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Abstract: In actual industrial application scenarios, noise pollution makes it difficult to extract fault
features accurately via conventional methods. A novel method for rolling bearing fault diagnosis
combining a convolutional neural network (CNN), an attention mechanism for a squeeze-and-
excitation network (SENet) module and a broad learning system (BLS) is proposed (SECNN–BLS). The
one-dimensional bearing vibration signal is processed by using multiple short-time Fourier transforms
(STFT); the two-dimensional image in the time-frequency domain is used as the model input. In the
CNN fault feature extraction process, SENet is introduced to replace the CNN convolution layer,
and global information is obtained through the squeeze operation. Excitation operation captures the
importance of image channels, assigns weights adaptively to improve the attention on important
information and eliminates the interference of irrelevant features without increasing the spatial
and temporal complexity. The weighted feature representation is then transferred to the BLS input.
The BLS has the characteristics of a flat structure and ridge regression to quickly solve the weights;
as a fault classifier, it can save more computing resources and improve the accuracy of the fault
classification. The SECNN–BLS fault diagnosis has achieved more than 98% accuracy on the Society
for Machinery Failure Prevention Technology (MFPT) dataset. We also demonstrate the excellent
performance of SECNN–BLS in a noisy environment.

Keywords: convolutional neural network (CNN); broad learning system (BLS); attention mechanism;
fault diagnosis; rolling bearing

1. Introduction

Against the background of intelligent manufacturing, rotating machinery equipment—an
important part of the manufacturing industry—is developing in the direction of intelligence,
informatization and automation. Its structure and function are becoming more sophisti-
cated and complex to meet growing industrial needs [1]. Due to its continuous high-speed
operation during the production process, the bearing is often subject to equipment wear
and aging, which is one of the causes of safety accidents [2]. Untimely processing and
poor judgment may result in equipment damage and even injuries, causing the entire
production system to stagnate and affecting manufacturing efficiency. Therefore, effective
fault diagnosis is essential to ensure the reliability of system operations.

At present, bearing fault diagnosis technology includes the analysis of temperature,
vibration, ultrasound, static electricity, etc. [3]. The vibration signal is the most commonly
used of these, due to easy data acquisition and analysis. In addition, when the surface
of a rolling bearing is partially damaged, the bearing will generate a periodic broadband
pulse excitation signal, making it effective and convenient to analyze the vibration signal
of the rolling bearing. Fault feature extraction and state classification are the key steps of
data-driven intelligent fault diagnosis methods. The current methods for feature extraction
from rolling bearing vibration signals include analysis of the time domain, frequency
domain and time-frequency domain. Time-frequency domain analysis of vibration signals
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is widely used of these, as are wavelet transform [4], empirical mode decomposition [5],
local mean decomposition [6] and so on. The extracted features are used to identify fault
states through shallow machine learning algorithms such as random forests [7]. However,
these methods rely on specific domain knowledge, cannot learn deep-level features and do
not have sufficient generalization ability to address scenarios with high integration and
complex working conditions.

Due to its powerful automatic learning ability and improved classification accuracy,
deep learning has now been developing rapidly and improving continuously. This data-
driven method can better adapt to massive high-dimensional heterogeneous data; the
non-linear processing units in the deep structure enable more accurate feature extraction
and abstract modeling. Among these methods, CNN is currently the most representative
in rolling bearing diagnosis, owing to characteristics of translation invariant classification,
weight sharing and convolution calculation. Guo et al. [8] proposed a method for multi-task
CNN with information fusion and adopted dynamic training, which can simultaneously
complete fault diagnosis and localization. Gao et al. [9] combined CNN with parameter
optimization maximum correlated kurtosis deconvolution (MCKD) to address the difficulty
of feature extraction for faulty signals in noisy backgrounds.

Although CNN has achieved excellent results in fault diagnosis, it is not easy to
adapt it to the changeable load and system environment in actual industrial scenarios. The
attention mechanism, an important concept in deep learning, involves adaptively extracting
features according to their importance, thereby improving the contribution of important
features to the model. Wang et al. [10] proposed a multi-attention 1DCNN fault diagnosis
model, which can enhance fault-related features adaptively and improve discriminative
feature representation. Xu et al. [11] combined the attention mechanism feature with an
improved multi-scale CNN, which enhanced the anti-interference ability of the model.

Despite the popularity of deep-learning applications, they are limited by high training
cost, necessitated by the large volume of sample data and fixed structure, which cannot
adapt well to demand. The emergence of BLS has greatly improved this problem. When
first proposed in 2018 [12], BLS consisted of input data, feature layer, an enhancement layer
and output (output is the label corresponding to input data). BLS enriches the content of
machine learning and expands the form of network neuron structures. Incremental learning
is the core of BLS [13], having the advantage of accommodating increasing data without
recalculating. Simultaneously, BLS can update the model efficiently, using the simple linear
structure to reduce the computational complexity and workload, handling small batch data
with ease [14]. Meanwhile, the flat simple linear structure makes BLS easy to reshape and
integrate. Since BLS was proposed, endless structural variations have emerged and play a
vital role in many fields [15]. The adaptive BLS method has been applied to fault diagnosis
in rotating machinery [16]; in [17], BLS combined with principal component analysis was
used for a high-speed train traction system.

Therefore, a novel method for fault diagnosis of rolling bearings based on CNN with
SENet and BLS (SECNN–BLS) is proposed, which extracts features from sample data by
CNN and introduces the SENet attention mechanism in the CNN feature extraction process
in order to improve attention to discriminative features. The resulting feature map is then
directly constructed into the BLS feature layer; finally, the BLS is trained to generate a fault
classification. The contributions of this paper are summarized as follows:

(1) A fault diagnosis model integrating CNN and BLS with an attention mechanism is
established. This method combines the advantages of CNN convolution calculation, deep
sample feature extraction, the lightweight structure of SENet and the high efficiency of the
BLS training model. In the feature extraction process of CNN, SENet is introduced to replace
the convolution layer, which can expand from the local receptive field to the extraction
of global feature information. In addition, the importance of image channels is captured
through excitation operation in SENet; the weight is adaptively allocated to emphasize
important feature information and reduce the interference of irrelevant information. BLS
uses ridge regression to update the weight, which can improve calculation efficiency.
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(2) The original vibration signal is processed by multiple short-time Fourier transforms
and converted into the stereoscopic two-dimensional spectrum as the model input, which
more intuitively retains the signal feature information and is conducive to SECNN–BLS
feature extraction of the original information.

(3) The experimental results show that the SECNN–BLS fault diagnosis model has
higher diagnosis accuracy and noise resistance than other methods under normal and noisy
environments. It can better adapt to complex and changeable industrial scenarios.

The remaining content of this article is arranged as follows: The theoretical methods
of CNN, BLS and the attention mechanism are introduced in Section 2. Section 3 describes
the framework design and construction process of SECNN–BLS in detail. In Section 4, the
MFPT dataset, experimental design scheme and performance metrics are introduced, as
well as the analysis the final experimental results. Finally, Section 5 provides the conclusion
and summarizes the shortcomings.

2. Related Work

In this section, the basic principles of CNN, BLS and attention mechanism theory are
introduced. The method proposed in this paper combines the depth feature extraction
advantages of CNN, the training efficiency of BLS and the attention mechanism of SENet.
On this basis, the objective of this research is then formulated.

2.1. Convolutional Neural Network (CNN)

Convolution neural networks perform exceptionally well in the field of image recogni-
tion. Their basic structure is shown in Figure 1, which is mainly composed of a data input
layer, a convolution calculation layer, a pooling layer and a fully connected layer. In the
input layer, it is usually necessary to preprocess the input data.

Figure 1. Framework of a convolutional neural network (CNN).

A CNN can perform representation learning through its hierarchical structure of
convolution calculations. The convolution layer contains a convolution kernel, layer
parameters and excitation functions, which have the characteristics of convolution kernel
parameter sharing and a sparsity of connections between layers. The convolution formula
is as follows:

xl
j = f (∑

i
xl−1

i kl
ij + bl

j) (1)

where f represents the activation function, xl
j denotes the j-th output feature map of l-th

layer, kl
ij denotes the convolution kernel connecting the i-th and j-th feature maps and bl

j
is the bias term. The calculation results of the convolution layer will be mapped to the
pooling layer nonlinearly through the activation function ReLU (the rectified linear unit).
The pooling layer is generally sandwiched in the middle of the continuous convolution
layer to compress the amount of data and parameters and to reduce overfitting. All neurons
in the full connection layer have weight connections, and, finally, the output is formed
through the softmax activation function.
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2.2. Broad Learning System (BLS)

The structure of a basic BLS is improved on the basis of a random vector function
linked neural network (RVFLNN), which eliminates the deep architecture and can realize
efficient incremental learning. A BLS structure has fewer network layers compared with
deep learning and is equipped with feature nodes and enhancement nodes. Of these,
the feature nodes are mapped from the input data after feature extraction; the feature
nodes are then multiplied by random weights plus random deviations and passed to the
enhancement layer. The results of the feature layer and enhancement layer are ultimately
combined and transferred to the output coefficient matrices, where the output weight is
obtained via pseudo-inverse and ridge regression algorithms to avoid repeated calculation
and to improve the efficacy of the modeling process. The basic structure and modeling
process of a BLS are shown in Figure 2.

Figure 2. Framework of a typical BLS.

The given training dataset is
{

XLi , YLi

∣∣XL ∈ RB, YL ∈ RC, i = 1, 2, . . . , n
}

, where XL
and YL represent input data and output data with labels, respectively. After feature ex-
traction, the input data generates mapping features to form n groups of feature nodes
ZLi (i = 1, 2, .., n). The feature nodes ZL

n of each group are represented as:

ZLi = φi(XLWzi + δzi ) (2)

where ZL denotes the calculation result of the feature layer with labels and Wzi denotes the
weight coefficient, which is adjusted by applying a linear inverse problem to obtain the
sparse representation of input data; δzi denotes the bias coefficient and all are generated
via random initialization. The transfer function is denoted by φi(·), and ZL

i = [ZL1 . . . ZLi ]
represents the feature nodes set.

The ZL
n nodes are transformed via nonlinear activation function ξ j(·) to finally gener-

ate m groups of enhancement nodes HLj(j = 1, . . . , m).

HLj = ξ j(ZL
nWhj

+ δhj
) (3)

In addition, Hm , [H1, H2, . . . , Hm] denotes the collection of all enhancement nodes.
The output Y of a BLS is as follows:

YL = [ZL1 , . . . , ZLn

∣∣ξ(ZL
nWh1 + δh1), . . . , ξ(ZL

nWhm + δhm)]W
e

= [ZL1 , . . . , ZLn , HL1 , . . . , HLn ]W
e

= [ZL
n, HL

m]We
(4)

where We denotes the weight of connecting the feature layer and enhancement layer
to the output. We could be easily calculated via the ridge regression approximation of
pseudo-inverse.
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If A = [Zn
L, Hm

L ], We can be obtained by the following objective function:

arg min
We

(
∥∥∥YL − ŶL

∥∥∥2

2
+

λ

2
‖We‖2

2) (5)

where
∥∥∥YL − ŶL

∥∥∥2

2
is used to control training error minimization. The purpose of this

formula is to find the weight coefficient We that minimizes the error between the predicted
value and the true value; λ

2 ‖We‖2
2 prevents overfitting, and λ denotes the regularization

factor. The We coefficient is then as follows:

We = (AT A + λI)
−1

ATYL (6)

where I is the identity matrix, AT is the transpose matrix of A, and the pseudo-inverse of
A can be expressed as:

A+ = lim
λ→0

(AT A + λI)
−1

AT (7)

It follows that We = A+YL = [Zn
L, Hm

L ]
+YL.

2.3. Attention Mechanism

In complex machine-learning tasks, the attention mechanism is a common data pro-
cessing method that can pay more attention to information that is more critical to the
research object, solve the problem of information overload, reasonably allocate computing
resources and improve the efficiency of task processing. The rolling bearing vibration of
different signal segments has different contributions to the diagnosis results, and some
features will interfere with the final results.

The SENet [18] attention module is introduced to measure various channel features
in this paper. SENet mainly includes the key steps of squeeze and excitation. Squeeze
refers to compressing the features of each channel as the descriptor of the channel and
obtaining global channel features through the average pool. Excitation mainly captures
the relationship between channels and generates the corresponding weight of each feature
channel. The final step is reweight, after the feature selection of images, the output weight
of excitation and the importance of each feature channel, weighted to the original feature
information via multiplication to complete the recalibration in the channel dimension.

3. The Proposed SECNN–BLS Framework

A novel rolling bearing fault diagnosis method named SECNN–BLS was proposed,
which first converts one-dimensional sample data points into multi-dimensional image in-
puts, then extracts fault feature information based on squeeze-and-excitation convolutional
neural networks (SECNN) and uses the broad learning system (BLS) as the fault classifier;
the final step is realizing the fault diagnosis on the machine fault prevention technology
(MFPT) rolling bearing dataset. The overall construction of the framework is shown in
Figure 3.

Figure 3a depicts the signal processing module, showing the process of converting
the one-dimensional original vibration signal to the two-dimensional spectrum diagram,
and Figure 3b shows the feature extraction module, which takes the stereoscopic two-
dimensional spectrum diagram image as the input of CNN and adds the attention mecha-
nism SENet to the CNN network structure to automatically acquire the importance of each
channel of the image through learning, thus improving useful features and suppressing
features that are not useful for the current task. Figure 3c shows the fault classification and
recognition module. Here, BLS is used as a fault classifier to identify the fault.
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Figure 3. Framework of SECNN−BLS.

3.1. Vibration Signal Processing

In the process of vibration signal processing, we use short-time Fourier transforms
(STFT), which is actually a joint time–frequency analysis method mainly used to study
non-stationary signal. It can describe the law of signal spectrum changing over time. The
basic idea is to add a window to the signal (the window function will translate according
to the change in time t) and divide the signal into many small segments. If the signal on
each segment can be regarded as stable, then the local signal on the small time segment
near t at any time can be obtained, so that Fourier transform can be performed to form the
two-dimensional time spectrum. The expression of the STFT of the continuous time signal
s(t) is represented as follows:

STFT(t, ω) =
∫ +∞

−∞
[s(τ)g(τ − t)]e−jωτdτ (8)

where STFT(t, ω) is the two-dimensional complex function of time t and frequency ω, s(τ)
is the original signal and g(τ− t) is the window function. In signal processing, the STFT of
the continuous-time signal s(t) in each window is generally replaced by the STFT of the
discrete-time signal s(n), so that the time and frequency are discrete, which is convenient
for analysis and processing. The expression is as follows:

STFT(m, n) =
L−1

∑
k=0

s(k)g(k−m)Wnk
L (9)

where WL = e−j2π/L, and L indicates the truncated signal length in the cycle.
To obtain the information of a fault feature more intuitively and accurately, the real-

time series signal of the rolling bearing in the dataset is first converted into the raw vibration
signal in the time domain. The abscissa of the time domain analysis diagram is time, and the
ordinate is the amplitude. The parameters are set according to the frequency of sampling
and load of the rolling bearing data set; the overlapping sampling method of the sliding
window is used to perform multiple STFTs [19] to draw the 2D spectrogram, as shown in
the Figure 4, where Figure 4a,b show the two-dimensional spectrum of the one-dimensional
vibration signal after STFT at different times. Figure 5 is a stereoscopic representation of the
spectrogram as the input to SECNN–BLS, which can be drawn by Matlab 2020a to make
the spectrum information from the signal more intuitive.
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Figure 4. Conversion from vibration signal to time–frequency domain image.

Figure 5. Input image of SECNN–BLS ((a) is the image of the baseline rolling bearing, (b) is the inner
race fault, and (c) is the outer race fault).

3.2. Feature Extraction Based on the SECNN

When the failure of the bearing emerges, the vibration signal data is not all abnormal,
but only changes at some moments. Therefore, it is unnecessary to carry out the same
learning process for each feature. It is essential to pay attention to some important features
and eliminate interference from irrelevant feature information. To improve the efficiency
of the feature extraction process, the squeeze-and-excitation networks (SENet) module
is embedded in the structure of the CNN. As a lightweight structure, SENet has good
embeddedness. Without increasing the time and space complexity, SENet is embedded in
the CNN structure to replace the convolution layer for feature information extraction, which
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can expand from the local receptive field to global information extraction and recalibrate
the image channel information. First, through the squeezing operation, a global descriptor
is generated across the spatial dimension. This global descriptor aggregates the spatial
information from all channels, and then the excitation operation is performed to capture
the importance of image channels and to control the excitation of each channel. The feature
map is then reweighted to generate the output of the SENet block and combined with the
previous block to extract the channel association information. The construction process is
illustrated in Figure 6.

Figure 6. The realization process of the SENet attention mechanism.

Different colors represent different weights. The main principle is to introduce the
attention mechanism on the channel dimension in the CNN convolution process. For the
feature map X with the given dimension c1 ×w× h, the feature map V with the dimension
c2 × w× h is obtained after an ordinary convolution transformation. After the squeeze
operation, compressing with the spatial dimension of w × h, the output after squeeze
operation uc is obtained via the following formula:

uc = Fsq(Vc) =

w
∑

i=1

h
∑

j=1
Vc(i, j)

w× h
(10)

Fsq represents the squeeze function, which corresponds to a global average pooling
operation. Following compression of a characteristic graph of c × w × h into c × 1× 1,
the results obtained can represent global information. Through the excitation operation,
different weights are assigned to the c2 channels according to the importance of each
channel The corresponding expression is as follows:

z = Fex(u, W) = σ(W2δ(W1u)) (11)

where Fex denotes the excitation function. The corresponding channel weights are obtained
through two full connection operations and activation functions, where W1 is the dimension
reduction parameter of the first full connection operation, W2 is the restoration dimension
parameter of the second full connection, σ is the sigmoid function for weight normalization
and δ is the ReLU function.

X′c = Fscale(Vc, zc) = zcVc (12)

Finally, the output weight matrix z and the input feature map V are multiplied by the
Fscale function, which can reweight feature maps to obtain the input high-level feature X′c
of the next layer structure, which is expressed as Equation (12).
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3.3. Fault Diagnosis Based on the SECNN–BLS

This paper considered combining the SECNN feature extraction module with the BLS
fault classification module. As presented in the Figure 2, through the convolution, attention
mechanism fusion and maximum pooling operations of the input image, the output of the
last convolutional layer or pooling layer is retained as the extracted image features mapped
to the feature nodes of BLS. The main steps of the SECNN–BLS method are summarized
as follows:

Step 1: Divide the vibration signal of the rolling bearings into multiple sections, set
the length of the window to 4000 and the length of overlap to 2000, convert the time series
vibration signal to the frequency spectrum in the time-frequency domain through STFT, set
labels for the samples, divide these into training sets and test sets according to a ratio of 2:1.

Step 2: Load the pre-trained SECNN network, input the preprocessed samples in step
1 into the model and set the convolution core size to 3 × 3 and the length of stride to 2; the
activation function uses ReLu for the convolution operation.

Step 3: Input the feature maps obtained after the convolution calculation into the
SENet module, calculate the importance of different channels of the feature maps and
assign corresponding weights; next, pass the channel feature map multiplied by the weights
to the global maximum pooling layer.

Step 4: The high-level feature representation of the image obtained from the pooling
layer is used as the BLS input and mapped into feature nodes; enhanced nodes are generated
through nonlinear functions to form an augmented matrix to train the fault classifier. Finally,
test samples are used to verify the validity of the fault diagnosis model.

4. Experiment

The SECNN–BLS method was applied to the MFPT rolling bearings dataset to verify
its performance compared with several integrated deep-learning methods including the
following: multisynchrosqueezing transform and sparse feature coding based on dictionary
learning (MSST+SFC-DL) [20], refined composite multiscale fluctuation-based dispersion
Lempel–Ziv complexity (RCMFDLZC) [21] and typical deep-learning methods, including
traditional CNN [22], stacked autoencoder (SAE) and several other improved methods
based on CNN. These included residual net (ResNet), attention mechanism residual net-
work (A-ResNet) and continuous wavelet transform ResNet (CWT-ResNet) [23]. The
experimental results show that the proposed method has the highest detection accuracy in
both normal and noisy environments compared with other methods.

4.1. Data Description

The MFPT dataset includes vibration signals collected from rolling bearings under
23 different health condition categories: three types of rolling bearing data under normal
conditions at constant load, three types of outer race fault data under constant load, seven
categories of outer race faults and seven categories of inner race faults under different loads.
In addition, there are three types of bearing data with unknown fault locations collected
from real-world scenarios. In this paper, 20 categories of labeled data samples in the MFPT
dataset are used to verify the effectiveness of the model. The specific parameters are listed
in Table 1.

Due to the large number of data points, the sliding window method was adopted for
overlapping sampling. The length of the window was set to 4000, and the length of the
overlap was 2000, i.e., each sample contained 4000 sampling data points. The sample size
under each state of the final rolling bearing is shown in Table 1. The sample size under
each label was divided into a training set and a test set at a ratio of 2:1.
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Table 1. The parameters of MPFT dataset.

Fault
Condition Label Load (lbs) Input Shaft

Rate (Hz)
Sample

Rate (sps)
Time

(s)
Number of
Data Points

Number of
Training Samples

Number of
Testing Samples

Baseline B-1, B-2, B-3 270 25 97,656 6 585,936 194 97

Outer Race
Fault

O-1, O-2, O-3 270 25 97,656 6 585,936
534 267O-4, O-5, O-6, O-7,

O-8, O-9, O-10
25, 50, 100, 150,

200, 250, 300 25 48,828 3 146,484 × 7

Inner Race
Fault

I-1, I-2, I-3, I-4, I-5,
I-6, I-7

0, 50, 100, 150,
200, 250, 300 25 48,828 3 146,484 × 7 340 170

4.2. Analysis of Experimental Results

When evaluating the performance of the SECNN–BLS fault diagnosis method for each
type of fault, there are four categories of indicators as follows: Accuracy, Precision, Recall
and F1-Score.

F1-Score =
2× Precision× Recall

Precision + Recall
(13)

In addition, observing two indicators simultaneously has more reference value; here
we have selected a frequently used measurement curve and calculated the area under the
curve (AU). We used the receiver operator characteristic (ROC) curve, which plots the false
positive rate (FPR) versus the true positive rate (TPR).

The results in Table 2 prove that among the 17 types of inner and outer race faults,
the classification accuracy of SECNN–BLS is above 96%, with most reaching 98%. In the
O-1, O-4, O-9, I-1 and I-3 fault categories, the accuracy rate reaches 99%. The AU-ROC
values are around 95%, indicating that the fault diagnosis model is feasible and effective.
Table 3 illustrates that SECNN–BLS has achieved the highest diagnostic accuracy of 98.31%
compared to the other methods.

Table 2. Performance metrics for each type rolling bearing fault.

Label Precision Recall F1-Score AU-ROC Accuracy

O-1 99.74% 90.65% 94.98% 95.50% 99.74%
O-2 96.51% 97.66% 97.08% 95.15% 96.51%
O-3 97.17% 97.43% 97.30% 95.15% 97.17%
O-4 99.92% 94.21% 96.98% 95.30% 99.92%
O-5 97.90% 93.39% 95.59% 95.35% 97.90%
O-6 98.94% 95.60% 97.24% 95.25% 98.94%
O-7 97.17% 97.50% 97.34% 95.15% 97.17%
O-8 96.20% 96.13% 96.17% 95.20% 96.20%
O-9 99.88% 93.49% 96.58% 95.35% 99.88%
O-10 98.10% 97.04% 97.57% 95.15% 98.10%
I-1 99.97% 96.65% 98.28% 95.20% 99.97%
I-2 98.17% 97.67% 97.92% 95.15% 98.17%
I-3 99.99% 98.85% 99.42% 95.10% 99.99%
I-4 96.62% 95.22% 95.92% 95.25% 96.62%
I-5 97.26% 97.86% 97.56% 95.15% 97.26%
I-6 98.95% 94.24% 96.54% 95.30% 98.95%
I-7 98.79% 91.33% 94.92% 95.45% 98.79%

Figure 7 depicts the ROC curves for the categories with the highest diagnostic accuracy,
shown separately in terms of the outer race fault and inner race fault. It is obvious that the
curves are close to the upper left corner, which indicates that the larger the area below the
curves, the better the performance of the method.
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Table 3. Results of fault diagnosis accuracy compared with other methods on the MFPT dataset.

Literature Feature Extraction Fault Identification Fault Types Average Accuracy (%)

[20] MSST+SFC-DL LSVM 3 95.83
[21] RCMFDLZC DAC 3 96.05
[22] CNN HHT 3 92.90
[23] SAE Softmax 3 90.11
[23] CNN Fully Connected Layer, Softmax 3 94.33
[23] ResNet Fully Connected Layer, Softmax 3 96.83

[23] Attention Mechanism
ResNet Fully Connected Layer, Softmax 3 97.87

This paper SECNN BLS 3 98.31

Figure 7. ROC curves for the fault diagnosis for the inner ring and outer ring ((a) is the ROC curve of
label O-9, and (b) is the ROC curve of label I-3).

4.3. Performance under Additional Noise Conditions

This section mainly evaluates the anti-interference ability of SECNN–BLS in a noisy
environment. In the actual industrial production environment, noise pollution is inevitable
in the collected vibration signal data of rolling bearings; this will interfere with the detection
and identification of faults and affect the accuracy of fault diagnosis. In order to verify the
robustness and stability of the model, we introduced Gaussian white noise into the original
vibration signal. The signal-to-interference plus noise ratio (SNR) is expressed as follows:

SNR = 10 log10
Ps

Pn
(14)

where Ps and Pn represent the effective power of the vibration signal and the added
Gaussian white noise, respectively; the unit of SNR is dB. The Gaussian white noise range
used in this paper is −4 dB~12 dB.

Five fault diagnosis methods were selected to compare with this method, including a
stacked autoencoder network (SAE), a CNN and several other improved methods based
on CNN: residual net (ResNet), attention mechanism residual network (ARes–Net) and
continuous wavelet transform ResNet (CWT–ResNet). The specific results of the experiment
are shown in Table 4. It is obvious that noise will have a certain impact on the accuracy of
fault diagnosis, but with the gradual increase in SNR, the accuracy rate will be significantly
improved. Compared with the other five methods, SECNN–BLS has the highest diagnostic
accuracy in a noisy environment. When SNR = −4 dB, it can still maintain more than
80% accuracy, and when SNR = 12 dB, the accuracy of the fault diagnosis can reach 98.21%.
Figure 8 is a visual representation of the experimental results with a broken line diagram,
which shows consistently superior performance for SECNN–BLS.
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Table 4. Comparison results of fault diagnosis accuracy under a noisy environment with other
methods on the MFPT dataset.

Method
Accuracy (%) under Different SNR (dB)

−4 0 4 8 12

SAE 55.39 69.32 81.22 87.33 89.27
CNN 61.57 77.13 83.89 91.25 92.95

ResNet 64.44 80.49 89.73 94.84 96.03
A−ResNet 75.05 86.54 92.86 96.47 97.52

CWT−ResNet 72.86 85.07 92.47 96.28 98.06
SECNN–BLS 81.22 92.08 95.76 97.83 98.21

Figure 8. Comparison results of different methods in different noise environments.

5. Conclusions

In this paper, a novel method named SECNN–BLS is proposed. Through multiple
discrete STFTs, a one-dimensional rolling bearing vibration signal is initially transformed
into a two-dimensional spectrogram as the CNN input, which maximally retains the
original features. We then introduced an attention mechanism into the feature extraction
process by replacing the convolution layers with SENet modules, adaptively assigning
weights according to the importance of image channel information. This, in turn, improves
the contribution degree of important information, eliminating interference from irrelevant
features. Introducing a BLS in the failure classification stage effectively increases the fault
classification accuracy. The final experimental results show that the performance of the
proposed method is superior, while still maintaining high diagnostic accuracy in noisy
environments, making it better adapted to complex industrial environments.

Although corresponding solutions have been proposed for the problem of more
efficient deep feature extraction and fault classification, there are still some problems
worthy of in-depth study, such as how to improve the applicability of the model and be able
to deal with the modeling problem of changeable working conditions and nonstationary
data. In addition, due to space limitations, research on BLS incremental learning has not
yet been conducted, which will be a direction for future work.
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