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Abstract: When solving the control co-design (CCD) problem using the simultaneous strategy in
a deterministic manner, the uncertainty stemming from the stochastic design variables is ignored,
and might have a negative influence on the performance of the dynamic system. In attempting to
overcome the undesirable effect of the uncertainty, this research investigates the reliability-based
control co-design (RB-CCD) problem and presents a single-loop framework for RB-CCD based on
the modified RB-CCD model and single-loop approach (SLA). Specifically, the modified model
is deduced by introducing additional design variables and equality constraints (state equations
and algebraic equality constraints) so as to transform the probabilistic constraints into inequality
constraints. Meanwhile, to enhance the solution efficiency, SLA transforms the modified RB-CCD
model into an equivalent single-loop deterministic CCD model by incorporating the approximate
reliability information of the stochastic design variables into the deterministic optimization. Finally,
a numerical example and an engineering example are implemented to verify the feasibility and
effectiveness of the single-loop RB-CCD optimization framework. The results demonstrate that the
suggested single-loop framework dramatically improves the reliability of the dynamic system, and
significantly increases the solving efficiency without compromising accuracy.

Keywords: dynamic system; control co-design; reliability analysis; single-loop framework

1. Introduction

The CCD problem in the dynamic system accounts for the bi-directional dependency
of physical system design and control system design [1]. In CCD, the dynamic equations
(i.e., state equations) are expressed by the differential algebraic equations, and two types
of design variables, plant (or physical) parameters and control inputs, are optimized by
minimizing the performance index [2]. To address the CCD problem efficiently, two classes
of CCD formulations, nested (or multi-layer optimization) formulation and simultaneous
formulation, are presented and developed [1,3]. In the nested formulation, the physical
design parameters and the control inputs are optimized separately in the outer-loop and
inner-loop of a two-level optimization structure. While the simultaneous formulation solves
the physical design parameters and control inputs simultaneously in the same expression.
Whether in the nested or simultaneous formulation, the direct transcription technique [4],
one category of discretize-then-optimize techniques, transcribes the CCD problem into a
finite-dimensional nonlinear programming (NLP) problem at the time grid nodes, then the
gradient-based optimizer [5] solves the NLP problem and obtains the optimal solution of
CCD. Engineers have taken full advantage of the nested and simultaneous formulations
to the control and co-design of rehabilitation robots [6], active suspension [7,8], PHEV
powertrain [9], and horizontal-axis wind turbines [10].

As mentioned earlier, the CCD formulations have been successfully deployed in a
deterministic manner on the dynamic system. Nonetheless, deterministic optimization
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(DO) for a complex engineering system with multiple sub-disciplines or sub-systems does
not account for uncertainty, such as the uncertainty in the manufacture technology, material
properties, structure and geometry dimension, typically pushes the design to the limits of
the constraints, allowing little or no space for the uncertainty. As a result, DO may yield
unreliable decisions, which has a negative impact on system performance. In attempting to
satisfy the higher requirements for system safety, uncertainty in the static system has been
extensively and intensively researched, and optimization under uncertainty is introduced
as an alternative to DO [11]. Reliability-based design optimization (RBDO) is one of the
representative approaches of optimization under uncertainty in the static system [12,13].
In the standard RBDO formulations, the failures caused by uncertainty can be quantified
by the probability of failure [14,15]. The reliability index approach and performance
measurement approach are two traditional double-loop methods for RBDO, in which the
design variables are optimized in the outer loop, and the uncertainty is analyzed in the
inner loop. Compared to the reliability index approach, the performance measurement
approach performs more robustly and efficiently to search the most probable point (MPP).

Nevertheless, the double-loop methods suffer from expensive computational costs
as the reliability analysis of the inner loop is nested in the deterministic optimization
outer loop. To conquer the inefficiencies of double-loop methods, decoupled-loop meth-
ods (DLMs) and single-loop methods (SLMs) are proposed and developed to solve the
RBDO problem. In DLMs, the reliability analysis is decoupled from the iterative optimiza-
tion process. The classical methods belonging to DLMs are the sequential optimization
and reliability assessment (SORA) [11] and its modified methods [16–18], in which the
reliability-based optimization problem is decomposed into two sub-problems, DO problem
and reliability analysis (RA), and addressed sequentially until the solution convergence.
In addition to the SORA method, other DLMs such as sequential approximate program-
ming [19], penalty-based approach [20] and reliability index function approximation by
adaptive double-loop Kriging [21] are also proposed and studied. Although DLMs have
been proven to significantly reduce the solving complexity and improve the solving ef-
ficiency of the RBDO problem, RA loops in DLMs are still computationally expensive
sub-optimization problems. SLMs do not search for the MPP of each constraint in iterations.
Instead, an approximation of the MPP obtained by solving the Karush–Kuhn–Tucker (KKT)
conditions is used for active constraints. Chen et al. [22] presented the single-loop single
vector method to search the approximate MPP according to the target reliability index and
limit state function derivatives. Liang et al. [23] suggested a new single-loop approach
for system RBDO. Those two approaches calculate the limit state function derivative at
the approximate MPP, while the derivative at the design point was required to build re-
liable design space in the method proposed by Shan and Wang [24]. Additionally, more
worthwhile attempts also made to broaden the application of SLMs [25–27]. Compared
with DLMs, SLMs have simpler structures by integrating the two optimization loops (DO
and RA) into DO, and dramatically improve the solving efficiency.

While significant developments have been achieved recently in CCD and RBDO,
respectively, there has been limited research on RB-CCD, since reliability analysis was
introduced into the control co-design of the dynamic system. Cui et al. [28] conducted
a comparative study of the simultaneous and nested formulations for reliability-based
co-design and presented a reliability-based co-design framework for linear quadratic prob-
lems with double-loop method. Similar to RBDO, the double-loop method for RB-CCD also
suffers from expensive computational costs. Azad and Alexander-Ramos [29] proposed and
implemented a single-loop stochastic co-design formulation to explicitly account for un-
certainties from design decision variables and problem parameters in the dynamic system.
More precisely, this single-loop formulation belongs to the decoupled-loop method rather
than the single-loop method because it is developed using the SORA algorithm instead of
SLA. According to the conclusion in RBDO, the RB-CCD formulation based on SLA may
achieve higher solving efficiency than SORA algorithm. Cui et al. [30] listed the double-
loop, single-loop, as well as decoupled-loop formulations of reliability-based co-design,
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and optimized the horizontal axis wind turbine design problem by those formulations.
However, the probabilistic constraints in the turbine system only contain plant design
parameters and control inputs, and do not involve state variables. When the probabilistic
constraints do not contain state variables, the probabilistic constraints are handled in the
same way as in RBDO since control inputs are fixed in RA and the probabilistic constraints
only contain the time-independent plant design parameters. However, if state variables
are included in the probabilistic constraints, though control inputs are fixed in RA, state
variables, whose trajectories are time dependent and vary with plant design parameters,
also have a significant impact on the reliability. Hence, the single-loop formulation for
RB-CCD, especially in which the probabilistic constraints contain state variables, deserves
more investigation.

Motivated by the previous analysis, this work proposes a single-loop framework
based on the modified RB-CCD model and SLA to solve the RB-CCD problem with high
accuracy and efficiency. Firstly, the differences between the RBDO model in the static
system and the RB-CCD model in the dynamic system are analyzed, and the treatment
of the inequality constraints in the RB-CCD model is suggested to facilitate the RA loop.
Then, to eliminate the probabilistic constraints, a modified RB-CCD model is deduced by
introducing additional design variables, state equations and algebraic equality constraints.
In the modified RB-CCD model, the probabilistic constraints with plant design parameters,
state variables and control inputs are transformed into corresponding inequality constraints.
After that, the SORA formulation decomposes the RB-CCD problem into DO and RA
loop. The deterministic design variables are optimized in the DO loop by enforcing the
algebraic equality constraints and state equation equality constraints to be satisfied at the
mean values of the random design variables, as well as their MPPs. The RA loop, on
the other hand, optimizes the random design variables via a complex computationally
expensive optimization subproblem. What is more, a single-loop framework based on the
modified RB-CCD model and SLA is proposed to further improve the solving efficiency of
the RB-CCD problem. In the single-loop solving framework, the approximate reliability
information of the random design variables is provided by the KKT optimality condition
and integrated into the deterministic optimization. Therefore, the single-loop framework
only addresses one equivalent single-loop CCD problem, which significantly enhances the
RB-CCD solving efficiency. Finally, the SORA formulation and the single-loop framework
for RB-CCD are applied to a numerical example and a glider dynamic soaring problem. The
results illustrate that the optimal designs generated by the SORA formulation and the single-
loop framework can dramatically improve the reliability of the dynamic system compared
to the original design yielded from the CCD problem. More importantly, the presented
single-loop framework based on the modified RB-CCD model and SLA improves the
solving efficiency and reduces the computational budget without compromising accuracy
in comparison to the SORA formulation.

The remainder of this paper is organized in the following manner: Section 2 introduces
the CCD problem in the dynamic system and the RBDO problem in the static system.
The concept of the RB-CCD problem is introduced in Section 3, and a single-loop RB-
CCD solving framework based on the modified RB-CCD model and SLA is presented. A
numerical example and an engineering problem are used to demonstrate the feasibility
and effectiveness of the single-loop RB-CCD solving framework in Section 4. Section 5
concludes this work and describes future opportunities for related research.
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2. Related Work
2.1. The CCD Problem

The objective of the CCD problem is to solve the optimal input vectors of physi-
cal design parameters x∗p and control variables u∗(t) that minimize the dynamic system
performance index. The simultaneous formulation of CCD is described as follows [2]:

min
xp ,ξ(t),u(t)

J(xp,ξ(t), u(t)) = φ(xp,ξ(t), u(t), t) +
∫ t f

t0
L(xp,ξ(t), u(t), t)dt

s.t.
.
ξi(t) = fi(xp,ξ(t), u(t), t), i = 1, 2, . . . , Nξ

hj(xp,ξ(t), u(t), t) = 0, j = 1, 2, . . . , Nh
gk(xp,ξ(t), u(t), t) ≤ 0, k = 1, 2, . . . , Ng

(1)

where J is the response of a cost function which consists of the Mayer term φ(·) and the
Lagrange term L(·), xp is the vector of the physical design parameters, and ξ(t) and u(t)
mean the vectors of the state variables and control inputs. Meanwhile, CCD is subject to
different types of constraints such as state equations

.
ξ(t) = f(xp,ξ(t), u(t), t), algebraic

equality constraints h and inequality constraints g.
In the direct solving approach of CCD, the vectors of plant design parameters xp,

the state variables ξ(t), and control inputs u(t) are discretized at time grid nodes by
means of the direct transcription technique. Thus, the CCD is transformed into an NLP as
shown below:

min
xp ,Ξ,Θ

J(xp, Ξ, Θ) = φ(xp,ξ(t0),ξ(t f ), t0, t f ) +
N
∑

k=0
ωk · L(t, xp, Ξ(k), Θ(k))

s.t. Di · Ξ = fi(xp, Ξ, Θ), i = 1, 2, . . . , Nξ

hj(xp, Ξ, Θ) = 0, j = 1, 2, . . . , Nh
gk(xp, Ξ, Θ) ≤ 0, k = 1, 2, . . . , Ng

(2)

where Ξ and Θ are the discrete matrices of the state variables and control inputs in the time
domain, ωk is the integration weight, and D is the differential matrix. Those matrices are
specified in different pseudospectral methods [31,32].

2.2. The RBDO Problem

In the static system, the general formulation of the RBDO problem with equality
constraints is typically expressed as follows:

min
µxp

J(µxp)

s.t. Pr
{

gk(xp) ≤ 0
}
≥ Φ(βT

k ), k = 1, 2, . . . , Ng
hj(xp) = 0, j = 1, 2, . . . , Nh

(3)

where xp is the vector of random design variables; µxp are the mean values of xp; J(µxp) is
the objective function; Pr

{
gk(xp) ≤ 0

}
means the probability of satisfying the kth constraint

function gk(xp); Φ(βT
k ) and βT

k stand for the desired design probability and the target
reliability level of the kth constraint function; and h(xp) refers to equality constraints.

At each design point, the probability Pr{·} of all constraint functions is calculated by
reliability analysis. Several approaches, such as the Monte Carlo simulation method, local
expansion method, functional expansion method, numerical integration method and MPP
approach, have been proposed to evaluate the probabilistic constraints [33].

3. The RB-CCD Frameworks Based on SORA and SLA

As described previously, the plant design parameters are the deterministic variables in
CCD, feeding the optimized control inputs to a dynamic system will result in deterministic
state trajectories. While the plant design parameters in RB-CCD are assumed to be random
variables, and bring uncertainty to the dynamic system. The uncertainty will propagate
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through the state equations and constraint functions, eventually affecting the optimal state
trajectories. In this part, the general model of the RB-CCD problem under aleatory uncer-
tainty is introduced first. After that, to eliminate the probabilistic constraints, a modified
RB-CCD model is deduced by introducing additional design variables, state equations
and algebraic equality equations. In the modified RB-CCD model, the probabilistic con-
straints with plant design parameters, state variables and control inputs are transformed
into corresponding inequality constraints. Whereafter, the SORA formulation decomposes
the modified RB-CCD model into a two-level optimization loop to be solved. To further
improve the solving efficiency, a single-loop framework for RB-CCD is presented based on
the modified RB-CCD model and SLA.

3.1. The General Model of RB-CCD

The general model of RB-CCD under aleatory uncertainty can be described as follows:

min
µxp ,µξ,u(t)

J(µxp ,µξ, u(t)) = φ(µxp ,µξ, u(t), t) +
∫ t f

t0
L(µxp ,µξ, u(t), t)dt

s.t.
.
ξi(t) = fi(xp,ξ(t), u(t), t), i = 1, 2, . . . , Nξ

hj(xp,ξ(t), u(t), t) = 0, j = 1, 2, . . . , Nh
Pr{gk(xp,ξ(t), u(t), t) ≤ 0

}
≥ Φ(βT

k ), k = 1, 2, . . . , Ng

(4)

where xp are the plant design parameters, and supposing xp follow the normal distributions
N(µxp ,σ2), µxp and σ are the mean values and standard deviations; the state variables
ξ(t) are also random variables since the values of ξ(t) are depend on xp, and µξ are the

mean values of ξ(t); u(t) is the vector of control inputs;
.
ξ(t) = f(xp,ξ(t), u(t), t) stand

for the state equations; h(xp,ξ(t), u(t), t) mean the algebraic equality equations; and
Pr{g(xp,ξ(t), u(t), t) ≤ 0

}
denote the probabilistic constraints.

By comparing the RBDO model in Equation (3) with the RB-CCD model in Equation (4),
on the one hand, in terms of design variables, RB-CCD not only contains time-independent
physical design parameters xp, but it also includes two types of time-dependent variables
(state variables ξ(t) and control inputs u(t)). On the other hand, in view of the equality
constraints, RB-CCD is not only subject to the algebraic equality equations, but it is also
constrained by the state equations. Therefore, optimizing the RB-CCD problem is more
complicated than the RBDO problem, and the first challenging obstacle is the treatment of
the inequality constraints g(xp,ξ(t), u(t), t) ≤ 0. It is clear that the result of an inequality
constraint in RBDO is a numerical value g, while its counterpart in RB-CCD is a set of
time series {gt} due to the time-correlated state variables ξ(t) and control inputs u(t), and
evaluated by the simulation of the dynamic system. Thus, the RA methods for RBDO
cannot be deployed on RB-CCD directly.

To surmount the above difficulty, a further investigation of the inequality constraints
reveals that, regardless of whether the other elements of the time series {gt} satisfy the
inequality constraints, any element of the series that violates the inequality constraints
indicates that the current design fails to satisfy g(xp,ξ(t), u(t), t) ≤ 0 at all time steps.
Conversely, only if all the elements in {gt} are less than 0 can guarantee that the current
design satisfies the inequality constraints. To this end, the value of the largest element
{gt}max is set as the result of {gt} when optimizing RB-CCD. The value of {gt}max is less
than 0, which certainly means the current design satisfying the inequality constraints.

3.2. The Modified RB-CCD Model

Assuming that the plant design variables xp in the general RB-CCD model follow the
normal distributions N(µxp ,σ2), then xp can be split into the deterministic components
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d = µxp subjected to interval constraints, [xL
p , xU

p ], and the normally distributed random
components r following N(0,σ2), i.e.,

xp = d + r
d ∈ [xL

p , xU
p ], r ∼ N(0,σ2)

(5)

Thus, two types of spaces, DO space and random RA space, are included in the
RB-CCD model. The DO space consists of deterministic components d and deterministic
control inputs u(t), and the random RA space consists of random components r and the
state variables ξ(t).

Next, the state equations and algebraic equality equations in the random RA space
can be given as

.
ξ(t)− f(d, r,ξ(t), u(t), t) = 0
h(d, r,ξ(t), u(t), t) = 0

(6)

where the deterministic components d and control inputs u(t) are deterministic variables,
and the random components r and state variables ξ(t) are random variables. The state
equations and algebraic equality equations formulated in the DO space may not guarantee
the equality condition in the RA analysis space. Theoretically, one or more random variables
can be substituted in terms of the remaining random variables to eliminate the equality
constraints. However, in the dynamic system, eliminating equality constraints may be
difficult or impossible since the state equations and algebraic equality equations are time
dependent. Therefore, a numerical procedure that does not actually eliminate equality
constraints based on variable elimination is developed according to Ref. [34]. In the
dynamic system, the state variables ξ(t) depend on the plant design variables xp and control
inputs u(t). That is, the state variables ξ(t) are related to the deterministic components d,
random components r, and control inputs u(t). In the random RA space, the deterministic
components d and control inputs u(t) are regarded as known constants, meaning that the
state variables ξ(t) vary only with the random components r. To this end, this work treats
the random components r as the independent variables, and considers the state variables
ξ(t) to be the dependent variables in the random reliability analysis space.

Furthermore, addressing the state equations and algebraic equality equations in
Equation (6) yields

ξ(t) = H(d, r, u(t), t) (7)

where H represents the functional relationship between the independent variables r and
the dependent variables ξ(t).

Then, given an RB-CCD problem is formulated as

min
d,u(t)

J(d,µr, u(t))

s.t. Pr{gk[d, r, H(r), u(t), t] ≤ 0} ≥ Φ(βT
k ), k = 1, 2, . . . , Ng

(8)

where the state equations and algebraic equality equations are eliminated by Equation (7).
Assuming that r∗k is the MPP of the kth constraint function, gk satisfied the target relia-

bility level βT
k . According to RIA, the probabilistic constraints Pr{gk[d, r, H(r), u(t), t] ≤ 0}

in Equation (8) is equivalent to

gk[d, r∗k , H(r∗k ), u(t), t] ≤ 0 (9)

Hence, the RB-CCD model is transformed into

min
d,u(t)

J(d,µr, H(µr), u(t))

s.t. gk[d, r∗k , H(r∗k ), u(t), t] ≤ 0, k = 1, 2, . . . , Ng
(10)
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The above process uses the concept of variable elimination and does not really elimi-
nate the dependent variables ξ(t). Nevertheless, the probabilistic constraints are converted
into inequality constraints at the MPP r∗k . Therefore, in addition to the state equations and
algebraic equality equations specified in Equation (6), the mean values µξ of the dependent
variables ξ(t) and their values ξ∗k (t) at the MPP r∗k are also introduced into the RB-CCD
model as part of design variables to convert the probabilistic constraints into inequality
constraints. ξ∗k (t) can be computed by

ξ∗k (t) = H(d, r∗k , u(t)) (11)

Finally, the modified RB-CCD model is generated as follows:

min
d,µξ ,ξ∗k (t),u(t)

J
(
d,µr,µξ , u(t)

)
= φ

(
µxp ,µξ , u(t), t

)
+
∫ t f

t0
L
(
µxp ,µξ , u(t), t

)
dt

s.t. gk
(
d, r∗k , H, u(t), t

)
≤ 0, k = 1, 2, . . . , Ng.

µξ,i = fi
(
d,µr,µξ , u(t), t

)
, i = 1, 2, . . . , Nξ.

ξ
∗
ik(t) = fik

(
d, r∗k , H, u(t), t

)
, ik = 1, 2, . . . , Nξ ·Ng

hj
(
d,µr,µξ , u(t), t

)
= 0, j = 1, 2, . . . , Nh

hjk
(
d, r∗k , H, u(t), t

)
, jk = 1, 2, . . . , Nh·Ng

(12)

where d are the deterministic components of plant design variables; µr and r∗ are the mean
values and MPPs of the random components r of plant design variables; and µξ and ξ∗(t)
are the mean values and MPPs of state variables ξ(t). The state equations and algebraic
equality equations are satisfied at the mean values and the MPPs of r and ξ(t). Since each
inequality constraint gk has its own MPP, the total number of state equations and algebraic
equality equations are Nξ · Ng and Nh · Ng, respectively. Moreover, it is worth noting that
the MPP r∗k of the random components should be searched for the reliability constraints
gk ≤ 0, while solving the modified RB-CCD problem directly will involve an expensive
double-loop procedure.

3.3. The SORA Method for RB-CCD

The SORA method decouples reliability analysis from optimization and constitutes a
series of single-level loops in which uncertainty analysis and deterministic optimization
are executed sequentially, making the solution of the RBDO problem more efficient. Thus,
SORA is deployed on decoupling the RB-CCD problem into two loops: DO loop and RA
loop.

(1). The DO loop
The subproblem in the DO loop is given by

min
dm ,µm

ξ ,ξm,∗(t),um(t)
J
(

dm,µm
r ,µm

ξ , um(t)
)

s.t. gk

(
dm, rm−1,∗

k , ξm,∗
k (t), um(t), t

)
≤ 0, k = 1, 2, . . . , Ng

.
µ

m
ξi
= fi

(
dm,µm

r ,µm
ξ , um(t), t

)
, i = 1, 2 . . . , Nξ

.
ξ

m,∗
ik (t) = fik

(
dm, rm−1,∗

k , ξm,∗
k (t), um(t), t

)
, ik = 1, 2 . . . , Nξ ·Ng

hj

(
dm,µm

r ,µm
ξ , um(t), t

)
= 0, j = 1, 2, . . . , Nh

hjk

(
dm, rm−1,∗

k , ξm,∗
k (t), um(t), t

)
, jk = 1, 2, . . . , Nh·Ng

(13)

where superscript m denotes the values of variables in the mth cycle of SORA. The sub-
problem obtains the optimal objective function value J∗ by optimizing the variables
[d,µξ,ξ∗(t), u(t)], which consist of the original variables [d, u(t)] and two newly added
variables [ξ∗(t),µξ]. rm−1,∗

k , are delivered from the reliability analysis in the previous cycle
of SORA. The state equations and algebraic equality equations hold at both the means
and MPPs.



Machines 2023, 11, 262 8 of 23

(2). The RA loop
The first-order reliability analysis method within the performance measurement ap-

proach is utilized to calculate the MPPs r∗, and the subproblem to search r∗ in the RA loop
for the kth constraint is described as

min
rm

k,U,ξm(t)
−gk(d

m−1, rm
k,U,ξm(t), um−1(t), t)

s.t.
∥∥∥rm

k,U

∥∥∥− βT
k = 0

.
ξ

m
i (t)− fi(d

m−1, rm
k,U,ξm(t), um−1(t)) = 0, i = 1, 2, . . . , Nξ

hj(d
m−1, rm

k,U,ξm(t), um−1(t)) = 0, j = 1, 2, . . . , Nh

(14)

where rU are the mapping variables of r in the U-space, and dm−1 and um−1(t) are trans-
ferred from the DO loop in the previous cycle and are known as constant in the RA loop.
The above subproblem includes all the state equations and algebraic equality equations to
ensure their satisfaction at the MPP, its solution r∗k,U is the MPP for the kth constraint in the
U-space, and can be converted to r∗k in the original space.

The specific steps for the implementation of the SORA method to optimize the RB-CCD
problem are listed as follows:

Step 1: Solve the CCD problem without considering the uncertainty of the plant design
variables xp, and the solution values [d0,ξ0(t), u0(t)] are assigned as the initial values for
the RB-CCD problem.

Step 2: Optimize the subproblem of Equation (14) in the RA loop to obtain the rm
k,U in

the U-space, then transform rm
k,U into rm,∗

k in the original space, deliver rm,∗
k to Step 3. Note:

m starts from 1.
Step 3: Execute the DO loop by solving the subproblem of Equation (13), and obtain

the latest optimal solution [dm,ξm(t), um(t)].
Step 4: Calculate the successive relative improvement (SRI) of d and the values of

inequality constraints g; if SRI and the values of g satisfy the following convergence
condition, stop the solving process; otherwise, deliver [dm, um(t)] to the RA loop of Step 2.

SRI(=
∣∣∣dk − dk−1

∣∣∣) ≤ ε & g ≤ 0 (15)

Step 5: Repeat Step 2 to Step 4 until the solution converges.

3.4. The Single-Loop Framework for RB-CCD Based on the Modified Model and SLA

In the RA loop of the SORA formulation for the RB-CCD problem, a complex com-
putationally expensive optimization subproblem with the algebraic equality constraints
and state equation equality constraints should be optimized to yield the MPPs r∗ of the
random components r, which reduces the efficiency of solving the RB-CCD problem. As a
consequence, a single-loop RB-CCD solving framework based on the modified RB-CCD
model and SLA is proposed to improve the solving efficiency.

As previously mentioned, the random components r and state variables ξ(t) are
treated as independent and dependent variables in Equation (6), and the deterministic
components d and control inputs u(t) are known as constants in Equation (14). Therefore,
given specific values of the random components r, the state variables ξ(t) can be calculated
by the numerical procedure, Runge–Kutta algorithm, on the basis of the algebraic equality
equations h and state equations

.
ξ(t) = f(d, r,ξ(t), u(t), t):

ξ(t) = RK(d, r, u(t), t) (16)

Then, the objective function −g(d, rU,ξ(t), u(t), t) of Equation (14) is converted into

− g(d, rU, RK(d, rU, u(t)), u(t), t) (17)
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Equation (17) can be abbreviated as

G(d, rU, u(t), t) (18)

Furthermore, according to the ideal of SLA for RBDO in Ref. [25], an approximation of
the MPP r∗ of the random components r can be approximated using the KKT optimality
condition and be calculated by the following expression

rm,∗ = µm−1
r −σx

βT σx∇G(dm−1 + µm−1
r )∥∥∥σx∇G(dm−1 + µm−1
r )

∥∥∥
 (19)

Finally, replacing rm,∗
i of Equation (13) by Equation (19) to generate the SLA formula-

tion for the RB-CCD problem

min
dm ,µm

ξ ,ξm,∗
i (t),um(t)

J
(

dm,µm
ξ , um(t)

)
s.t. gk

(
dm,µm−1

r −σx

(
βT σx∇G(dm−1+µm−1

r )
‖σx∇G(dm−1+µm−1

r )‖

)
, ξm,∗

i (t), um(t)
)
≤ 0, k = 1, . . . , Ng

.
µ

m
ξi
− fi(d

m,µm
r ,µm

ξ , um(t)) = 0, i = 1, 2, . . . , Nξ
.
ξ

m,∗
ik (t)− fik

(
dm,µm−1

r −σx

(
βT σx∇G(dm−1+µm−1

r )
‖σx∇G(dm−1+µm−1

r )‖

)
, ξm,∗

k (t), um(t)
)
= 0, ik = 1, 2, . . . , Nξ ·Ng

hj(d
m,µm

r ,µm
ξ , um(t)) = 0, j = 1, 2, . . . , Nh

hjk

(
dm,µm−1

r −σx

(
βT σx∇G(dm−1+µm−1

r )

‖σx∇G(dm−1+µm−1
r )‖

)
, ξm,∗

i (t), um(t)
)
= 0, jk = 1, 2, . . . , Nh·Ng

(20)

Hereto, a single-loop framework for RB-CCD based on the modified model and SLA
is completed. Figure 1 exhibits the implementation of the single-loop RB-CCD framework,
and the detailed steps of the framework are as follows:

Figure 1. The flowchart of the single-loop RB-CCD framework.

Step 1: Solve the CCD problem without considering the uncertainty of the plant design
variables xp, and the solution values [d0,ξ0(t), u0(t)] are assigned as the initial values for
the RB-CCD problem.

Step 2: Transform the original inequality constraints g into G of Equation (18) based
on [dm−1,ξm−1(t), um−1(t)]. Note: m starts from 1.
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Step 3: Solve the optimization problem expressed in Equation (20), and obtain the
latest [dm,ξm(t), um(t)].

Step 4: Calculate the SRI of d and the values of inequality constraints g; if SRI and the
values of g satisfy the convergence condition in Equation (15), stop the solving process;
otherwise, deliver [dm,ξm(t), um(t)] to Step 2.

Step 5: Repeat Step 2 to Step 4 until the solution converges.
In the single-loop RB-CCD framework, the role of the random components r is convert-

ing the probabilistic constraints Pr{g(·) ≤ 0} ≥ Φ(βT) into inequality constraints g(·) ≤ 0
at MPP r∗, and the role of the deterministic components d is searching for the optimal plant
design parameters d∗ with the inequality constraints g(·) ≤ 0. This means that r is used
to adjust the reliability-based design space of d iteratively, and d∗ are located in the new
reliability-based design space rather than the original feasible region. As the iterations in
the RB-CCD framework proceed, the appropriate reliability-based design space is deter-
mined, and the deterministic components d, as well as the control inputs u(t), also are
converged to optimal solutions d∗ and u∗(t). At the same time, the main advantage of the
single-loop RB-CCD framework is that it eliminates the repeated reliability analysis without
increasing the number of design variables or adding equality constraints by calculating the
approximate MPP r∗ of the random component r via the KKT optimality conditions rather
than the optimizing subproblem with the algebraic equality constraints and state equation
equality constraints. Consequently, instead of performing nested design optimization and
reliability loops, the single-loop RB-CCD framework solves an equivalent single-loop CCD
problem, and dramatically increases the efficiency of the solution.

4. Numerical and Engineering Examples

The feasibility and effectiveness of the single-loop RB-CCD framework based on
the modified RB-CCD model and SLA proposed in this work are demonstrated by two
examples. The first example is a numerical case that includes two state equation equality
constraints and one reliability constraint. The second example is an engineering example
of the glider dynamic soaring system, which takes six state equation equality constraints,
one algebraic inequality constraint, and three reliability constraints into consideration.
Comparisons are made among deterministic optimization, the SORA formulation, and the
single-loop RB-CCD framework. In those examples, the same convergence criterion is used,
and ε is set as 0.001.

4.1. Example 1: A Numerical RB-CCD Example

Example 1 is a numerical RB-CCD problem containing two design variables, two state
variables, and one control input; the mathematical model of this example can be described
as follows:

min
µx,ξ(t),u(t)

J =
∫ t f

t0

[
ξ2

1(t) + ξ2
2(t) + u2(t)

]
dt

s.t.
.
ξ1(t) = ξ1(t)(1− ξ2

2(t))− x1x2ξ2(t) + u(t)
.
ξ2(t) = x1x2ξ1(t)
g = −1− ξ1(t)
Pr(g ≤ 0) > Φ(βT)

µx ∈ [µL
x ,µU

x ], ξ ∈ [ξL,ξU ], u ∈ [uL, uU ]

(21)

where x = [x1, x2] indicates the vector of design variables, assuming that x ∼ N(µx,σ2),
µL

x = [2, 0], µU
x = [5, 2], and σ = [0.02, 0.03]; ξ = [ξ1,ξ2] means the vector of state variables,

and the upper and lower bounds of ξ are ξL = [−2,−2] and ξU = [2, 2], respectively; u
is control input and is limited in [−0.5, 1.5]; βT is the reliability index, and βT = 3; the
initial time t0 = 0 and final time t f = 5, the initial value of ξ is specified as ξ(t0) = [0, 1]
when solving this RB-CCD problem by GPOPS-II [35]. In order to compare the efficiency
and accuracy of the deterministic optimization for CCD, the SORA formulation and the
single-loop RB-CCD framework for RB-CCD are both employed to optimize Example 1.
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Firstly, the SORA formulation is utilized to decompose the modified formulation of
this example into a two-level optimization structure with DO loop and RA loop. The DO
loop can be formulated as

min
dm ,µm

ξ ,ξm,∗(t),um(t)
J =

∫ t f
t0

[
µ2,m
ξ1

+ µ2,m
ξ2

+ u2,m(t)
]
dt

s.t.
.
µ

m.
ξ1

= µm
ξ1
(1− µ2,m

ξ2
)− (dm

1 + µm
r1
)(dm

2 + µm
r2
)µm

ξ2
+ um(t)

.
µ

m.
ξ2

= (dm
1 + µm

r1
)(dm

2 + µm
r2
)µm

ξ1.
ξ

m,∗
1

(t) = ξm,∗
1

(1− ξ2,m,∗
2

(t))− (dm
1 + rm,∗

1 )(dm
2 + rm,∗

2 )ξ2,m,∗
2

(t) + um(t)
.
ξ

m,∗
2

(t) = (dm
1 + rm,∗

1 )(dm
2 + rm,∗

2 )ξm,∗
1

(t)
g = −1− ξm,∗

1 (t) ≤ 0

(22)

where the design variables x are split into the deterministic components d = [d1, d2] and
the random components r = [r1, r2], and r1 ∼ N(0, 0.022), r2 ∼ N(0, 0.032). The state
equation constraints are not only satisfied at the mean values [µr,µξ] of r and ξ(t), but also
should be satisfied at all MPPs [r∗,ξ∗(t)]. r∗, the MPPs of the random components r, are
calculated by the subproblem in the RA loop, and the subproblem is expressed as

min
rm
U ,ξm(t)

−max(−1− ξm
1 (t))

s.t. ‖rm
U‖ − βT = 0

.
ξ

m

1
(t) = ξm

1
(t)(1− ξ2,m

2
(t))− (dm

1 + rm,∗
1,U)(dm

2 + rm,∗
2,U)ξ2,m

2
(t) + um(t)

.
ξ

m

2
(t) = (dm

1 + rm,∗
1,U)(dm

2 + rm,∗
2,U)ξm

1
(t)

(23)

where rU = [r1,U, r2,U] is the mapping variables of r in the U-space. It is noteworthy to
mention that the objective function is −max(−1− ξ1(t)) rather than −(−1− ξ1(t)), since
the state variable ξ1(t) is involved. The result of −1− ξ1(t) is a set of time series, and the
inequality constraint is −1− ξ1(t) ≤ 0. Clearly, the maximum element of the set of time
series is most likely to violate the inequality constraint. Hence, according to Section 3.1,
−max(−1− ξ1(t)) is configured as the objective function to guarantee the set of time series
satisfies the inequality constrain.

At the same time, the single-loop RB-CCD framework is also used to optimize this
problem, and the iterative model is depicted as

min
dm ,µm

ξ ,ξm,∗(t),um(t)
J =

∫ t f
t0

[
µ2,m
ξ1

(t) + µ2,m
ξ2

(t) + u2,m(t)
]
dt

s.t.
.
µ

m
ξ1

= µm
ξ1
(1− µ2,m

ξ2
)− (dm

1 + µm
r1
)(dm

2 + µm
r2
)µm

ξ2
+ um(t)

.
µ

m
ξ2

= (dm
1 + µm

r1
)(dm

2 + µm
r2
)µm

ξ1.
ξ

m,∗
1

(t) = ξm,∗
1

(1− ξ2,m,∗
2

(t))− (dm
1 + rm,∗

1 )(dm
2 + rm,∗

2 )ξ2,m,∗
2

(t) + um(t)
.
ξ

m,∗
2

(t) = (dm
1 + rm,∗

1 )(dm
2 + rm,∗

2 )ξm,∗
1

(t)
g = −1− ξm,∗

1 (t) ≤ 0

(24)

where rm,∗
1 and rm,∗

2 are calculated by

rm,∗
1 = µm−1

r1
− σ1

(
βT

1
σ1∇G(dm−1

1 +µm−1
r1 )

‖σ1∇G(dm−1
1 +µm−1

r1 )‖

)
rm,∗

2 = µm−1
r2
− σ2

(
βT

2
σ2∇G(dm−1

2 +µm−1
r2 )

‖σ2∇G(dm−1
2 +µm−1

r2 )‖

) (25)

where G is the transformed form of the original inequality constrain g : −1− ξm,∗
1 (t) ≤ 0,

and generated by Equation (16) and Equation (17). The approximate gradient information
∇G of G at point (dm−1 + µm−1

r ) can be provided by the finite difference technique.
Table 1 compares the results of the deterministic optimization for CCD problem, the

SORA formulation and the single-loop framework for RB-CCD problem of Example 1. In
Table 1, the vector d means the optimal design, J is the value of the objective function,
PoF denotes the probability of failure, and t indicates the solving time of those methods.
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It is worth noting that 100,000 samples are selected for the CCD and RB-CCD solutions
by MCS to estimate the probability of failure for the probabilistic constraint. It is clear
that the PoF of the deterministic optimization solution is 31.90%, and the PoF drops to
0.86% with the assistance of the SORA formulation and the single-loop framework, which
demonstrate that the SORA formulation and the single-loop framework for RB-CCD can
effectively improve the reliability of the dynamic system compared with the deterministic
optimization. The values of the objective function J are increased in the SORA formulation
and the single-loop framework due to the uncertainty of the design variables considered.
By comparing the results of the SORA formulation and the single-loop framework for
RB-CCD, it can be observed that the single-loop framework has a slight disadvantage
in terms of J and PoF, but it has considerably higher solving efficiency than the SORA
formulation and significantly reduces the running time.

Table 1. The results of CCD and RB-CCD for Example 1.

d = [d1,d2] J PoF(%) t(s)

CCD [4.9400, 0.4989] 2.5458 31.90% 1.1
RB-CCDSORA [2.0600, 0.5536] 2.7695 0.862% 15.3
RB-CCDSLF [2.0600, 0.5503] 2.7733 0.863% 5.1

Note: SLF means the single-loop RB-CCD framework.

In attempting to graphically display the results of the MCS for the state trajectories of
the solutions of the CCD and RB-CCD methods, 1000 samples are used to create the MCS
plots in Figures 2–4. Obviously, in Figure 2, a large number of trajectories of ξ1 violate
the inequality constraint, while only a small number of ones in Figures 3 and 4 violate the
inequality constraint. Meanwhile, the optimal control curves for the CCD and RB-CCD
solutions are also plotted in Figure 5.

Figure 2. MCS plots of state variables in the solution of CCD: (a) ξ1(t), (b) ξ2(t).
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Figure 3. MCS plots of state variables in the solution of SORA: (a) ξ1(t), (b) ξ2(t).

Figure 4. MCS plots of state variables in the solution of SLF: (a) ξ1(t), (b) ξ2(t).

Figure 5. The optimal control curves in CCD and RB-CCD.
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4.2. Example 2: The RB-CCD Problem for the Glider Dynamic Soaring System

Dynamic soaring is the art of unpowered flight by exploiting wind gradients at high
altitude. The glider dynamic soaring system is a multidisciplinary dynamic system involv-
ing physical design, aerodynamics, and control engineering. It is a classical complicated
problem and has been extensively studied in a deterministic manner [36,37]. However, the
uncertainty stemming from the stochastic design variables might have a negative influence
on the performance of the glider dynamic soaring system. Thus, the RB-CCD problem for
the glider dynamic soaring system deserves further study to improve the reliability of the
glider dynamic soaring system.

In this work, the least-required wind gradient slope βmin that can sustain an energy-
neutral dynamic soaring flight is optimized in the deterministic and uncertain manners;
i.e., the CCD problem and the RB-CCD problem of the glider soaring system are solved.
In the control co-design of the glider soaring system, a point-mass model is adequate for
reflecting the motion characteristics of the glider. Three-dimensional point-mass equations
of motion for a generic glider can be derived as follows:

m
.

V = −D−mg sin γ−m
.

Wx cos γ sin Ψ
mV cos γ

.
Ψ = L sin ϕ−m

.
Wx cos Ψ

mV
.
γ = L cos ϕ−mg cos γ + m

.
Wx sin γ sin Ψ

.
x = V cos γ sin Ψ + Wx.
y = V cos γ cos Ψ
.
h = V sin γ

(26)

where Wx and
.

Wx are computed by the following expression:

Wx = βh + W0.
Wx = βV sin γ

(27)

In the above, m is the glider mass, (x, y) denotes the (East, North) position, h is the
altitude, and v stands for the airspeed. γ means the air-relative flight path angle, Ψ is the
heading angle measured clockwise from the North, and ϕ means the glider bank angle. Wx

and
.

Wx are the wind component along the East direction and the time rate of change in the
wind component, and β is the average wind gradient slope. L and D are the lift force and
drag force, respectively.

L = 1
2 ρV2SCL

D = 1
2 ρV2SCD, CD = CD0 + KC2

L
S = 2 · [1/2(a + b)c]

(28)

where CL is the lift coefficient, CD is the drag coefficient, CD0 is the parasitic drag coefficient,
K denotes the induced drag factor. S means area of the trapezoidal wing calculated by the
bases [a, b] and the height c, which are showed in Figure 6.

Figure 6. The sketch of the glider: a and b are the bases, c is the height of the trapezoidal wing.
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4.2.1. The CCD Problem for the Glider Dynamic Soaring System

The objective of the CCD problem for the glider dynamic soaring system is to de-
termine the least required slope of a linear wind gradient profile that can still sustain a
powerless dynamic soaring flight, that is,

min
a,b,c,β,CL ,ϕ

J = β (29)

subject to the state equations in Equation (26) and the following constraints:

ng = ρSCLV2

2mg ∈ [ngL, ngU ]

g1 = S− Smax ≤ 0

g2 = (2c+ fl)
2

S − Armax ≤ 0
g3 = Hmin − hmax ≤ 0

(30)

and the following boundary conditions:

(x(t0), y(t0), h(t0)) = (x(t f ), y(t f ), h(t f )) = (0, 0, 0)
(v(t f )− v(t0), γ(t f )− γ(t0), Ψ(t f ) + 2π −Ψ(t0)) = (0, 0, 0)

(31)

where d = [a, b, c, β] are design variables, the vector ξ = [x, y, h, v, γ, Ψ] means the state
variables, and u = [CL, ϕ] is chosen as the vector of control inputs. The lower and upper
bounds on the design parameters are dL = [1.0, 3.0, 8.0, 0.005] and dU = [3.0, 5.0, 10, 0.15],
The box bounds of the state variables ξL = [−1000,−1000, 0, 10,−75π/180,−3π] and ξU =
[1000, 1000, 1000, 3500, 75π/180, π/2], the control inputs are limited by uL = [−0.5,−75π/180]
and uU = [1.5, 75π/180], and ng ∈ [5, 10]. The maximum allowable area Smax = 47 m2,
the maximum aspect ratio Armax = 8, and the minimum allowable value for maximum
height Hmin = 725 m.

GPOPS-II is applied to solve the above CCD problem of the glider dynamic soaring
system, the optimal values of the objective function and design variables are listed in Table 2,
and the optimal state trajectories and control curves are exhibited in Figures 7 and 8.

Table 2. The results of CCD and RB-CCD for the glider dynamic soaring system.

a (m) b (m) c (m) β J Time (s)

CCD 1.5836 3.5836 8.7068 0.0637 0.0637 2.19
RB-CCDSORA 1.7607 3.7607 8.1500 0.0639 0.0639 45.33
RB-CCDSLF 1.7607 3.7607 8.1500 0.0639 0.0639 19.60

changes ↑ 11.18% ↑ 4.94% ↑ 6.40% ↑ 0.31% ↑ 0.31% \
Note that: ↑means the increase in value.

Figure 7. Cont.
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Figure 7. The optimal state trajectories in CCD of the glider dynamic soaring system: (a) x, y, h, (b) v,
(c) γ, (d) Ψ.

Figure 8. The optimal control curves in CCD of the glider dynamic soaring system: (a) CL, (b) ϕ.

4.2.2. The RB-CCD Problem for the Glider Dynamic Soaring System

Differently from CCD, RB-CCD for the glider dynamic soaring system takes into
account the uncertainty of the plant design variables [a, b, c], and assuming that the standard
deviations of [a, b, c] are σa = 0.05, σb = 0.05, and σc = 0.05. More importantly, the RB-
CCD problem for the glider dynamic soaring system subjects to the following reliability
constraints given in Equation (32) rather than inequality constraints given in Equation (30):

Pr{g1 = S− Smax ≤ 0} > Φ(βT
1 )

Pr{g2 = (2c+ fl)
2

S − Armax ≤ 0} > Φ(βT
2 )

Pr{g3 = Hmin − hmax ≤ 0} > Φ(βT
3 )

(32)

To solve the above RB-CCD problem, the SORA method, and the single-loop frame-
work based on the modified RB-CCD model and SLA proposed in this work, are employed.
The subproblems of DO loop and RA loop in the SORA method to optimize this problem
are expressed as follows:
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min
dm ,βm ,µm

ξ ,ξm,∗(t),Cm
L ,ϕm

J = βm

s.t. m
.
µ

m
V = −µm

D −mg sin
(

µm
γ

)
−mµm.

Wx
cos
(

µm
γ

)
sin
(
µm

Ψ
)

mµm
V cos

(
µm

γ

) .
µ

m
Ψ = µm

L sin(ϕm)−mµm.
Wx

cos
(
µm

Ψ
)

mµm
V

.
µ

m
γ = µm

L cos(ϕm)−mg cos
(

µm
γ

)
+ mµm.

Wx
sin
(

µm
γ

)
sin
(
µm

Ψ
)

.
µ

m
h = µm

V sin
(

µm
γ

)
.
µ

m
x = µm

V cos
(

µm
γ

)
sin
(
µm

Ψ
)
+ mµm

Wx
.
µ

m
y = µm

V cos
(

µm
γ

)
cos
(
µm

Ψ
)

µm
Wx

= βmµm
h + W0

µm.
Wx

= βmµm
V sin

(
µm

γ

)
µm

S = 2·
[
1/2 ·

((
dm

a + µm
ra

)
+
(

dm
b + µm

rb

))
·
(
dm

c + µm
rc

)]
µm

L = 1
2 ρµ2,m

V µm
S Cm

L

µm
D = 1

2 ρµ2,m
V µm

S

(
CD0 + KC2,m

L

)
ngm =

ρµm
S Cm

L µ2,m
V

2mg ∈
[
ngL, ngU]

m
.

V
m,∗
k = −Dm,∗

k −mg sin
(
γm,∗

k
)
−m

.
W

m,∗
x,k cos

(
γm,∗

k
)

sin
(
Ψm,∗

k
)
, k = 1, 2, 3

mVm,∗
k cos

(
γm,∗

k
) .
Ψ

m,∗
k = Lm,∗

k sin(ϕm)−m
.

W
m,∗

x,k cos
(
Ψm,∗

k
)
, k = 1, 2, 3

mVm,∗
k

.
γ

m,∗
k = Lm,∗

k cos(ϕm)−mg cos
(
γm,∗

k
)
+ m

.
W

m,∗
x,k sin

(
γm,∗

k
)

sin
(
Ψm,∗

k
)
, k = 1, 2, 3

.
h

m,∗
k = Vm,∗

k sin
(
γm,∗

k
)
, k = 1, 2, 3

.
xm,∗

k = Vm,∗
k cos

(
γm,∗

k
)

sin
(
Ψm,∗

k
)
+ Wm,∗

x,k , k = 1, 2, 3
.
ym,∗

k = Vm,∗
k cos

(
γm,∗

k
)

cos
(
Ψm,∗

k
)
, k = 1, 2, 3

Wm,∗
x,k = βmhm,∗

k + W0, k = 1, 2, 3
.

W
m,∗
x = βmVm,∗

k sin
(
γm,∗

k
)
, k = 1, 2, 3

Sm,∗
k = 2·

[
1/2 ·

((
dm

a + rm−1,∗
a,k

)
+
(

dm
b + rm−1,∗

b,k

))
·
(

dm
c + rm−1,∗

c,k

)]
, k = 1, 2, 3

Lm,∗
k = 1

2 ρV2,m,∗
k Sm,∗

k Cm
L , k = 1, 2, 3

Dm,∗
k = 1

2 ρV2,m,∗
k Sm,∗

k

(
CD0 + KC2,m

L

)
, k = 1, 2, 3

ngm,∗ =
ρSm,∗

k Cm
L V2,m,∗

k
2mg ∈

[
ngL, ngU], k = 1, 2, 3

(33)

where the plant design variables [a, b, c] are split into the deterministic components
d = [da, db, dc] and the random components r = [ra, rb, rc], and r ∼ N(0, 0.052). The
state equation constraints are not only satisfied at the mean values [µr,µξ] of r and ξ(t),
but also need to be met at all MPPs [rm−1,∗,ξ∗(t)]. Additionally, rm−1,∗ is obtained in the
RA process of the previous cycle, the subproblem in the RA loop can be expressed as



Machines 2023, 11, 262 18 of 23

min
rm,∗
U ,ξm(t)

−Gk, k = 1, 2, 3

s.t. ‖ rm,∗
U ‖ − βT

k = 0

m
.

V
m
= −Dm −mg sin (γm)−m

.
W

m
x cos (γm) sin (Ψm)

mVm cos (γm)
.

Ψ
m
= Lm sin (ϕm−1)−m

.
W

m

x cos (Ψm)

mVm .
γ

m
= Lm cos (ϕm−1)−mg cos (γm) + m

.
W

m
x sin (γm) sin (Ψm)

.
xm

= Vm cos (γm) sin (Ψm) + Wm
x.

ym
= Vm cos (γm) cos (Ψm)

.
h

m
= Vm sin (γm)

Wm
x = βm−1hm + W0

.
W

m,
x = βm−1Vm sin (γm)

Sm = 2·
[
1/2 ·((dm−1

a + rm
a,U) + (dm−1

b + rm
b,U))·(d

m−1
c + rm

c,U)
]

Lm = 1
2 ρV2,mSmCm−1

L
Dm = 1

2 ρV2,mSm(CD0 + KC2,m−1
L )

(34)

where [dm−1
a , dm−1

b , dm−1
c , βm−1, Cm−1

L , ϕm−1] are known and delivered from the RA process
of the previous cycle, rU = [ra,U, rb,U, rc,U] are the mapping variables of r = [ra, rb, rc] in
U-space.

Instead of solving the subproblem given in Equation (34), the single-loop framework
adopts an approximate formula to search the MPP r∗. Hence, [r∗a , r∗b , r∗c ] can be calculated by

rm,∗
a = µm

ra − σa

βT σa∇G
(
dm

a + µm−1
ra

)
‖ σa∇G

(
dm

a + µm−1
ra

)
‖


rm,∗

b = µm
rb
− σb

βT
σb∇G

(
dm

b + µm−1
rb

)
‖ σb∇G

(
dm

b + µm−1
rb

)
‖


rm,∗

c = µm
rc − σc

βT σc∇G
(
dm

c + µm−1
rc

)
‖ σc∇G

(
dm

c + µm−1
rc

)
‖


(35)

The results of the RB-CCD problem for the glider dynamic soaring system solved
by the SORA method and the single-loop framework are also compared in Table 2. The
physical design vector [a, b, c] has been modified on average by 7.51% compared to the
deterministic situation, while the objective value J has changed by only 0.31% due to the
control inputs, which have also adjusted accordingly to achieve the optimal objective value.
Comparing the results of RB-CCD optimized by the SORA method and the single-loop
framework, it is clear that the single-loop framework can provide a solution with the same
accuracy as the SORA method while consuming less time.

At the same time, the probabilities of failure (PoF) for all performance measure func-
tions in Equation (32) are benchmarked MCS with n = 100,000 samples, as listed in Table 3,
it is quite apparent that the PoF of the reliability constraints Pr{g1} and Pr{g3}, at 1.25%
and 25.78%, drop 0.18% and 0.20% (and 0.38%), respectively, with the assistance of the
SORA method and the single-loop framework, which demonstrates that the SORA method
and the single-loop framework for RB-CCD can effectively improve the reliability of the
glider dynamic system. According to Tables 2 and 3, it is clear that the single-loop frame-
work, the proposed approximate solving framework, significantly improves the solving
efficiency with retaining the accuracy of the solution compared to SORA in the glider
dynamic soaring system.
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Table 3. Probabilities of failure using MCS with n = 100,000 samples.

PoF{g1} PoF{g2} PoF{g3}

CCD 1.25% 0.00% 25.78%
RB-CCDSORA 0.18% 0.00% 0.20%
RB-CCDSLM 0.18% 0.00% 0.38%

changes ↓ 1.07% = ↓ 25.58% (25.4%)
Note that: ↓means the decrease in value.

To intuitively demonstrate the optimal state trajectories and control curves of the
RB-CCD problem for the glider dynamic soaring system solved by the SORA method
and the single-loop framework, Figure 9 shows the trajectories of all state variables, and
Figure 10 exhibits the curves of all control inputs. Finally, 1000 samples are used to create
the MCS plots in Figure 11 to illustrate the MCS of the state trajectories in the solution of
the single-loop framework. It can be observed that under uncertainty, states trajectories
yielded by MCS of the system tend to deviate from the optimal states trajectories.

Figure 9. The optimal state trajectories in RB-CCD optimized by SORA and SLF: (a) x, y, h, (b) v, (c) γ,
(d) Ψ.
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Figure 10. The optimal control curves in RB-CCD optimized by SORA and SLF: (a) CL, (b) ϕ.

Figure 11. Cont.
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Figure 11. MCS plots of state variables in the solution of the single-loop framework: (a) x, (b) y, (c) h,
(d) v, (e) γ, (f) Ψ.

5. Conclusions

In attempting to eliminate the undesirable effect of the uncertainty stemming from
the stochastic design variables on the performance of the dynamic system, this work
investigates the RB-CCD problem. Firstly, the modified model for RB-CCD is deduced
by introducing additional design variables and constraints (state equations and algebraic
equality constraints) to transform the probabilistic constraint with state variables into
inequality constraints. Then, a single-loop framework based on the modified RB-CCD
model and SLA is proposed to enhance the efficiency of solving the RB-CCD problem by
transforming the modified RB-CCD model into an equivalent single-loop deterministic
CCD model. Theoretically, the presented single-loop framework performs better than
the SORA method with respect to efficiency, since it adopts reliability information from
the approximate method rather than the complex optimization subproblem. Finally, a
numerical case and an engineering case validate the accuracy and efficiency of the single-
loop framework in practice.

The contributions of this work mainly include the following:

(a) It deduces the modified RB-CCD model to transform the probabilistic constraint into
inequality constraints, and lays a cornerstone for solving the RB-CCD problem in
which the probabilistic constraint contains plant design parameters, state variables,
and control inputs.

(b) It proposes a single-loop RB-CCD framework based on the modified model and SLA,
which can convert the RB-CCD problem into an equivalent single-loop deterministic
CCD problem to facilitate the optimization of RB-CCD.

(c) It solves the RB-CCD problem in the glider dynamic soaring system with high effi-
ciency, and significantly improves the reliability of the glider dynamic soaring system.

However, considering the effect of uncertainty stemming from the control input on the
system is also a challenging task, due to the fact that the control input is the time-dependent
curve rather than a fixed point. Thus, more efforts will be made in the future to perform
uncertainty analysis on the control input.
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