11] improved the calculation method of the rotation angle by defining the “minimum
movement circle” to improve the rotation continuity of the C-axis workbench effectively,
and the method is limited to the five-axis orthogonal machine tools with a C turntable.
Castagnetti, C. et al. [23] confirmed that the kinematic performance of five-axis machining
can be improved by sliding the rotation axes in the machine coordinate system rather than
adjusting the tool orientation in the workpiece coordinate system. Wang, Q.R. et al. [24]
constructed a discrete domain of feasible directions at the tool path points and optimized
the tool direction sequence with the shortest path, bypassing the singularity by changing the
tool directions. Hu, P.C. et al. [25] established the angular acceleration function according
to the numerical solution of the inverse kinematic equations, which realized the directional
constraint optimization of the tool axis.

It is the standard method to establish the relationship between the tool orientation and
the rotation angles according to the homogeneous transformation and calculate the rotation
angles by the inverse trigonometric function [26]. Calculating the rotation transformation
matrix of the non-orthogonal rotation axes is more complex. The main problems are as
follows: (1) the range of arcsine and arccosine functions is often limited to the semicircle
angle, which cannot make full use of the stroke of the rotation axes; (2) there may be
infinite solutions at the singular point of the tool orientation, which results in violent and
uncontrollable movements of machine tools.

To solve the above problems, this paper focuses on the generic solution of the rotation
angles of five-axis machine tools for dual NURBS direct interpolation, and a singularity
handling method is given. The organization of the rest of this paper is as follows: In chapter
2, the direct interpolation model of dual NURBS curves is given, and rotation motion
characteristics of the typical dual rotation axes layout are studied. The generic method for
solving the rotation angles of five-axis machine tools based on the vector inner product is
proposed, and the rotation-angle solution space and singularity handling are analyzed. In
chapter 3, the effectiveness and superiority of the method are verified and compared. In
chapter 4, the research contents and experimental results are summarized.
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2. Rotation-Angle Solution of Five-Axis Machine Tools for Dual NURBS Interpolation
2.1. Dual NURBS Interpolation

Dual NURBS generally consists of the tool tip point trajectory curve and the scanning
curve of the tool axis point, shown as follows:

C(u) =

n
∑

i=0
Ni,p(u)wi Pi

n
∑

i=0
Ni,p(u)wi

T(u) =

n
∑

i=0
Ni,p(u)wi Hi

n
∑

i=0
Ni,p(u)wi

(1)

where C(u) is the trajectory curve of the tool tip point, T(u) is the scanning trajectory curve
of a fixed point on the tool axis, {Pi|i = 0, 1, . . . , n} are the control points of the curve C(u),
{Hi|i = 0, 1, . . . , n} are the control points of the curve T(u), {wi|i = 0, 1, . . . , n} are the
factors, and Ni,p(u) is the pth-degree B-spline basis function defined on the quasi-uniform
knot vector U =

[
u0, u1, . . . , un+p, un+p+1

]
.

The B-spline basis function can be calculated as follows:
Ni,p(u) =

u−ui
ui+p−ui

Ni,p−1(u) +
ui+p+1−u

ui+p+1−ui+1
Ni+1,p−1(u)

Ni,0(u) =
{

1, ui ≤ u ≤ ui+1
0, otherwise

(2)

The vector of the tool orientation O(u) is expressed as:

O(u) =
T(u)− C(u)
‖T(u)− C(u)‖ (3)

The interpolation process of dual NURBS is to calculate the following parameter of
the spline in each cycle task that satisfies the distance between the current point and the
next point of the curve equal to the step length.

‖C(ui+1)− C(ui)‖ = ∆si (4)

where ui is the current curve parameter, ui+1 is the next curve parameter, and ∆si is the
current step length, which can be determined by the velocity and acceleration in the
interpolation interval.

The parameter ui+1 can be estimated by Taylor series expansion.

ui+1 = ui + us(ui)∆si +
1
2

uss(ui)(∆si)
2 (5)

where us(ui) is the current derivative of the parameter with respect to the arc length of
curve C(u), and uss(ui) is the current second derivative of the parameter with respect to
the arc length.

The linear feed-axis positions are obtained by the kinematic transformation of the
machine tool, and the homogeneous form of the transformation can be expressed as follows:[

QL,i+1
1

]
= M(θi+1, ϕi+1)

[
C(ui+1)

1

]
(6)

where QL,i+1 is the position vector of linear axes, C(ui+1) is the interpolation tool tip
location in the workpiece coordinate system, M(θi+1, ϕi+1) is the homogeneous matrix of
the kinematic transformation from workpiece coordinate system to machine tool coordinate
system, and θi+1 and ϕi+1 are the current rotation angles of the machine tool under the
current tool orientation vector O(ui+1). The matrix M(θ, ϕ) is a nonlinear matrix function
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of the rotation angles θ and ϕ, which can be obtained according to the kinematic chain of
the machine tool by the Denavit–Hartenberg transformation method.

The feedrate of the dual NURBS is usually optimized offline based on optimization the-
ory to achieve the minimum interpolation time under geometric, kinematic, and dynamic
constraints. The constraints of feed axes can be expressed as follows:

∣∣ .
q(u)

∣∣ = |qs(u)V(u)| ≤ Vm,q∣∣ ..q(u)∣∣ = ∣∣∣qss(u)V(u)2 + qs(u)A(u)
∣∣∣ ≤ Am,q

| ...q (u)| =
∣∣∣qsss(u)V(u)3 + 3qss(u)V(u)A(u) + qs(u)J(u)

∣∣∣ ≤ Jm,q

q = X, Y, Z, · · · (7)

where q represents a specific axis position of the machine tool,
.
q(u),

..
q(u),

...
q (u) are, respec-

tively, the velocity, acceleration, and jerk of the machine tool feed axis q corresponding to
the curve parameter u, qs, qss, qsss are, respectively, the first, second, and third derivatives
of the feed-axis position with respect to the curve arc parameter, which can be calculated by
taking high-order derivatives of Equation (6). V(u) is the feedrate of the dual NURBS inter-
polation, A(u) is the tangential acceleration, J(u) is the tangential jerk, and Vm,q, Am,q, Jm,q
are, respectively, the maximum allowable velocity, acceleration, and jerk of the machine
tool feed axis.

The axis positions and the derivatives of the machine tool can be calculated by the
tool tip curve C(u) and tool orientation vector O(u) based on the kinematic transformation.
Solving the corresponding rotation angle and derivatives according to the tool orientation
vector is the basis of the dual NURBS interpolation and feedrate optimization.

2.2. Generic Method of Rotation-Angle Solution of Five-Axis Machine Tools
2.2.1. Typical Layouts of Rotary Axes of Five-Axis Machine Tools and Analysis

The layout of the dual-rotation axis of the five-axis machine tool can be divided into
two categories: orthogonal structure and pendulous structure. In this paper, machine tools
with AC rotation axes are taken as examples to describe the two structures, as shown in
Figures 1 and 2. For the machine tool with an orthogonal structure, the A-axis and C-axis
rotation axes are perpendicular to the coordinate planes. Meanwhile, the tool axis and
A-axis rotation axis are perpendicular. In contrast, for pendulous structure machine tools,
only the C-axis rotation axis is perpendicular to the coordinate plane, while the A-axis
rotation axis is usually perpendicular to neither the coordinate plane nor the tool axis.
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orientation vector relative to the workpiece. 
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style, (b) single-head and single-turntable style, (c) dual-turntable style.



Machines 2023, 11, 281 5 of 17

Machines 2022, 10, x FOR PEER REVIEW 5 of 18 
 

 

+Z

+Y

+X

+A

+C

 

+Z

+Y

+X

+C

+A

 

+Z

+Y

+X

+C

+A

 
(a) (b) (c) 

Figure 1. Common structure layouts of machine tools with orthogonal rotary axes. (a) Dual-head 
style, (b) single-head and single-turntable style, (c) dual-turntable style. 

+Z

+Y

+X

+A

+C

 

+Z

+Y

+X

+A

+C

 

+Z

+Y

+X

+A

+C

(a) (b) (c) 

Figure 2. Common structure layouts of machine tools with pendulous rotary axes. (a) Dual-head 
style, (b) single-head and single-turntable style, (c) dual-turntable style. 

According to the installation structure, the layouts of the machine tool with double 
rotation axes can be divided into three types: dual-head type, single-head and single-turn-
table type, and dual-turntable type. 

For AC dual-turntable machine tools, the tool orientation vector rotates around axis 
X relative to the workpiece when the turntable rotates around A-axis, as shown in Figure 
1c. For single-head and single-turntable machine tools, the A-axis rotation can also realize 
that the tool orientation vector rotates around axis X relative to the workpiece, as shown 
in Figure 1b. In the same way, the rotation motion of the orthogonal dual-head machine 
tool has the same effect on changing the relative tool orientation vector, as shown in Figure 
1a.  

Therefore, the rotation-angle solution of the dual-head type can represent the rela-
tionship between the rotation angles of the three orthogonal structure types and the tool 
orientation vector relative to the workpiece. 

By the exact analysis of the rotation motion of the machine tools with pendulous ro-
tary axes, as shown in Figure 2, the dual-head type can be used to unify the rotation angles 
solution of different types. Moreover, the tool orientation vector of the dual-head type is 
the same as that of the workpiece coordinate system, simplifying the solution process. In 

Figure 2. Common structure layouts of machine tools with pendulous rotary axes. (a) Dual-head
style, (b) single-head and single-turntable style, (c) dual-turntable style.

According to the installation structure, the layouts of the machine tool with double
rotation axes can be divided into three types: dual-head type, single-head and single-
turntable type, and dual-turntable type.

For AC dual-turntable machine tools, the tool orientation vector rotates around axis X
relative to the workpiece when the turntable rotates around A-axis, as shown in Figure 1c.
For single-head and single-turntable machine tools, the A-axis rotation can also realize that
the tool orientation vector rotates around axis X relative to the workpiece, as shown in
Figure 1b. In the same way, the rotation motion of the orthogonal dual-head machine tool
has the same effect on changing the relative tool orientation vector, as shown in Figure 1a.

Therefore, the rotation-angle solution of the dual-head type can represent the rela-
tionship between the rotation angles of the three orthogonal structure types and the tool
orientation vector relative to the workpiece.

By the exact analysis of the rotation motion of the machine tools with pendulous rotary
axes, as shown in Figure 2, the dual-head type can be used to unify the rotation angles
solution of different types. Moreover, the tool orientation vector of the dual-head type
is the same as that of the workpiece coordinate system, simplifying the solution process.
In the following sections, the dual-head type machine tools will be taken as the specific
research object.

2.2.2. Generic Method for Solving the Rotation Angles of Five-Axis Machine Tools Based
on the Vector Inner Product

A generic dual-head model of the vertical five-axis machine tool is constructed, as
shown in Figure 3. The C-axis rotation axis is parallel to the Z-axis. The angle between
the A-axis rotation axis and the C-axis rotation axis is ω, and the angle between the tool
axis and the A-axis rotation axis is ξ. Due to the symmetry and requirements of five-axis
machining, the angle ranges are ω ∈ (0, π), ξ ∈ (0, π). The unit rotation axis direction
vector of the A-axis can be expressed by the C-axis angle as follows.

α = [sin ω cos θ, sin ω sin θ,− cos ω]T (8)

where α is the A-axis rotation axis vector, and θ is the rotation angle of the C-axis.
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Since the angle between the tool orientation vector O(u) and the unit rotation direction
vector of the A-axis is a constant angle (π − ξ), the inner product of the vector O(u) and
vector α is constant.

dot(α, O(u)) = cos(π − φ) = − cos ξ (9)

where dot( , ) is the inner-product function of vectors.
The equation of angle θ can be obtained as follows by substituting Equation (8) into

Equation (9).
sin ω(i cos θ + j sin θ) = k cos ω− cos ξ (10)

where i, j, and k are the components of the vector O(u) in the X-axis, Y-axis, and Z-axis.
As sin ω > 0, Equation (10) can be reduced to the following equation:

i cos θ + j sin θ = η (11)

where η = 1
sin ω (k cos ω− cos ξ).

The solution of Equation (11) is calculated as follows, according to the knowledge of
the conic curves when i2 + j2 > η2. cos θ =

ηi+j
√

i2+j2−η2

i2+j2

sin θ =
η j−i
√

i2+j2−η2

i2+j2

, or

 cos θ =
ηi−j
√

i2+j2−η2

i2+j2

sin θ =
η j+i
√

i2+j2−η2

i2+j2

(12)

The function arctan2(Y, X) is a four-quadrant arctangent function, as shown in the
Figure 4, and returns the angle value in the interval [−π, π] based on the values of Y and X.

Machines 2022, 10, x FOR PEER REVIEW 7 of 18 
 

 

2 2 2 2 2 2

2 2 2 2

2 2 2 2 2 2

2 2 2 2

cos cos
,or

sin sin

i j i j i j i j
i j i j

j i i j j i i j
i j i j

η η η η
θ θ

η η η η
θ θ

 + + − − + −
 = =

+ + 
 

− + − + + − 
= = + + 

 (12)

The function ( )arctan2 ,Y X  is a four-quadrant arctangent function, as shown in the 
Figure 4, and returns the angle value in the interval [ ],π π−  based on the values of Y and 
X. 

 
Figure 4. Value diagram of the four−quadrant arctangent function. 

The result of angle θ  is solved as follows. The value closest to the previous angle of 
the C-axis is taken as the optimal solution to maintain the continuity of the angle of C-
axis. 

( )
( )

2 2 2 2 2 2
1

2 2 2 2 2 2
2

arctan2 ,

arctan2 ,

j i i j i j i j

j i i j i j i j

θ η η η η

θ η η η η
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( ) ( ) ( ) ( )

dot , dot , 0
dot , 2dot , dot , 0
dot , 3dot , 3dot , dot , 0

u u

uu u u uu

uuu uu u u uu uuu

O O

O O O

O O O O

α α
α α α
α α α α

+ =


+ + =
 + + + =

 (14)

Then, the higher derivatives of the angle θ  with respect to the parameter u can be 
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( )
( )

( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

2

3

dot ,
dot ,

dot , 2dot , dot ,
dot ,

dot 3 , 3dot , 3dot , dot ,
dot ,

u
u

u u u uu
uu

u u uu uu u u uu uuu
uuu

O
O

O O O
O

O O O O
O

θ

θθ

θ

θθθ θθ

θ

α
θ

α

α θ α α
θ

α

θ α θ θ α α α α
θ

α

 −
 =



+ + = −

 + + + + = −


 (15)

The new tool orientation vector Ô  can be obtained as follows when both the tool 
axis and A-axis are rotated by angle θ−  around the C-axis rotation axis. 

( )Ô O u= ⋅Q  (16)

where Q is the transformation matrix of the rotation around the C-axis. It can be expressed 
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Figure 4. Value diagram of the four−quadrant arctangent function.
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The result of angle θ is solved as follows. The value closest to the previous angle of
the C-axis is taken as the optimal solution to maintain the continuity of the angle of C-axis. θ1 = arctan2

(
η j− i

√
i2 + j2 − η2, ηi + j

√
i2 + j2 − η2

)
θ2 = arctan2

(
η j + i

√
i2 + j2 − η2, ηi− j

√
i2 + j2 − η2

) (13)

The derivative relation between vector O and α is obtained by differentiating the
parameter u on both sides of Equation (9).

dot(αu, O) + dot(α, Ou) = 0
dot(αuu, O) + 2dot(αu, Ou) + dot(α, Ouu) = 0
dot(αuuu, O) + 3dot(αuu, Ou) + 3dot(αu, Ouu) + dot(α, Ouuu) = 0

(14)

Then, the higher derivatives of the angle θ with respect to the parameter u can be
calculated as follows.

θu = −dot(α,Ou)
dot(αθ ,O)

θuu = −dot(αθθ ,O)θ2
u+2dot(αu ,Ou)+dot(α,Ouu)

dot(αθ ,O)

θuuu = −dot(θ3
uαθθθ+3θuθuuαθθ ,O)+3dot(αuu ,Ou)+3dot(αu ,Ouu)+dot(α,Ouuu)

dot(αθ ,O)

(15)

The new tool orientation vector Ô can be obtained as follows when both the tool axis
and A-axis are rotated by angle −θ around the C-axis rotation axis.

Ô = Q ·O(u) (16)

where Q is the transformation matrix of the rotation around the C-axis. It can be expressed
as follows.

Q =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 (17)

The higher derivatives of the new tool orientation vector Ô can be calculated as
follows. 

Ôu = Qu ·O(u) + Q ·Ou(u)
Ôuu = Quu ·O(u) + 2Qu ·Ou(u) + Q ·Ouu(u)
Ôuuu = Quuu ·O(u) + 3Quu ·Ou(u) + 3Qu ·Ouu(u) + Q ·Ouuu(u)

(18)

The tool orientation vector Ô can be expressed as follows by the A-axis angle ϕ.

Ô =

− sin ω cos ξ + cos ω sin ξ cos ϕ
− sin ξ sin ϕ

cos ω cos ξ + sin ω sin ξ cos ϕ

 (19)

The A-axis angle ϕ is solved by combining Equations (16) and (19).

ϕ = arctan2
(
− ĵ, î cos ω + k̂ sin ω

)
(20)

where î, ĵ, and k̂ are the components of the vector Ô in the X-axis, Y-axis, and Z-axis.
The higher derivatives of the angle ϕ with respect to the parameter u can be calculated

as follows. 
ϕu = 1

sin2 ξ
dot
(
Ôu, Ôϕ

)
ϕuu = 1

sin2 ξ
dot
(
Ôuu − Ôϕϕθ2

u, Ôϕ

)
ϕuuu = 1

sin2 ξ
dot
(
Ôuuu − Ôϕϕϕθ3

u − 3Ôϕϕθuθuu, Ôϕ

) (21)
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2.3. Solution Space of the Generic Method

The A-axis angle exists and is unique after determining the C-axis angle according to
Equation (20). Therefore, the solution space of rotation angles in the dual NURBS interpola-
tion can be analyzed according to the solution of the C-axis angle. The solution space of the
C-axis angle can be divided into three categories based on Equations (12) and (13).

(a) No solution. The tool orientation vector O(u) cannot be realized by rotation axes as
the tool orientation vector is beyond the reach of the machine tool when i2 + j2 < η2.

(b) Finite solutions. The C-axis angle has two sets of solutions when i2 + j2 ≥ η2 and i2 +
j2 > 0, as shown in Equation (13). The rotation angles are high-order continuous with
respect to the parameter u, when the tool orientation vector is high-order continuous.

(c) Infinite solutions. The C-axis angle has infinite sets of solutions when i2 + j2 = η2 = 0.
The tool orientation vector is at the singularity point, which cannot be changed no
matter the C-axis angle. The tool orientation and the layout of rotation axes must meet
the following conditions.

{
O = [0, 0, 1]T

ω = ξ
, or

{
O = [0, 0,−1]T

ω + ξ = π
(22)

The A-axis angle is always as follows at the singularity point.

ϕ =

{
0, when ω = ξ
π, when ω + ξ = π

(23)

2.4. Singularity Handling

The tool axis is parallel to the rotation axis of the C-axis when the tool orientation
vector is located at the singularity point. The inner product of the tool orientation vector
and any order derivative of the rotation axis vector of the A-axis is 0. Equation (14) can be
simplified as follows.

dot(α, Ou) = 0 (24)

Since the modulus of the tool orientation vector is a constant of value 1, the first-order
derivative vector Ou = [iu, ju, ku]

T is perpendicular to the rotation axis of the C axis, and
the value of ku is 0. Equation (24) can be expressed as follows.

sin ω(iu cos θ + ju sin θ) = 0 (25)

The angle θ can be solved when i2u + j2u > 0, while the equation needs more information
such as the second derivative of vector O(u) to be solved when i2u + j2u = 0. The equation
of θ can be established by higher derivates when the lower derivative information cannot
determine the rotation angle. The handling is listed in Table 1.

Table 1. Rotation-angle handling at the singularity point based on the derivatives of the tool orienta-
tion vector.

Conditions of the Tool
Orientation

Equation of the Rotation
Angle Solutions{

i2 + j2 = 0
i2u + j2u > 0

sin ω(iu cos θ + ju sin θ) = 0
{

θ1 = arctan2(−iu, ju)
θ2 = arctan2(iu,−ju)

i2 + j2 = 0
i2u + j2u = 0

i2uu + j2uu > 0

sin ω(iuu cos θ + juu sin θ) = 0
{

θ1 = arctan2(−iuu, juu)
θ2 = arctan2(iuu,−juu)

i2 + j2 = 0
i2u + j2u = 0

i2uu + j2uu = 0
i2uuu + j2uuu > 0

sin ω(iuu cos θ + juu sin θ) = 0
{

θ1 = arctan2(−iuuu, juuu)
θ2 = arctan2(iuuu,−juuu)

. . . . . . . . .
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The derivatives of the C-axis angle can be obtained according to the tool orientation
vector derivatives after determining the C-axis angle at the singularity point. When the
orders of the derivatives of the tool orientation vector are not high enough, the higher-order
derivative of the C-axis angle at the singular point cannot be obtained, which can be set
to 0.

3. Experiments and Discussions
3.1. Experiment on an Open-Pocket Tool Path

The rotation angles are simulated on a dual NURBS tool path, i.e., a third-degree
open-pocket tool path as shown in Figure 5, and the control points and knot vector are
shown in Appendix A. The dual turntable machine tools with orthogonal and pendulous
structures are selected, respectively, for machining, as shown in Figures 1c and 2c. For
the machine tool with a pendulous structure, the angle between the two rotation axes is
45 degrees. Meanwhile, the angle between the X-axis and A-axis are also 45 degrees.
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Figure 5. The open−pocket tool path.

The rotation angles of the orthogonal structure can be solved by the proposed unified
solution method by setting the angle ω and ξ of the generic dual-head model to be both
90 degrees. However, the relationship between the rotation angles and the tool orientation
vector is as follows from the kinematic transformation.

O = [sin ϕ sin θ,− sin ϕ cos θ, cos ϕ]T (26)

The A-axis angle can be easily solved by the inverse cosine function according to the
Z-axis component of Equation (26), and then the C-axis angle can be solved. The results of
the two methods are shown in Figure 6a.
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Figure 6. The rotation-angle results of the open-pocket curve. (a) The rotation angles of the machine
tool with dual orthogonal turntables. (b) The rotation angles of the machine tool with dual pendulous
turntables.

In the same way, the rotation angles of the pendulous structure are calculated by
the proposed method by setting the angle ω and ξ of the generic dual-head model to be
both 45 degrees. The tool orientation vector can be expressed by the rotation angles of the
pendulous structure as follows.

O =

 1
2 cos θ(1− cos ϕ)−

√
2

4 sin θ sin ϕ
1
2 sin θ(1− cos ϕ) +

√
2

4 cos θ sin ϕ
1+cos ϕ

2

 (27)

The A-axis and C-axis angles can be solved in steps by the inverse trigonometric
method proposed in Ref [26]. The solution results of the pendulous structure by the two
methods are shown in Figure 6b.

The proposed unified solution method can effectively solve the rotation angles of
machine tools with different structures and obtain the same exact solution as the traditional
inverse trigonometric method based on kinematic transformation. Solving the rotation
angles can be unified and simplified by the proposed method.
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3.2. Experiment on a Cardioid Curve

A cardioid dual NURBS curve with singular points is used to conduct simulation and
machining experiments. The curve parameters are shown in Appendix B. The tool tip point
curve and the tool axis point curve share the same knot vector and weights. The cardioid
curve and tool orientation vector are shown in Figure 7. The layout of the five-axis machine
tool used in the experiment is the dual orthogonal rotary table in Figure 1c. The A-axis and
C-axis angles corresponding to the tool orientation vector of the cardioid curve are solved
by the proposed unified solution method and the simple inverse trigonometric method
based on kinematic transformation.
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Figure 7. The cardioid curve and tool orientation vector.

Figure 8a shows the solution results of the A-axis angle. The A-axis angle solved
by the proposed method is smooth and continuous throughout the curve, and the A-axis
angle in the middle section is positive. The A-axis angle solved by the simple inverse
trigonometric method is not positive throughout the curve. The A-axis angle is zero, and
the tool orientation vector is at a singular point when the curve parameter u is 0.284 or
0.716. Figure 8b shows the solution results of the C-axis angle. The C-axis angle starts at
0 and ends at 360 degrees. The C-axis angle solved by the proposed method is smooth
and continuous. However, the C-axis angle solved by the simple inverse trigonometric
method changes 180 degrees at the two singular points, when the cardioid curve must be
divided to three segments. Additional rotation movements of the C-axis must be added at
the singularity points to meet the dynamics constraints of machine tools.
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The feedrate of the cardioid curve interpolation is optimized by the optimal feedrate
planning method proposed in Ref [27]. The kinematic and dynamic constraints of the five-
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axis machine tool and the geometric constraint are listed in Table 2. The cutting parameters
of the cardioid curve are listed in Table 3.

Table 2. The kinematic and dynamic constraints of the five-axis machine tool and the geometric
constraint.

Axis Maximum Velocity
(Unit/s)

Maximum Acceleration
(Unit/s2)

Maximum Jerk
(Unit/s3)

X/Y/Z (mm) 100 500 3000
A (degree) 22.9 28.6 85.9
C (degree) 45.8 28.6 85.9

Maximum Chord
Error (mm) 0.125

Interpolation Cycle
Time (s) 0.002

Table 3. The cutting parameters of the cardioid curve.

Feedrate (mm/s) Spindle Speed (rpm) Cutting Depth (mm) Cutting Width (mm)

20 6000 9 0.2

Figure 9a shows the feedrate optimization results of the cardioid curve interpolation
with rotation angles solved by the proposed method in this paper and the simple inverse
trigonometric method. There are five decelerations in the middle interpolation process
solved by the proposed method. The feedrate is greater than 5 mm/s except for the start
and end of the cardioid curve. The feedrate of the rotation angles solved by the simple
inverse trigonometric method is divided into three segments for optimization, and the
velocities at the parameters of the singularity point are set to 0. Additional C-axis rotation
movements at the singularity point are also optimized, which is shown in Figure 9b. It is
seen from the C-axis angle curves with the interpolation time that the total cutting time by
the proposed method is 25.34 s. In contrast, the total cutting time by the simple inverse
trigonometric method is 44.69 s, which consists of the interpolation time of the cardioid
curve and the time of two additional rotation movements of the C-axis. The vector-based
rotation-angle solution method saves 43.3% of the cutting time compared with the simple
inverse trigonometric method in this simulation.
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The blanks made of nylon resin were machined along the cardioid curve on the exper-
imental machine tool according to the results of feedrate optimization and interpolation.
The machining process is shown in Figure 10.
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Figure 10. The machining process of the cardioid curve interpolation.

The machining results are shown in Figure 11. It can be seen from the front picture
that the cutting quality of the front side of the workpiece by the two rotation-angle solving
methods is similar. Positions A and B are the singularity points. The machined surface on
the back by the proposed rotation-angle solving method is smooth. There are two obvious
rough areas at the singularity points of the workpiece machined by the simple inverse
trigonometric method, as shown in Figure 11b, as the actual velocity is too low, and the
residence time near the singular point is too long.

The surface roughness of the singular point region at Position B was measured using a
roughness instrument (Type: Mitutoyo SJ-210). Figure 12 shows the evaluation curves of
the surface roughness. The curve amplitude of the part machined by the proposed method
does not change obviously at any measuring position. Meanwhile, the curve amplitude
of the part machined by the simple inverse trigonometric method increases substantially
near the singularity point. The roughness results are listed in Table 4. The arithmetic mean
roughness Ra, root-mean-square roughness Rq, and maximum profile height Rz of the part
machined by the proposed method are 1.26 µm, 1.55 µm, and 6.89 µm, respectively, which
are all much smaller than that by the simple inverse trigonometric method with values of
5.67 µm, 7.48 µm, and 33.78 µm. The proposed method achieved higher machining quality
near the singularity points in this experiment.
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Figure 12. The evaluation curves of the roughness near the singularity point.

Table 4. The roughness results near the singularity point.

Method Ra (µm) Rq (µm) Rz (µm)

The proposed method 1.26 1.55 6.89

The simple inverse
trigonometric method 5.67 7.48 33.78

Note: Standard: ISO 4287: 1997. Cut-off wavelength: 0.8 mm. Filter type: Gauss.
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4. Conclusions

The rotation-angle solution and singularity handling of five-axis machine tools for dual
NURBS interpolation are studied in this paper. The rotation-angle solutions of machine
tools with different layout structures are unified into a rotation-angle solving problem
of the dual-head type machine tool. A generic method for solving the rotation angles
of five-axis machine tools is proposed based on the vector inner product. The solution
space of the generic method is analyzed, and the conditions of different solutions are
given. The singularity handling based on the higher derivatives of the tool orientation
vector is given. Compared with the simple inverse trigonometric method based on the
kinematic transformation, the proposed method effectively avoided abrupt C-axis angle at
the singular points, reduced the cutting time, and achieved better machining quality. The
experiment results demonstrate that the proposed generic method is effective and practical.
The proposed method provides a better basis for tool vector optimization and dynamic
analysis of multi-axis paths, considering the dynamic performance of machine tools.
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Appendix A

Table A1. Parameters of the Open-Pocket Curve.

Parameters Values

NURBS Degree 3
Knot Vector (0, 0, 0, 0, 0.2, 0.4, 0.6, 0.8, 1, 1, 1, 1)

Weight Vector (1, 1, 1, 1, 1, 1, 1, 1)
Control Points of the
Tool Tip Point Curve

(5,0,0), (−10,20,0), (10,20,0), (20,30,0), (30,30,0), (40,30,0), (50,20,0),
(55,0,0)

Control Points of the
Tool Axis Point Curve

(0,0,15), (−15,20,15), (5,25,15), (15,35,15), (30,35,15), (45,35,15),
(55,25,15), (60,0,15)

Appendix B

Table A2. Parameters of the Cardioid Curve.

Parameters Values

NURBS Degree 3
Knot Vector (0, 0, 0, 0, 1/9, 2/9, 3/9, 4/9, 5/9, 6/9, 7/9, 8/9, 1, 1, 1, 1)

Weight Vector (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
Control Points of the
Tool Tip Point Curve

(0,0,0), (−51,13.5,0), (−51,87,0), (−30,75,0), (−22.5,69,0),
(−1.5,57,0),(1.5,57,0), (22.5,69,0), (30,75,0), (51,87,0), (51,13.5,0), (0,0,0)

Control Points of the
Tool Axis Point Curve

(0,2.25,9), (−45,15,9), (−48,81,9), (−30,75,9), (−22.5,69,9),
(−3,60,9),(3,60,9), (22.5,69,9), (30,75,9), (48,81,9), (45,15,9), (0,2.25,9)
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