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Abstract: To further improve the accuracy of bird nest model detection on transmission towers in
aerial images without significantly increasing the model size and to make detection more suitable for
edge-end applications, the lightweight model YOLOv5s is improved in this paper. First, the original
backbone network is reconfigured using the OSA (One-Shot Aggregation) module in the VOVNet and
the CBAM (Convolution Block Attention Module) is embedded into the feature extraction network,
which improves the accuracy of the model for small target recognition. Then, the atrous rates and the
number of atrous convolutions of the ASPP (Atrous Spatial Pyramid Pooling) module are reduced
to effectively decrease the parameters of the ASPP. The ASPP is then embedded into the feature
fusion network to enhance the detection of the targets in complex backgrounds, improving the model
accuracy. The experiments show that the mAP (mean-Average Precision) of the fusion-improved
YOLOv5s model improves from 91.84% to 95.18%, with only a 27.4% increase in model size. Finally,
the improved YOLOv5s model is deployed into the Jeston Xavier NX, resulting in a model that runs
well and has a substantial increase in accuracy and a speed of 10.2 FPS, which is only 0.7 FPS slower
than the original YOLOv5s model.

Keywords: aerial images; bird nest detection; YOLOv5s; model deployment

1. Introduction

According to statistics, bird activities are the third most common cause of high-voltage
transmission line faults, after lightning damage and external damage. Furthermore, bird
activities on high-voltage transmission towers account for 90% of failures. As a result, an
excellent method for detecting bird nests can better prevent electrical failures caused by
bird activities [1–3].

As most transmission towers are located in fields, and bird nests are mostly built high
up in such towers, traditional manual inspection is time-consuming and inefficient [4,5].
With the continuous development of artificial intelligence technology, UAV(Unmanned
Aerial Vehicle) inspections are gradually replacing manual inspections. Many intelligent
object detection algorithms based on image recognition techniques have been applied to
bird nest detection [6,7].

There are two broad categories for detecting bird nests in aerial images in UAV inspec-
tions. One category consists of traditional transmission line object detection algorithms
based on feature extraction and classification models [8–11]; however, such algorithms
can lack robustness due to the irregular shapes of bird nests and the fact that their color
changes as the light changes. The second category is object detection algorithms based
on deep learning, including two-stage and one-stage algorithms. The two-stage detection
algorithm is executed in two steps: first, the candidate box region is obtained and then
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the classification of targets within the region is performed; representative algorithms in-
clude R-CNN (Rigion-based Convolution Neural Networks), Fast R-CNN, Mask R-CNN,
Faster R-CNN, etc. [12–15]. In ref. [16], the authors proposed an algorithm for bird nest
detection based on an improved Faster R-CNN. The effect of complex backgrounds on
detecting bird nests was excluded by simultaneously detecting bird nests and transmission
towers. The two-stage detection algorithm provides a significant improvement in accuracy
over the traditional algorithm, but the detection process needs to be completed in two
steps, and the detection speed is slow. The one-stage detection algorithm predicts the
class and region of the target directly through the object detection network; representative
algorithms include SSD (Single shot multibox detector) and YOLO (You Only Look Once)
series [17–22]. In ref. [23], the authors replaced the backbone network of the SSD with
EfficientNetB7, reducing the model parameters. In ref. [24], the authors combined SSD
with HSV (Hue Saturation Value) spatial color filters to improve model accuracy; however,
the SSD network did not have the FPN (Feature Pyramid Networks) structure, resulting
in a lower accuracy than the YOLO series. As the representative algorithm in the YOLO
series, YOLOv3 improved detection accuracy while maintaining the fast detection speed
of the one-stage algorithm. In ref. [25], the authors replaced the standard convolution in
the backbone of the YOLOv3 network with the depth-separable convolution, thus reduc-
ing the network parameters and improving the speed of the detection network; however,
the detection of small targets was still inadequate. YOLOv4 builds on the strengths of
YOLOv3 and further enhances detection accuracy. In ref. [26], the authors added the Swin
Transformer module to the backbone of the YOLOv4 network to address the difficulty of
multi-scale detection, but model parameters were too large to be deployed at the edge. In
ref. [27], the authors introduced self-attention in the YOLOv4-Tiny network and ported
the model to an embedded platform, but it was not accurate enough for target recognition
in complex contexts. YOLOv5 has improved the accuracy of YOLOv4 while presenting
a lighter version, YOLOv5s. In ref. [28], the authors removed a 20 × 20 prediction head
from the prediction network part of YOLOv5s and added a 160 × 160 prediction head
to improve the model accuracy, but it did not detect small targets effectively. In ref. [29],
the authors replaced the feature fusion network in YOLOv5s with Bi-FPN (Bidirectional
Feature Pyramid Network), which improved the model accuracy; however, the structure of
Bi-FPN was too complex, leading to a dramatic increase in model size and reducing speed.

YOLOv5 offers higher detection results and detection speed than the YOLOv3 and
YOLOv4 algorithms, and its lightweight version, YOLOv5s, achieves 73 FPS on the COCO
dataset with a model size of only 27.8 M. However, there are still cases of false detections
and misdetections for small targets and targets in complex contexts [30,31]. Complex im-
provements to the feature fusion layer make the model too large to be applied on embedded
devices [32]. To address the above problems, this paper proposes a target detection algo-
rithm for bird nests on transmission towers in aerial images based on improved YOLOv5s.
Unlike conventional algorithms, the algorithm in this paper can significantly improve the
accuracy without significantly increasing the model size and parameters, thus enabling
its successful deployment in the Jetson Xavier NX. The specific aims of the work are as
follows: (1) To address the problem of low accuracy of the model, the backbone network
of the YOLOv5s model is reconstructed to improve the model accuracy; (2) To address
the problem that small targets of distant bird nests are not easy to detect, the attention
mechanism is embedded in the feature extraction network to enhance the detection of small
targets; (3) To address the problem of poor bird nest detection in complex backgrounds,
the ASPP module is improved to enhance the detection of targets in complex backgrounds
without significantly increasing the model size.

2. Structure and Features of the YOLOv5 Model

The YOLOv5 target detection algorithm can be divided into four releases: YOLOv5s,
YOLOv5m, YOLOv5l, and YOLOv5x, depending on the width and depth of the network.
Considering the need to deploy the model to embedded devices at a later stage, the
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lightweight YOLOv5s was chosen as the base model in this paper. The structure of the
YOLOv5s object detection network can be divided into three parts: feature extraction
network, feature fusion network, and prediction network, as shown in Figure 1.
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Figure 1. The structure of the original YOLOv5s.

The feature extraction network follows the CSPDarkNet in YOLOv4, splitting the
residual blocks in DarkNet in the channel dimension direction of the feature map into
two parts. Of these, a portion passes typically through the convolution and bottleneck
layers, keeping with the structure of Resblock. The other part is spliced with the output of
another branch in the direction of the channel of the feature map after a small amount of
convolution. This approach reduces computational effort while avoiding problems such as
gradient disappearance.

The feature fusion network uses the SPP (Spatial Pyramid Pooling) structure and the
PANet (Path Aggregation-Network). The SPP structure solves the problem that the input
image size of CNN (Convolutional Neural Networks) must be fixed and can make the
input image size unrestricted; the SPP structure is shown in Figure 2.
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PANet uses the three feature layers of 80 × 80, 40 × 40, and 20 × 20 extracted by FPN
to fuse bottom-up, which can obtain three fused features to improve the effect of target
detection at different scales; the structure is shown in Figure 3.
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The prediction network implements the prediction of the final information, with
three different scales of prediction heads corresponding to three different sizes of fused
features. In the model prediction, the prediction network ranks the confidence levels of the
N categories of the anchors from highest to lowest, and the threshold setting and redundant
borders are removed using a non-maximum suppression algorithm to obtain the category
and location information of the predicted target.

3. Recognition of Bird Nests on Transmission Towers Based on Improved YOLOv5s
3.1. Feature Extraction Network Based on OSA Module

To improve the model accuracy, this paper adopts the OSA Block in VOVNet to
reconstruct the feature extraction network based on YOLOv5s, replacing the ResBlock in
the original feature extraction network with OSA Block.

The OSA Block is an improvement on the Dense Block (whose structure is shown in
Figure 4a) in the DenseNet [33,34]. It does away with the fusion method, where each layer
aggregates the previous layer to avoid information redundancy. It takes the form of fusing
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all the previous layers at once in the last layer, so that the input size remains the same
and new output channels can be expanded while reducing the number of parameters. The
structure of the OSA Block is shown in Figure 4b.
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3.2. The Impact of Attentional Mechanism Fusion Studies on the Effectiveness of Small Target Detection

As the feature extraction network continues to deepen and the information extracted
at the output becomes progressively more abstract, the initial model is not good enough
for small target detection. This paper addresses this problem by incorporating attention
mechanisms into the network. The attention mechanism refers to the human behavior of
selectively focusing on the important parts of the received information to construct a model
that can redistribute the weight of the target information from the irrelevant information in
the information received by the network. The SAM (spatial attention module) is primarily
designed to capture the correlation between pixel points in the input features; the CAM
(channel attention module) aims to enhance the feature channels and amplify the target
weights, improving the detection of small targets [35–37].

This paper chooses the CBAM which combines the SAM with the CAM [38]. It consists
of CAM and SAM sub-modules. It can perform separate attention operations in the channel
and spatial dimensions, reducing the model parameters, as shown in Figure 5.
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Assuming that the input features are F and the one-dimensional channel convolution
in the CAM is Mc, then the principle of the CAM is as in Equation (1). Using the CAM
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output F′ as the input to the SAM. Assume that the two-dimensional spatial convolution in
the spatial attention module is Ms. The principle of the spatial attention module is then
given by Equation (2).

Ms(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F))) (1)

Ms(F) = σ
(

f 7×7([AvgPool(F); MaxPool(F)])
)

(2)

In Equations (1) and (2), σ is a sigmoid function and f 7×7 is a convolution kernel of
size 7 × 7.

The total process of the operation of the CBAM module is shown in Equations (3) and (4).

F′ = Mc(F)⊗ F (3)

F′′ = Ms
(

F′
)
⊗ F′ (4)

The attention mechanism is already widely used in some networks due to its plug-and-
play convenience. However, there is no definitive answer as to which part of the network
it is better to embed it in. In this paper, two different embedding methods at different
locations are designed. One is to integrate the CBAM after the Concat layer in the OSA
module, which is in the feature extraction network; the other is to integrate it after the
Concat layer in the feature fusion network.

The first embedding method is shown in Figure 6a. We embed the CBAM after the
Concat layer of the OSA module. Firstly, the CBAM reconfigures the network structure
through the CAM to assign more weight to important semantic information. Secondly, it
performs the SAM to compress the number of channels and give better accuracy and a
lower error rate.

Machines 2023, 11, x FOR PEER REVIEW 6 of 17 
 

 

is better to embed it in. In this paper, two different embedding methods at different locations 
are designed. One is to integrate the CBAM after the Concat layer in the OSA module, which 
is in the feature extraction network; the other is to integrate it after the Concat layer in the 
feature fusion network. 

The first embedding method is shown in Figure 6a. We embed the CBAM after the 
Concat layer of the OSA module. Firstly, the CBAM reconfigures the network structure 
through the CAM to assign more weight to important semantic information. Secondly, it 
performs the SAM to compress the number of channels and give better accuracy and a lower 
error rate. 

 
 

(a) (b) 

Figure 6. (a) CBAM fusion in feature extraction network; (b) CBAM fusion in feature fusion net-
work. 

The second embedding method is shown in Figure 6b. We embed CBAM after the 
Concat layer in the feature fusion network. The PAN and FPN structures in the feature 
fusion network allow top-down delivery of semantic information and bottom-up delivery 
of localization information, and the fusion of deep and shallow information is achieved 
through four Concat layers. It is possible to assign more weight to the fused feature infor-
mation if the CBAM module is placed behind the Concat layer. 

3.3. Modified ASPP to Enhance Targets Detection in Complex Background 
Bird nests on high-voltage transmission towers are mostly in complex contexts, which 

makes detection much more difficult. In this paper, we introduce the ASPP module to sam-
ple the input feature maps according to an atrous convolution of different atrous rates and 
then fuse the obtained results for average pooling to improve target recognition in complex 
backgrounds. The structure of the ASPP is shown in Figure 7a. Traditional downsampling 
increases the field of perception but reduces spatial resolution. Using atrous convolution 
guarantees resolution while expanding the field of perception. However, the atrous convo-
lution is computed in a chessboard-like format, in which the results obtained at one layer, 
from an independent set of the previous layer, are not interdependent. If you increase the 
atrous rate to increase the field of perception of the model, you will lose core information 
and make the model less accurate. Therefore, this paper improves on the original ASPP 
structure by turning the four-branch atrous convolution into the three-branch atrous convo-
lution, reducing the number of model parameters. We change the atrous rates from (6, 12, 
18, 24) to (3, 5, 7); although this does not enhance the perceptual field as effectively as the 
original, it avoids information loss as much as possible and thus improves accuracy. The 
improved structure of the ASPP is shown in Figure 7b. 

Figure 6. (a) CBAM fusion in feature extraction network; (b) CBAM fusion in feature fusion network.

The second embedding method is shown in Figure 6b. We embed CBAM after the
Concat layer in the feature fusion network. The PAN and FPN structures in the feature
fusion network allow top-down delivery of semantic information and bottom-up delivery
of localization information, and the fusion of deep and shallow information is achieved
through four Concat layers. It is possible to assign more weight to the fused feature
information if the CBAM module is placed behind the Concat layer.
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3.3. Modified ASPP to Enhance Targets Detection in Complex Background

Bird nests on high-voltage transmission towers are mostly in complex contexts, which
makes detection much more difficult. In this paper, we introduce the ASPP module to
sample the input feature maps according to an atrous convolution of different atrous
rates and then fuse the obtained results for average pooling to improve target recognition
in complex backgrounds. The structure of the ASPP is shown in Figure 7a. Traditional
downsampling increases the field of perception but reduces spatial resolution. Using atrous
convolution guarantees resolution while expanding the field of perception. However, the
atrous convolution is computed in a chessboard-like format, in which the results obtained
at one layer, from an independent set of the previous layer, are not interdependent. If
you increase the atrous rate to increase the field of perception of the model, you will lose
core information and make the model less accurate. Therefore, this paper improves on
the original ASPP structure by turning the four-branch atrous convolution into the three-
branch atrous convolution, reducing the number of model parameters. We change the
atrous rates from (6, 12, 18, 24) to (3, 5, 7); although this does not enhance the perceptual
field as effectively as the original, it avoids information loss as much as possible and thus
improves accuracy. The improved structure of the ASPP is shown in Figure 7b.
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3.4. The Improved YOLOv5 Algorithm Structure

In summary, the structure of the improved YOLOv5 algorithm is shown in Figure 8.
After the input images pass through the feature extraction network, the OSA Block lets the
information from the upper to lower layers intersect without losing the core information.
After the information intersection, CBAM recalibrates the target feature information and
amplifies the target weights to obtain three effective feature layers of different sizes, enhanc-
ing the detection of small targets. The feature fusion network is improved with the ASPP
module to enhance the perceptual field of each input feature layer. Combining information
from different scale feature layers provides the basis for improving the detection accuracy
of the model for targets in complex backgrounds.



Machines 2023, 11, 257 8 of 19

Machines 2023, 11, x FOR PEER REVIEW 7 of 17 
 

 

  
(a) (b) 

Figure 7. (a) Structure of the original ASPP; (b) structure of the improved ASPP. 

3.4. The Improved YOLOv5 Algorithm Structure 
In summary, the structure of the improved YOLOv5 algorithm is shown in Figure 8. 

After the input images pass through the feature extraction network, the OSA Block lets the 
information from the upper to lower layers intersect without losing the core information. 
After the information intersection, CBAM recalibrates the target feature information and 
amplifies the target weights to obtain three effective feature layers of different sizes, enhanc-
ing the detection of small targets. The feature fusion network is improved with the ASPP 
module to enhance the perceptual field of each input feature layer. Combining information 
from different scale feature layers provides the basis for improving the detection accuracy 
of the model for targets in complex backgrounds. 

 
Figure 8. The structure of the improved YOLOv5s. 

4. Experimental Results and Analysis 
4.1. Data Structure and Processing 

In this paper, aerial images of bird nests on high-voltage transmission towers are used 
as the object of study, and the experimental data are sourced from a power company. In this 
experiment, 1720 original images are expanded to 2644 images, including a total of 3759 
target objects, using data augmentation methods such as flip, light and dark transformation, 
and Gaussian noise. The ratio of the training set, validation set, and test set is 8:1:1. The final 
result was 2116 training sets, 264 validation sets, and 264 test sets, and each image was 

Figure 8. The structure of the improved YOLOv5s.

4. Experimental Results and Analysis
4.1. Data Structure and Processing

In this paper, aerial images of bird nests on high-voltage transmission towers are used
as the object of study, and the experimental data are sourced from a power company. In
this experiment, 1720 original images are expanded to 2644 images, including a total of
3759 target objects, using data augmentation methods such as flip, light and dark trans-
formation, and Gaussian noise. The ratio of the training set, validation set, and test set is
8:1:1. The final result was 2116 training sets, 264 validation sets, and 264 test sets, and each
image was annotated by hand using the LabelImg annotation tool. Figure 9 shows several
representative aerial UAVs images. In Figure 9, the bird nest targets are framed in red.



Machines 2023, 11, 257 9 of 19

Machines 2023, 11, x FOR PEER REVIEW 8 of 17 
 

 

annotated by hand using the LabelImg annotation tool. Figure 9 shows several representa-
tive aerial UAVs images. In Figure 9, the bird nest targets are framed in red. 

  
(a) (b) 

  
(c) (d) 

Figure 9. (a) Single-target bird nest; (b) multi-target bird nests; (c) bird nest targets in complex back-
grounds; (d) bird nests as small targets. 

4.2. Experimental Environment 
This paper uses a deep learning framework based on the PyTorch 1.6.0 environment 

with Ubuntu 20.04, python 3.6.10, and CUDA = 11.4, where the training graphics card con-
figuration is an NVIDIA RTXA6000/48G graphics card. The local computer NVIDIA Ge-
Force RTX 3060Ti 8G is used for the trained model test. 

4.3. Training Process 
During model training, the backbone structure is changed so that no pre-training weights 

are used for training. To reduce the likelihood of the model falling into a local optimum, the 
SGD (Stochastic Gradient Descent) optimizer is used. It is trained with 300 epoch rounds 
and a batch size of 16. The cosine annealing learning rate is used to decay the learning rate 
of the bias layer to improve the convergence speed of the model. 

4.4. Evaluation Indexes 
This paper uses common performance evaluation indicators for target detection to 

compare different algorithms, i.e., Precision, Recall, mAP, FPS (Frames Per Second), Param 
Size, Total Params, FNR (False Negative Ratio), and FDR (False Detection Ratio). 

Precision is shown in Equation (5), where TP (True Positive) represents positive sam-
ples predicted by the model to be in a positive class, and FP (False Positive) represents 
negative samples predicted by the model to be in a positive class. Precision represents the 
ratio of the actual positive samples to all the positive samples predicted by the model. 

TPPrecision = 
TP + FP

 (5)

Recall is shown in Equation (6), where FN(False Negative) represents the positive 
samples predicted by the model to be in a negative class. Recall represents the ratio of 
positive samples predicted by the model to actual positive samples [39]. 

Figure 9. (a) Single-target bird nest; (b) multi-target bird nests; (c) bird nest targets in complex
backgrounds; (d) bird nests as small targets.

4.2. Experimental Environment

This paper uses a deep learning framework based on the PyTorch 1.6.0 environment
with Ubuntu 20.04, python 3.6.10, and CUDA = 11.4, where the training graphics card
configuration is an NVIDIA RTXA6000/48G graphics card. The local computer NVIDIA
GeForce RTX 3060Ti 8G is used for the trained model test.

4.3. Training Process

During model training, the backbone structure is changed so that no pre-training
weights are used for training. To reduce the likelihood of the model falling into a local
optimum, the SGD (Stochastic Gradient Descent) optimizer is used. It is trained with
300 epoch rounds and a batch size of 16. The cosine annealing learning rate is used to decay
the learning rate of the bias layer to improve the convergence speed of the model.

4.4. Evaluation Indexes

This paper uses common performance evaluation indicators for target detection to
compare different algorithms, i.e., Precision, Recall, mAP, FPS (Frames Per Second), Param
Size, Total Params, FNR (False Negative Ratio), and FDR (False Detection Ratio).

Precision is shown in Equation (5), where TP (True Positive) represents positive
samples predicted by the model to be in a positive class, and FP (False Positive) represents
negative samples predicted by the model to be in a positive class. Precision represents the
ratio of the actual positive samples to all the positive samples predicted by the model.

Precision =
TP

TP + FP
(5)



Machines 2023, 11, 257 10 of 19

Recall is shown in Equation (6), where FN(False Negative) represents the positive
samples predicted by the model to be in a negative class. Recall represents the ratio of
positive samples predicted by the model to actual positive samples [39].

Recall =
TP

TP + FN
(6)

S =
∫ 1

0
p(r)dr (7)

The P–R curve plotted with Recall as the horizontal axis and Precision as the vertical
axis is integrated to find the area under the curve as mAP, denoted as S, as shown in
Equation (7). The P–R curve for the improved model in this paper is shown in Figure 10.
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In this paper, we introduced FNR as an index to evaluate the effectiveness of small
target detection before and after model improvement. FNR is shown in Equation (8), which
represents the ratio of positive samples predicted by the model to be negative samples to
all positive samples present.

Furthermore, we introduced FDR as an index to evaluate the effectiveness of the target
detection in complex backgrounds before and after model improvement. FDR is shown in
Equation (9), which represents the ratio of negative samples predicted as positive by the
model to all samples predicted as positive by the model.

FNR =
FN

FN + TP
(8)

FDR =
FP

FP + TP
(9)

4.5. Comparison of Experimental Results
4.5.1. Cross-Direction Comparison of Experimental Results

Table 1 shows the test results of the current mainstream deep learning algorithms on
the dataset of this paper [40,41].
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Table 1. Horizontal comparison of different algorithms.

Models mAP/% Speed/FPS Model Size/MB

Faster R-CNN 89.65 14 113
SSD 90.48 101 100.27

YOLOv3 89.10 55 236
YOLOv4 90.35 44 245

YOLOv4-Tiny 80.12 175 23
Original YOLOv5s 91.84 73 27.8

YOLOv5m 93.77 51 81.54
YOLOXs 94.52 76 35.9
YOLOv6s 93.9 65 17.2

YOLOv7-Tiny 91.96 88 24.2
Improved YOLOv5s 95.18 55 37.85

The following four conclusions can be drawn from Table 1:

1. Among the five mainstream algorithms of Faster R-CNN, SSD, YOLOv3, YOLOv4,
and YOLOv4-Tiny, since Faster R-CNN is a two-stage algorithm, it has the highest
mAP at 90.48% but the slowest speed is only 10.1FPS, less than 14% of YOLOv5s
speed. YOLOv4-Tiny, with only two prediction heads, has the fastest model detection
speed at 175 FPS but the lowest mAP at 80.12, which sacrifices detection accuracy for
increased detection speed;

2. The base model chosen in this paper, YOLOv5s, has higher accuracy than all the
previous five algorithms and is second only to YOLOv4-Tiny in terms of detection
speed and model size, which is why it is chosen as the base algorithm in this paper;

3. The fusion improvement algorithm in this paper improves by 3.34% over the original
YOLOv5s, with only a 27.6% increase in model size. Compared to YOLOv5m, which
improves network depth and width in YOLOv5, the mAP is improved by 1.41%, the
model size is only 46.4% of YOLOv5m, and the detection speed is 4 FPS higher than
YOLOv5m, which is eligible for deployment in embedded devices;

4. As Figure 11 shows, the improved fusion algorithm in this paper outperforms the mAP
of the latest YOLO series of algorithms such as YOLOXs, YOLOv6s, and YOLOv7-
Tiny. Moreover, there is a little difference in terms of speed. This shows that the
improved algorithm in this paper is still competitive even when compared to the
latest algorithms.
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4.5.2. Longitudinal Comparison of Experimental Results

Table 2 shows the algorithms corresponding to the first two improvements in this
paper (YOLOv5s-V, YOLOv5s-V-att1, YOLOv5s-V-att2, in that order).

Table 2. Test results for the fusion of reconstructed backbone and attention mechanisms.

Models mAP/% Speed/FPS FNR/% Model Size/MB

YOLOv5s 91.84 73 2.84 27.8
YOLOv5s-V 93.08 65 2.46 30.2

YOLOv5s-V-att1 93.37 61 2.11 31.28
YOLOv5s-V-att2 94.41 61 1.76 31.58

Combining the analysis in Table 2 and Figure 12, the following four conclusions can
be drawn:

1. The YOLOv5s-V algorithm only reconstructs the backbone network with the OSA
Block in VOVNet. The mAP is increased from 91.84% to 93.08%; FNR is reduced by
0.38%; and the model size is increased by only 2.4 MB;

2. The YOLOv5s-V-att1 algorithm is based on YOLOv5s-V, after adding the CBAM
attention mechanism to the Concat layer in the feature fusion network. YOLOv5s-
V-att1 has a 0.29% increase in mAP compared to YOLOv5s-V without the attention
mechanism module, which is not a significant increase. This is because, for feature
fusion networks, where the CBAM attention mechanism is added after the feature
fusion Concat layer after ResBlock, the feature extraction network loses some of the
semantic information;

3. The YOLOv5s-V-att2 algorithm is based on YOLOv5s-V, after adding the CBAM
attention mechanism to the Concat layer in the OSA module of the feature extraction
network. YOLOv5s-V-att2 has a 1.33% improvement in mAP compared to the original
YOLOv5s-V. For the feature extraction network, CBAM performs spatial and channel
attention on the fused Concat layer of features in the OSA module, which is good
for information retention and weight assignment. Therefore, this paper chose to use
the YOLOv5s-V-att2 algorithm, which adds an attention mechanism to the feature
extraction network;

4. Compared to the original YOLOv5s, the improved backbone YOLOv5s-V and the
YOLOv5s-V-att2 with the attention mechanism have both improved on the aspects
of FNR. YOLOv5s-V-att2 improved by 1.08% compared to the original model, which
indicates that the improved model has a good improvement in small target detection.
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4.5.3. Experimental Comparison of the Improved ASPP Module

Table 3 shows the test results on the original YOLOv5s model with the ASPP module
set to the different numbers of atrous convolutions and atrous rates.

Table 3. ASPP module improvement test experiment.

Experiments The Number of
Atrous Convolutions Atrous Rates mAP/% Model Size/MB

I 4 (6, 12, 18, 24) 92.95 38.11
II 3 (6, 12, 18) 91.73 34.35
III 5 (6, 12, 18, 24, 30) 92.58 41.86
IV 3 (4, 6, 8) 92.92 34.35
V 3 (3, 5, 7) 93.01 34.35
VI 3 (2, 4, 6) 92.65 34.35
VII 4 (3, 5, 7, 9) 93.28 38.11

The following three conclusions can be drawn from Table 3:

1. From Experiments I, II, and IV, we find that the number of atrous convolutions affects
the model parameters but has little effect on mAP; the atrous rate has a greater effect
on mAP;

2. From experiments II, IV, V, and VI, we find that the ASPP module with the atrous rate of
(3, 5, 7) has the best result, with the mAP 0.06% higher than the original ASPP module
with the atrous convolution number of 4 and the model size reduction of 3.76 MB;

3. From experiments V and VII, we find that the mAP is increased by 0.27%, and the
model size is increased by 3.76 MB by increasing the number of atrous convolutions
by one proportional to the atrous rate along (3, 5, 7). Combining mAP and model size,
the ASPP module with many atrous convolutions of 3 and the atrous rate of (3, 5, 7) is
chosen in this paper.

4.5.4. Comparison of Results of Ablation Experiments

Table 4 shows the comparison of three improved algorithms for ablation experiments.

Table 4. Experimental results of ablation with three improved algorithms.

Models mAP/% Speed/FPS FDR/% Model Size/MB

YOLOv5s 91.84 73 6.56 27.8
YOLOv5s-V 93.08 65 6.44 30.2

YOLOv5s-V-att2 94.41 61 5.9 31.58
YOLOv5s-V-att2(No SPP) 93.86 63 6.4 29.58

YOLOvs5-V-Improved ASPP 93.97 60 5.42 38.47
YOLOvs5-V-Improved ASPP(No SPP) 93.65 61 5.64 36.47

YOLOv5s-V-att2-Improved ASPP 95.18 55 5.17 39.85

Combining the analysis in Table 2 and Figure 12, the following conclusions can be drawn:

1. Improvements to the backbone network resulted in a 1.24% improvement in mAP and
an increase in the model size of only 2.4 MB. Adding either the attention mechanism
or the Improved ASPP module alone, the attention mechanism works better than the
Improved ASPP module because the attention mechanism can better assign weights
to detection targets. The reason for the relatively small increase in the mAP of the
improved ASPP module is that it duplicates the role of the SPP structure in the
backbone network. Therefore, we chose to remove the SPP structure for experimental
comparison. It can be seen that after removing the SPP module, YOLOv5s-V-att2
(No SPP) decreased by 0.55% compared to the previous mAP. YOLOv5s-V-Improved
ASPP (No SPP) decreased by 0.32% compared to the previous mAP. This suggests
that the improved ASPP module does duplicate the role of the SPP structure in
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the backbone. However, the combined comparison is still the improvement of the
attention mechanism that improves the model accuracy more;

2. Both the YOLOv5s-V-improved ASPP and the YOLOv5s-V-att2-improved ASPP have
improved on FDR. This represents an improvement in the effectiveness of the im-
proved algorithm in this paper for target detection in complex backgrounds;

3. As Figure 13 shows, the improved model converges faster and has a lower loss value
compared to the original model;

4. The three improved ablation experiments resulted in a 3.34% improvement over the
original results, with an increase in the model size of only 11.5 M and a reduction in
detection speed of 18FPS.

Machines 2023, 11, x FOR PEER REVIEW 13 of 17 
 

 

However, the combined comparison is still the improvement of the attention mecha-
nism that improves the model accuracy more; 

2. Both the YOLOv5s-V-improved ASPP and the YOLOv5s-V-att2-improved ASPP have 
improved on FDR. This represents an improvement in the effectiveness of the im-
proved algorithm in this paper for target detection in complex backgrounds; 

3. As Figure 13 shows, the improved model converges faster and has a lower loss value 
compared to the original model; 

4. The three improved ablation experiments resulted in a 3.34% improvement over the 
original results, with an increase in the model size of only 11.5 M and a reduction in 
detection speed of 18FPS. 

  
(a) (b) 

Figure 13. (a) Training loss curves for the models are shown in Table 4; (b) validation loss curves 
for the models are shown in Table 4. 

Table 5 shows the comparison of the detection effect of the test set before and after 
the model improvement. As Table 5 shows. 

Table 5. Test set image detection results. (a) the improved model reduces false detections; (b) the 
improved model enhances the detection of small targets; (c,d) the improved model enhances the 
detection of multiple targets in complex backgrounds. 

 Original Algorithm Improved Algorithm 

(a) 

  
   

(b) 

  
   

Figure 13. (a) Training loss curves for the models are shown in Table 4; (b) validation loss curves for
the models are shown in Table 4.

Table 5 shows the comparison of the detection effect of the test set before and after the
model improvement. As Table 5 shows.

To further visualize the attention region in the model, this paper presents the fractional
heat map visualization analysis of the predicted results from the fusion model. Table 6
shows the test set image thermal comparison chart. As Table 6 shows: the heat-sensing
map covers the majority of the detected target area, with the red being the central area
where attention can be continuously spread outwards to reduce.

Table 5. Test set image detection results. (a) the improved model reduces false detections; (b) the
improved model enhances the detection of small targets; (c,d) the improved model enhances the
detection of multiple targets in complex backgrounds.

Original Algorithm Improved Algorithm

(a)

Machines 2023, 11, x FOR PEER REVIEW 13 of 18 
 

 

However, the combined comparison is still the improvement of the attention mecha-
nism that improves the model accuracy more; 

2. Both the YOLOv5s-V-improved ASPP and the YOLOv5s-V-att2-improved ASPP have 
improved on FDR. This represents an improvement in the effectiveness of the im-
proved algorithm in this paper for target detection in complex backgrounds; 

3. As Figure 13 shows, the improved model converges faster and has a lower loss value 
compared to the original model; 

4. The three improved ablation experiments resulted in a 3.34% improvement over the 
original results, with an increase in the model size of only 11.5 M and a reduction in 
detection speed of 18FPS. 

  
(a) (b) 

Figure 13. (a) Training loss curves for the models are shown in Table 4; (b) validation loss curves 
for the models are shown in Table 4. 

Table 5 shows the comparison of the detection effect of the test set before and after 
the model improvement. As Table 5 shows. 

Table 5. Test set image detection results. (a) the improved model reduces false detections; (b) the 
improved model enhances the detection of small targets; (c,d) the improved model enhances the 
detection of multiple targets in complex backgrounds. 

 Original Algorithm Improved Algorithm 

(a) 

  

   

Machines 2023, 11, x FOR PEER REVIEW 13 of 18 
 

 

However, the combined comparison is still the improvement of the attention mecha-
nism that improves the model accuracy more; 

2. Both the YOLOv5s-V-improved ASPP and the YOLOv5s-V-att2-improved ASPP have 
improved on FDR. This represents an improvement in the effectiveness of the im-
proved algorithm in this paper for target detection in complex backgrounds; 

3. As Figure 13 shows, the improved model converges faster and has a lower loss value 
compared to the original model; 

4. The three improved ablation experiments resulted in a 3.34% improvement over the 
original results, with an increase in the model size of only 11.5 M and a reduction in 
detection speed of 18FPS. 

  
(a) (b) 

Figure 13. (a) Training loss curves for the models are shown in Table 4; (b) validation loss curves 
for the models are shown in Table 4. 

Table 5 shows the comparison of the detection effect of the test set before and after 
the model improvement. As Table 5 shows. 

Table 5. Test set image detection results. (a) the improved model reduces false detections; (b) the 
improved model enhances the detection of small targets; (c,d) the improved model enhances the 
detection of multiple targets in complex backgrounds. 

 Original Algorithm Improved Algorithm 

(a) 

  

   



Machines 2023, 11, 257 15 of 19

Table 5. Cont.

Original Algorithm Improved Algorithm

(b)

Machines 2023, 11, x FOR PEER REVIEW 14 of 18 
 

 

(b) 

  

   

(c) 

  

(d) 

  

To further visualize the attention region in the model, this paper presents the frac-
tional heat map visualization analysis of the predicted results from the fusion model. Ta-
ble 6 shows the test set image thermal comparison chart. As Table 6 shows: the heat-sens-
ing map covers the majority of the detected target area, with the red being the central area 
where attention can be continuously spread outwards to reduce. 

Table 6. Test set image thermal comparison chart. (a) the improved model detects targets that the 
initial model sensed but could not detect; (b) the improved model provides a significant improve-
ment in the detection of small targets; (c) the improved model addresses false detection in complex 
backgrounds; (d) the improved model enhances multi-target detection in complex backgrounds. 

 Original Algorithm Improved Algorithm 

Machines 2023, 11, x FOR PEER REVIEW 14 of 18 
 

 

(b) 

  

   

(c) 

  

(d) 

  

To further visualize the attention region in the model, this paper presents the frac-
tional heat map visualization analysis of the predicted results from the fusion model. Ta-
ble 6 shows the test set image thermal comparison chart. As Table 6 shows: the heat-sens-
ing map covers the majority of the detected target area, with the red being the central area 
where attention can be continuously spread outwards to reduce. 

Table 6. Test set image thermal comparison chart. (a) the improved model detects targets that the 
initial model sensed but could not detect; (b) the improved model provides a significant improve-
ment in the detection of small targets; (c) the improved model addresses false detection in complex 
backgrounds; (d) the improved model enhances multi-target detection in complex backgrounds. 

 Original Algorithm Improved Algorithm 

(c)

Machines 2023, 11, x FOR PEER REVIEW 14 of 18 
 

 

(b) 

  

   

(c) 

  

(d) 

  

To further visualize the attention region in the model, this paper presents the frac-
tional heat map visualization analysis of the predicted results from the fusion model. Ta-
ble 6 shows the test set image thermal comparison chart. As Table 6 shows: the heat-sens-
ing map covers the majority of the detected target area, with the red being the central area 
where attention can be continuously spread outwards to reduce. 

Table 6. Test set image thermal comparison chart. (a) the improved model detects targets that the 
initial model sensed but could not detect; (b) the improved model provides a significant improve-
ment in the detection of small targets; (c) the improved model addresses false detection in complex 
backgrounds; (d) the improved model enhances multi-target detection in complex backgrounds. 

 Original Algorithm Improved Algorithm 

Machines 2023, 11, x FOR PEER REVIEW 14 of 18 
 

 

(b) 

  

   

(c) 

  

(d) 

  

To further visualize the attention region in the model, this paper presents the frac-
tional heat map visualization analysis of the predicted results from the fusion model. Ta-
ble 6 shows the test set image thermal comparison chart. As Table 6 shows: the heat-sens-
ing map covers the majority of the detected target area, with the red being the central area 
where attention can be continuously spread outwards to reduce. 

Table 6. Test set image thermal comparison chart. (a) the improved model detects targets that the 
initial model sensed but could not detect; (b) the improved model provides a significant improve-
ment in the detection of small targets; (c) the improved model addresses false detection in complex 
backgrounds; (d) the improved model enhances multi-target detection in complex backgrounds. 

 Original Algorithm Improved Algorithm 

(d)

Machines 2023, 11, x FOR PEER REVIEW 14 of 18 
 

 

(b) 

  

   

(c) 

  

(d) 

  

To further visualize the attention region in the model, this paper presents the frac-
tional heat map visualization analysis of the predicted results from the fusion model. Ta-
ble 6 shows the test set image thermal comparison chart. As Table 6 shows: the heat-sens-
ing map covers the majority of the detected target area, with the red being the central area 
where attention can be continuously spread outwards to reduce. 

Table 6. Test set image thermal comparison chart. (a) the improved model detects targets that the 
initial model sensed but could not detect; (b) the improved model provides a significant improve-
ment in the detection of small targets; (c) the improved model addresses false detection in complex 
backgrounds; (d) the improved model enhances multi-target detection in complex backgrounds. 

 Original Algorithm Improved Algorithm 

Machines 2023, 11, x FOR PEER REVIEW 14 of 18 
 

 

(b) 

  

   

(c) 

  

(d) 

  

To further visualize the attention region in the model, this paper presents the frac-
tional heat map visualization analysis of the predicted results from the fusion model. Ta-
ble 6 shows the test set image thermal comparison chart. As Table 6 shows: the heat-sens-
ing map covers the majority of the detected target area, with the red being the central area 
where attention can be continuously spread outwards to reduce. 

Table 6. Test set image thermal comparison chart. (a) the improved model detects targets that the 
initial model sensed but could not detect; (b) the improved model provides a significant improve-
ment in the detection of small targets; (c) the improved model addresses false detection in complex 
backgrounds; (d) the improved model enhances multi-target detection in complex backgrounds. 

 Original Algorithm Improved Algorithm 

Table 6. Test set image thermal comparison chart. (a) the improved model detects targets that the
initial model sensed but could not detect; (b) the improved model provides a significant improvement
in the detection of small targets; (c) the improved model addresses false detection in complex
backgrounds; (d) the improved model enhances multi-target detection in complex backgrounds.

Original Algorithm Improved Algorithm

(a)

Machines 2023, 11, x FOR PEER REVIEW 15 of 18 
 

 

(a) 

  

(b) 

  

(c) 

  

(d) 

  

5. Embedded Device Deployment 
The embedded device port uses the Jetson Xavier NX, which has 384 CUDA cores, 48 

Tensor cores, and 2 NVIDIA engines. It can run multiple modern neural networks in paral-
lel, processing high-resolution data from multiple sensors simultaneously. It is suitable for 
use in drones, portable medical devices, and other systems. The Jetson Xavier NX is shown 
in Figure 14a, with real-time data acquisition by calling the hardware camera. The acquisi-
tion results are shown in Figure 14b, with an image resolution size of 1280 × 720, a detection 
speed of 10.2 FPS, and a confidence level of 0.82 in the detection of the bird nests. 

Machines 2023, 11, x FOR PEER REVIEW 15 of 18 
 

 

(a) 

  

(b) 

  

(c) 

  

(d) 

  

5. Embedded Device Deployment 
The embedded device port uses the Jetson Xavier NX, which has 384 CUDA cores, 48 

Tensor cores, and 2 NVIDIA engines. It can run multiple modern neural networks in paral-
lel, processing high-resolution data from multiple sensors simultaneously. It is suitable for 
use in drones, portable medical devices, and other systems. The Jetson Xavier NX is shown 
in Figure 14a, with real-time data acquisition by calling the hardware camera. The acquisi-
tion results are shown in Figure 14b, with an image resolution size of 1280 × 720, a detection 
speed of 10.2 FPS, and a confidence level of 0.82 in the detection of the bird nests. 



Machines 2023, 11, 257 16 of 19

Table 6. Cont.

Original Algorithm Improved Algorithm

(b)

Machines 2023, 11, x FOR PEER REVIEW 15 of 18 
 

 

(a) 

  

(b) 

  

(c) 

  

(d) 

  

5. Embedded Device Deployment 
The embedded device port uses the Jetson Xavier NX, which has 384 CUDA cores, 48 

Tensor cores, and 2 NVIDIA engines. It can run multiple modern neural networks in paral-
lel, processing high-resolution data from multiple sensors simultaneously. It is suitable for 
use in drones, portable medical devices, and other systems. The Jetson Xavier NX is shown 
in Figure 14a, with real-time data acquisition by calling the hardware camera. The acquisi-
tion results are shown in Figure 14b, with an image resolution size of 1280 × 720, a detection 
speed of 10.2 FPS, and a confidence level of 0.82 in the detection of the bird nests. 

Machines 2023, 11, x FOR PEER REVIEW 15 of 18 
 

 

(a) 

  

(b) 

  

(c) 

  

(d) 

  

5. Embedded Device Deployment 
The embedded device port uses the Jetson Xavier NX, which has 384 CUDA cores, 48 

Tensor cores, and 2 NVIDIA engines. It can run multiple modern neural networks in paral-
lel, processing high-resolution data from multiple sensors simultaneously. It is suitable for 
use in drones, portable medical devices, and other systems. The Jetson Xavier NX is shown 
in Figure 14a, with real-time data acquisition by calling the hardware camera. The acquisi-
tion results are shown in Figure 14b, with an image resolution size of 1280 × 720, a detection 
speed of 10.2 FPS, and a confidence level of 0.82 in the detection of the bird nests. 

(c)

Machines 2023, 11, x FOR PEER REVIEW 15 of 18 
 

 

(a) 

  

(b) 

  

(c) 

  

(d) 

  

5. Embedded Device Deployment 
The embedded device port uses the Jetson Xavier NX, which has 384 CUDA cores, 48 

Tensor cores, and 2 NVIDIA engines. It can run multiple modern neural networks in paral-
lel, processing high-resolution data from multiple sensors simultaneously. It is suitable for 
use in drones, portable medical devices, and other systems. The Jetson Xavier NX is shown 
in Figure 14a, with real-time data acquisition by calling the hardware camera. The acquisi-
tion results are shown in Figure 14b, with an image resolution size of 1280 × 720, a detection 
speed of 10.2 FPS, and a confidence level of 0.82 in the detection of the bird nests. 

Machines 2023, 11, x FOR PEER REVIEW 15 of 18 
 

 

(a) 

  

(b) 

  

(c) 

  

(d) 

  

5. Embedded Device Deployment 
The embedded device port uses the Jetson Xavier NX, which has 384 CUDA cores, 48 

Tensor cores, and 2 NVIDIA engines. It can run multiple modern neural networks in paral-
lel, processing high-resolution data from multiple sensors simultaneously. It is suitable for 
use in drones, portable medical devices, and other systems. The Jetson Xavier NX is shown 
in Figure 14a, with real-time data acquisition by calling the hardware camera. The acquisi-
tion results are shown in Figure 14b, with an image resolution size of 1280 × 720, a detection 
speed of 10.2 FPS, and a confidence level of 0.82 in the detection of the bird nests. 

(d)

Machines 2023, 11, x FOR PEER REVIEW 15 of 18 
 

 

(a) 

  

(b) 

  

(c) 

  

(d) 

  

5. Embedded Device Deployment 
The embedded device port uses the Jetson Xavier NX, which has 384 CUDA cores, 48 

Tensor cores, and 2 NVIDIA engines. It can run multiple modern neural networks in paral-
lel, processing high-resolution data from multiple sensors simultaneously. It is suitable for 
use in drones, portable medical devices, and other systems. The Jetson Xavier NX is shown 
in Figure 14a, with real-time data acquisition by calling the hardware camera. The acquisi-
tion results are shown in Figure 14b, with an image resolution size of 1280 × 720, a detection 
speed of 10.2 FPS, and a confidence level of 0.82 in the detection of the bird nests. 

Machines 2023, 11, x FOR PEER REVIEW 15 of 18 
 

 

(a) 

  

(b) 

  

(c) 

  

(d) 

  

5. Embedded Device Deployment 
The embedded device port uses the Jetson Xavier NX, which has 384 CUDA cores, 48 

Tensor cores, and 2 NVIDIA engines. It can run multiple modern neural networks in paral-
lel, processing high-resolution data from multiple sensors simultaneously. It is suitable for 
use in drones, portable medical devices, and other systems. The Jetson Xavier NX is shown 
in Figure 14a, with real-time data acquisition by calling the hardware camera. The acquisi-
tion results are shown in Figure 14b, with an image resolution size of 1280 × 720, a detection 
speed of 10.2 FPS, and a confidence level of 0.82 in the detection of the bird nests. 

5. Embedded Device Deployment

The embedded device port uses the Jetson Xavier NX, which has 384 CUDA cores,
48 Tensor cores, and 2 NVIDIA engines. It can run multiple modern neural networks in
parallel, processing high-resolution data from multiple sensors simultaneously. It is suitable
for use in drones, portable medical devices, and other systems. The Jetson Xavier NX is
shown in Figure 14a, with real-time data acquisition by calling the hardware camera. The
acquisition results are shown in Figure 14b, with an image resolution size of 1280 × 720, a
detection speed of 10.2 FPS, and a confidence level of 0.82 in the detection of the bird nests.

Table 7 shows the comparison of Jetson Xavier NX test results. As can be seen from
Table 7, the improved YOLOv5s model on the Jetson Xavier NX improved detection
accuracy by 3.34% over the original YOLOv5s and reduced detection rate by only 0.7 FPS.
The actual test showed the conformity of the results of the requirements for real-time
detection of bird nests on high-voltage transmission towers during aerial images by drones.

Table 7. The comparison of Jetson Xavier NX test results.

Models mAP/% Speed/FPS

Original YOLOv5s 91.84 10.9
Improved YOLOv5s 95.18 10.2
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6. Conclusions

In this paper, we improve the algorithm based on YOLOv5s and reconstruct the back-
bone network of CSPDarkNet by combining the OSA module in VOVNet, which improves
the accuracy of the model without increasing the size of the model or the number of pa-
rameters computed and facilitates the deployment of the model. Secondly, we investigate
the addition of attention mechanisms in different positions of the model to find the most
suitable way to add attention mechanisms to improve the detection of small targets. Finally,
we investigate the parameters of the ASPP module and select the most suitable parameters
for this model to improve the ASPP for multi-target detection in complex backgrounds. The
experimental results show that the accuracy of the model improves from 91.84% to 95.18%,
the model size is only 39.85 M, an increase of 27.4% over the initial model. The average
detection speed is 55 FPS, and the average detection speed, when ported to embedded
devices, is 10.2 FPS, which is suitable for deploying embedded edge computer platforms to
meet the requirements of real-time detection for UAV inspection.

The algorithm proposed in this paper is currently used to detect bird nests on trans-
mission towers in aerial images and will subsequently investigate the problem of foreign
object faults on aerial images of power transmission lines. Eventually, the algorithm is
expected to be extended to the detection and monitoring of other major electrical equipment
and to enable cloud collaboration, placing some of the target detection functions on the
lightweight end.
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