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Abstract: The recognition of terrain and outdoor complex environments based on vision sensors is
a key technology in practical robotics applications, and forms the basis of autonomous navigation
and motion planning. While traditional machine learning methods can be applied to outdoor terrain
recognition, their recognition accuracy is low. In order to improve the accuracy of outdoor terrain
recognition, methods based on deep learning are widely used. However, the network structure of
deep learning methods is very complex, and the number of parameters is large, which cannot meet
the actual operating requirements of of unmanned systems. Therefore, in order to solve the problems
of poor real-time performance and low accuracy of deep learning algorithms for terrain recognition,
this paper proposes the efficient EfferDeepNet network for pixel level terrain recognition in order to
realize global perception of outdoor environment. First, this method uses convolution kernels with
different sizes in the depthwise separable convolution (DSC) stage to extract more semantic feature
information. Then, an attention mechanism is introduced to weight the acquired features, focusing
on the key local feature areas. Finally, in order to avoid redundancy due to a large number of features
and parameters in the model, this method uses a ghost module to make the network more lightweight.
In addition, to solve the problem of pixel level terrain recognition having a negative effect on image
boundary segmentation, the proposed method integrates an enhanced feature extraction network.
Experimental results show that the proposed EfferDeepNet network can quickly and accurately
perform global recognition and semantic segmentation of terrain in complex environments.

Keywords: EfferDeepNet network; terrain recognition; semantic segmentation; outdoor environment

1. Introduction

In recent years, more and more mobile robots have been used in unmanned ground
vehicles, logistics and distribution, services, and other fields [1]. The complexity of terrain
is the main factor that interferes with robots in the efficient completion of tasks. Especially
in outdoor environments, terrain characteristics can have great changes and uncertainties.
Therefore, it is very important to ensure the stable motion of the robot in complex outdoor
terrain [2]. It is necessary both to ensure the accuracy of terrain recognition and to meet the
real-time task of the robot.

Pixel-level terrain recognition is the semantic segmentation of the surrounding envi-
ronment and label classification of each pixel in the image to achieve the recognition of
environmental objects [3]. In the process of robot work, pixel-level annotation can help the
robot to identify specific objects, which is conducive to the perception of the environment.
Pixel-level terrain recognition is a key technology for autonomous navigation of robots, and
can be used for path planning and adaptive adjustment of the distance and speed of robots
or unmanned systems [4]. In complex outdoor environments, pixel-level terrain recognition
technology combined with deep learning algorithms can help robots to perceive the overall
environmental information more comprehensively.

The outdoor complex terrain has obvious geometric features as well as rich texture
features. For the key texture features, traditional terrain recognition methods mainly
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use grayscale, color, and shape features to carry out pixel-level label prediction for the
input image [5]. Traditional terrain recognition algorithms consume a lot of computational
memory, and have poor migration ability and accuracy for different data [6]. With the
improvement of computer hardware performance and the rapid development of deep
learning algorithms, terrain recognition technology based on convolutional neural networks
(CNN) has strong nonlinear modeling ability and strong real-time performance for complex
task processing [7].

Therefore, this paper proposes an efficient EfferDeepNet network to solve the problems
of low accuracy and poor real-time of outdoor terrain recognition. This paper combines
the backbone feature network and enhanced feature network to extract and recognize the
semantic information of outdoor environment terrain, which can meet the accuracy and
speed requirements of recognition at the same time. Therefore, the main contributions of
this paper are as follows:

• To extract rich multi-scale feature information and obtain more feature details, different
sizes of convolution kernels are introduced in the feature extraction stage of depthwise
separable convolution, meaning that the convolution layer has different receptive
fields and the extracted feature information is more abundant.

• To solve the problem of network models wasting iterative time on irrelevant feature
areas, this paper introduces an efficient channel attention (ECA) mechanism in the
channel domain, which is conducive to improving the semantic segmentation accuracy
of the network model and ensuring high calculation speed.

• To solve the problem of large parameters and high complexity in the backbone feature
network, this paper introduces a ghost module to lighten the network model in order
to improve the real-time performance of the algorithm.

• To further improve the accuracy of the semantic segmentation region and obtain clear
semantic feature edges, the features of local key regions are extracted through an
enhanced feature network.

The rest of this paper is structured as follows. Section 2 outlines relevant works
on terrain recognition technology. Section 3 introduces the current mainstream semantic
segmentation methods for terrain recognition and introduces the proposed algorithm in
detail based on these methods. Section 4 shows the test performance of our algorithm on
public datasets. Finally, a brief summary is provided in Section 5.

In the rest of paper, the following terms are defined: “hyperparameters” refers to the
parameter set before the network model starts training in the context of machine learning;
“Swish” is a self-generated activation function, defined as swish(x) = xρ(βx), where β is a
learnable parameter or a fixed hyper-parameter; ReLU stands for rectified linear unit, and
is a nonlinear activation function commonly used in artificial neural networks.

2. Related Work

Pixel-level terrain recognition technology refers to the semantic segmentation of terrain
scene data [8]. Semantic segmentation refers to label prediction for each pixel in an image,
which is a pixel-level classification task [9]. In other words, the task of pixel-level terrain
recognition is to understand the meaning of each pixel in the image of a terrain scene at the
semantic level (for example, the pixel is a car, zebra crossing, or pedestrian). Pixel-level
terrain recognition technology is conducive to a robot’s understanding of scene information,
and is one of the core tasks in the robotics field.

Traditional terrain recognition methods based on machine learning extract visual
features from image data through manual operation, then classify the features using a
classifier. In 2002, Ojala et al. [10] first proposed the local binary pattern (LBP) operator. This
method can extract features from the local information of the input image, and performs
well as a texture descriptor in unsupervised texture segmentation [11]. In 2011, Khan and
Komma et al. [12] extracted feature information from visual environment data collected
by outdoor mobile robots based on the LBP method. Their method uses a random forest
model as a classifier to quickly classify the feature information of complex terrain under
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extreme weather changes [13]. In 2012, Khan and Masselli et al. [14] further compared the
speed up robust features (SURF) descriptor with the local binary patterns (LBP) descriptor
and the local ternary patterns (LTP) descriptor, then classified the feature information
extracted from the descriptor using the random forest method [15]. Their results showed
that the SURF descriptor performs better in high-resolution image classification, and has
strong robustness against interference from environmental factors. In 2012, Filitchkin and
Byl et al. [16] used a bag of visual words (BOVM) approach based on the SURF descriptor
to represent image features for terrain classification tasks. In 2018, Kim et al. used a
multi-resolution directional filter to obtain data statistics on the different directions of each
pixel in the image in order to obtain rotation-invariant features [17].

Although the traditional image segmentation methods mainly use grayscale, color,
texture, and shape features to perform pixel-level label prediction for the input image in
order to maximize the difference between regions and the similarity within regions [18],
traditional image segmentation methods cannot accurately segment complex scene features,
and their edge processing capability does not achieve the desired results [19]. With the
development of deep learning, semantic segmentation technology based on deep learning
has achieved new breakthroughs in segmentation accuracy and speed. Semantic segmenta-
tion based on deep learning mainly uses the fully supervised learning method, and uses
the image data manually labeled with pixel level labels to train and predict the network.
In 2015, Shelhamer et al. [20] proposed a full convolutional network (FCN) which uses
deconvolution layers to directly upsample feature layers after feature extraction in con-
volution layers, thereby obtaining semantic segmentation results with the same size of
output and input images. An FCN network realizes pixel-to-pixel and end-to-end network
training and pixel-level classification through a full convolution structure, which shows
excellent performance in fully supervised learning in the field of semantic segmentation.
However, FCN networks have problems in that the semantic information location is easy
to lose and the global context information is easy to ignore, which affects the accuracy of
prediction [21].

Based on the idea of FCN networks and the aforementioned problems, researchers
have proposed a series of representative semantic segmentation networks. In 2015, Ron-
neberger et al. [22] proposed the U-Net network based on an encoder–decoder structure.
In the encoder part, the network extracts features through a convolution operation and
a downsampling operation. In the decoder part, the deep features and shallow features
are fused by splicing, then the deconvolution operation is used to restore the feature map
to the original resolution. The design of the decoder saves more context information and
enhances the precision of semantic segmentation [23]. In 2015, Visin et al. [24] proposed the
ReNet network, which builds a correlation model between pixels by cascading the memory
characteristics of multiple RNN networks, thereby solving the problem of insufficient use
of global context information in FCN networks. A semantic segmentation network based
on RNN can record historical information to obtain the sequence features of pixels and
effectively use context information to refine image segmentation. In 2017, Zhao et al. [25]
proposed the PSPNet network. By introducing the pooling module of the pyramid, the
network splices the feature information of four different scales and then obtains a pyramid
feature layer containing global information and multi-scale information. Finally, the net-
work performs a convolution operation to generate the final semantic segmentation map.
The PSPNet network provides effective global context information for pixel-level scene
resolution [26]. Most researchers have achieved good results in terms of precision, which is
essential in real-time operation. Efficient real-time capability can enable unmanned systems
to achieve long-term autonomous operation.

Therefore, to solve the problems of poor image boundary segmentation and low real-
time performance encountered in pixel-level terrain recognition based on complex scenes,
the present paper proposes a lightweight EfferDeepNet network for feature extraction and
segmentation of pixel level semantic information of outdoor complex terrain. Based on
the idea of the EfficientNet network, this method proposes a backbone feature extraction
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network with better performance. At the same time, based on the idea of the DeepLabV3+
network, an enhanced feature extraction network is introduced to further capture more
precise object boundaries. By combining the advantages of the above two network models,
our proposed approach effectively reduces the parameters and complexity of the model,
and has high accuracy and real-time performance in outdoor scene recognition.

3. Basic Materials and Methods
3.1. EfficientNet Network Model

The EfficientNet network is based on neural architecture search (NAS) technology [27].
Its performance is excellent, and the test results on similar tasks are outstanding [28]. The
principle of NAS is that a given search space can include different structures of submodules
in the network. According to the search strategy, the structure and parameters can be
combined in the search space to form different neural network structures. Then, the
network model is trained on the training set and its performance is evaluated on the
verification set. The performance evaluation strategy is the core element of neural structure
search. Through the evaluation of search results and iterative search, the best network
structure can be obtained. The specific process of NAS is shown in Figure 1.

Figure 1. Model structure of NAS. With a search space Q in the search strategy, the performance
of network a is continuously evaluated through the search strategy to find the optimal neural
network structure.

Through the neural structure search of NAS, Google designed and searched Efficient-
Net B0–B7, a total of eight networks with different sizes. EfficientNet B1–B7 is a series
of networks formed on the basis of the EfficientNet-B0 network structure by reducing
and enlarging the hyperparameters. The network structure of EfficientNet-B0 is shown in
Table 1.

Table 1. Network structure of EfficientNet-B0.

Stage Operator Resolution Channels Layers Strides

1 Conv 3 × 3 224 × 224 32 1 2
2 MBConv 1, 3 × 3 112 × 112 16 1 1
3 MBConv 6, 3 × 3 112 × 112 24 2 2
4 MBConv 6, 5 × 5 56 × 56 40 2 2
5 MBConv 6, 3 × 3 28 × 28 80 3 2
6 MBConv 6, 5 × 5 14 × 14 112 3 1
7 MBConv 6, 5 × 5 14 × 14 192 4 2
8 MBConv 6, 3 × 3 7 × 7 320 1 1
9 Conv 1 × 1 & Pooling & FC 7 × 7 1280 1 1

In the table, Operator represents the input operation module, Resolution represents the
length and width of the input image or intermediate feature channel, Channels represents
the number of output feature channels in the current stage, Layers represents the stacking
time of the Operator module, and Strides represents the steps of the current module.
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It can be seen that the EfficientNet-B0 network is composed of simple stacks of MBConv
modules. The overall structure of the network is relatively simple, and the most important
element is the MBConv module. The structure of the MBConv module is shown in Figure 2.

Figure 2. Module structure of MBConv. The Droupout layer performs random inactivation, which
causes the activation value of the neurons to stop working with a certain probability.

The MBConv module performs a dimension-increasing operation on the input feature
layer, then convolves the output feature information through the batch normalization (BN)
layer and Swish activation functions, respectively [29]. Next, the squeeze-and-excitation
(SE) attention module is connected in order to learn the correlations between channels.
Finally, the reduced-dimension feature information is passed through the Droupout layer
and combined with the input feature layer.

The main contribution of the EfficientNet network model is to explore the number
of convolution cores, the depth of the network, and the resolution of the input image.
Through the optimal configuration strategy, these three hyperparameters greatly improve
the network performance. At the same time, increasing the number of feature layers in
each layer of the network means that more feature information can be extracted, thereby
improving the recognition accuracy of the network. However, for the problem of semantic
information recognition and segmentation of outdoor large-scale scenes, the real-time
performance needs to be further improved.

3.2. DeepLabV3+ Network Model

DeepLabV3+ is a semantic segmentation method based on encoder–decoder struc-
ture [30]. This method introduces a spatial pyramid pooling module or encoder–decoder
structure into the deep neural network when performing semantic segmentation tasks. At
the same time, by constantly exploring the backbone feature extraction network, depthwise
separable convolution is applied to the atrous spatial pyramid pooling (ASPP) and decoder
module in order to construct a faster and stronger encoder–decoder structure.

As shown in Figure 3, the Deeplabv3+ network is divided into an encoder and a
decoder. The encoder is mainly composed of a backbone feature extraction network and
an ASPP module. To solve the problem of slow semantic segmentation caused by the
huge number of parameters of the DeeplabV3+ network, a lightweight MobileNetV2
network is used as the backbone feature extraction network. This network is a lightweight
model based on depthwise separable convolution, and can extract shallow semantic feature
information and deep semantic feature information from MobileNetV2 network. After the
deep semantic feature information is enhanced by the ASPP module, the upper sampling
operation of bilinear interpolation is used to connect the deep and shallow semantic
feature information. Finally, the decoder module decodes both the shallow semantic
feature information and the deep semantic feature information and outputs the semantic
segmentation results.

3.3. Proposed Method: EfferDeepNet Network Structure

The EfferDeepNet network is mainly composed of a backbone feature extraction net-
work and enhanced feature extraction network. The backbone feature extraction network
uses a modified version of the EfficientNet network with better performance, whith the aim
of reducing the size of the network and enhancing its image feature extraction ability. On
the basis of the EfficientNet network, pyramid convolution and an attention mechanism
are introduced, enabling the network to extract terrain with obvious texture features more
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effectively. At the same time, the lightweight design of the network ensures the real-time
performance of network reasoning while improving the portability and real-time perfor-
mance of the network on the hardware equipment of unmanned systems. The enhanced
feature network is based on the DeepLabV3+ semantic segmentation algorithm, further
improving the extraction and recognition of terrain semantic information.

Figure 3. The network model of Deeplabv3+.

3.3.1. Backbone Feature Network: EfferNet

• Feature Extraction by Depthwise Separable Convolution

For feature extraction, the EfficientNet network combines traditional ordinary con-
volution and depthwise separable convolution to extract features from the input image.
Basic features such as points, lines, and angles can be extracted from the shallow layer of
the network, while abstract features can be extracted from the deep layer of the network.
In EfficientNet networks, only single-size convolution kernels are used in a single stage.
For example, only 3 × 3 convolution kernels are used in a single stage of the network. The
common convolution used in the EfficientNet network is shown in Figure 4. In the EfferNet
network, we use convolution kernels of different sizes in the shallow stage of the network
rather than using single-size convolution kernels. By using convolution kernels of different
sizes in the different stages of the EfferNet network, the receptive fields of the convolution
layer of the network model at each stage are different, meaning that the extracted features
are more abundant, in turn allowing for more effective identification of image information.
The structure of the pyramid convolution module used in this paper is shown in Figure 5.

In the PConv module, the input feature information passes through convolution ker-
nels of different sizes, making the output feature information more suitable for semantic
classification. The advantage of this structure is that the network can capture multi-scale
feature information at all stages. Diversified convolution kernels can provide receptive
fields of different sizes, with small convolution kernels able to extract more details and large
convolution kernels able to extract contextual information and larger objects. Therefore,
pyramid convolution can reduce the layer dependency of the network and extract rich
multi-scale information while reducing the network depth. The PConv module fuses and
complements this information, which is conducive to improving the network’s identifica-
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tion performance while maintaining a similar number of parameters and computation cost
to the original model.

Figure 4. Convolution operation diagram of the EfficientNet network. The convolution kernel sizes
of the network model are all the same.

Figure 5. Convolution operation diagram of the PConv module in the EfferNet network. The
proposed network model uses convolution kernels of different sizes.

• Attention Mechanism

In the field of image recognition, the use of attention mechanisms generally includes
three categories, namely, the spatial domain, channel domain, and hybrid domain. An
attention mechanism enables a model to focus on key local information while ignoring
irrelevant areas by assigning different weights to input features in order to make more
accurate decisions [31]. The MBConv module in the EfficientNet network adopts the
squeeze-and-excitation (SE) channel domain attention mechanism. In this algorithm, there
are two problems when using the SE module: first, the fully connected layer reduces the
dimension in order to reduce the computational load, and reducing the dimensionality of
the 1 × 1 × C feature layer through the first fully connected layer is unfavorable for the
prediction of channel domain attention; second, it is inefficient and unnecessary to use the
fully connected layer to capture the correlations between all channels [32].

To avoid these problems involving the SE module, we replace the SE module with
efficient channel attention (ECA) based on the channel domain in the MBConv module in
order to improve the overall performance of the network. As shown in Figure 6. For the
input features, the global average pooling layer is first used for conversion to a 1 × 1 × C
feature layer. Then, one-dimensional convolution with a convolution kernel of size k
is used to capture the interaction information between each channel and its k adjacent
channels. Finally, the weight of each channel and the recalibrated feature layer are obtained
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through the activation function. This approach can ensure that the whole module has fewer
parameters and faster calculation speed without reducing the dimension of the module.
Our experimental results show that the ECA module effectively improves the semantic
segmentation accuracy of the network model.

Figure 6. Structure of the ECA module; “+” means that the output results of the previous stage are
added. Sigmoid is used as the activation function of the neural network for the output of hidden
layer neurons, and the value range is (0, 1).

• Network Lightweight

A lightweight network means that, while maintaining the accuracy of the network
model, its parameters and computation cost are reduced in order to solve performance
problems involving the low memory and computing power available in the hardware
devices of unmanned systems [33]. Methods of obtaining lightweight networks are mainly
divided into two types, namely, structure design and model compression.

The parameters and complexity of a network model can be reduced by lightweight
design without loss of accuracy. Therefore, the ghost module is used in the EfferNet
network to achieve a lightweight design, as shown in Figure 7. By visualizing the middle
feature layer of the trained deep neural network, it can be seen that there are many middle
feature layers in the network dealing with similar situations. These huge and redundant
feature maps are very important for network information recognition. We can perform
convolution operation and linear transformation on the input features to generate similar
feature maps while greatly reducing the amount of parameters and computation required.

Figure 7. Ghost module structure; “+” means that the output results of the previous stage are added.

3.3.2. Enhanced Feature Extraction Network

To achieve more accurate of feature recognition of environmental terrain, our pro-
posed method further incorporates an enhanced feature extraction network and makes the
semantic segmentation area more accurate by introducing an encoder–decoder structure.
The encoder is used to effectively extract the feature layer, while the decoder obtains clear
object boundaries through gradual recovery of spatial information.
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The encoder uses the ASPP module to capture the features output from the backbone
feature extraction network. Based on ordinary convolution, the expansion rate parameter is
introduced into the atrous convolution, resulting in the convolution layer with the same size
of convolution kernel obtaining a larger receptive field. The structure of atrous convolution
is shown in Figure 8.

Figure 8. Atrous convolution structure.

The output features of the four convolution layers of the ASPP module pass through
the batch normalization (BN) layer and ReLU activation function. Then, the output of the
pooled layer is connected to a convolution kernel with a size of 1 × 1, and the resolution
is restored through the bilinear oversampling layer for fusion with the features of the
other convolution layers. Finally, the dimensions of multi-scale features are reduced by the
common convolution layer, BN layer, and activation function, and the output enhanced
feature layer is used to recover the decoder spatial information. The structure of the decoder
is shown in Figure 9.

Figure 9. The structure of the decoder.

The decoder takes the shallow features extracted from the backbone feature extraction
network as input and uses the ordinary convolution layer with a 1 × 1 convolution kernel,
BN layer, and activation function to reduce the dimension. Then, the results of the enhanced
feature layer extracted by the encoder after four upsampling operations are stacked and a
1 × 1 convolution layer is used to adjust the number of channels to match the number of
label categories in the full network. Finally, the width and height of the feature layer are
restored by upsampling to the width and height of the input terrain recognition image in
order to carry out terrain recognition and label prediction of pixels. In this way, the spatial
boundary information of the picture can be recovered through the decoder module.

To sum up, the EfferDeepNet network uses the EfferNet network as the backbone fea-
ture extraction network. Then, the semantic features from the backbone feature extraction
network are used as the encoder input of the enhanced feature extraction network. The
overall structure of the network is shown in Figure 10. In the backbone feature extraction
network part, the Fused-MGPConv module combines pyramid convolution with convolu-
tion using kernel sizes of 3 × 3 and 5 × 5. At the same time, the ECA module is connected
to perform global average pooling of the input feature map, after which the weight of
each channel is obtained through the sigmoid activation function. In the deep stage of the
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network structure, a 1 × 1 convolution kernel is used and the MGPConv module is built
using the ghost module. The enhanced feature extraction network is mainly composed of
the optimized encoder–decoder structure.

Figure 10. Overall structure of the EfferDeepNet network.

4. Experimental Results

The EfferDeepNet network proposed in this paper is implemented based on the
Pytorch framework. Pytorch is an open source neural network framework from Facebook
that can support powerful GPU acceleration functions and has a rich ecosystem. In addition,
the system is simple and flexible to use and has a fast operation speed. The hardware
and software specifications used when training the EfferDeepNet network are shown in
Tables 2 and 3, respectively.

Table 2. Hardware used for network training.

CPU Version RAM Version GPU Version

Intel Core i7-7800X 3.50 GHz 64 GB Nvidia GeForce GTX 1080Ti

Table 3. Software used for network training.

Operating System Python Version Pytorch Version

Ubuntu 16.04 3.8.11 1.90

In addition, we used the Cityscapes open dataset for experimental testing. Cityscapes
is a semantic segmentation dataset of urban streetscapes published by Mercedes-Benz in
2015, and represents a new large-scale dataset in the field of autonomous navigation. The
Cityscapes dataset consists of street scenes from more than fifty different cities; captured
frames from videos are saved as original pictures and labeled for pixel-level terrain recogni-
tion. The Cityscapes dataset provides 5000 fine annotated images and 20,000 rough annotated
images, and includes nineteen different categories of sidewalks, buildings, and walls.

4.1. Comparison of Semantic Segmentation Accuracy

In the training process of the EfferDeepNet network, we set the number of network
iterations as Epoch = 100 and the learning rate as 0.001. Adam was selected as the network
optimizer, and cross entropy was used as the loss function. The original image resolution
of the Cityscapes dataset is 1024 × 2048. In the experimental test, using the large resolution
image as the input of the training network seriously affects the performance of the algo-
rithm. Therefore, we preprocessed the original images and tags to improve the semantic
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recognition of pixel-level terrain in the EfferDeepNet network. In the image preprocessing
stage, we used regional interpolation to reduce the image resolution to 512 × 1024. The use
of regional interpolation can avoid jagged edges in the images and provide a better overall
effect. In addition, further normalization of the image can accelerate both the convergence
of the network and the generalization ability of the model. The pixel-level prediction results
on the test set are shown in Figure 11. From the results of semantic segmentation, it can be
seen that EfferDeepNet can achieve relatively complete segmentation of the main body of
the target in all nineteen categories with a high accuracy rate.

Figure 11. Prediction results of the EfferDeepNet network.

Table 4 shows a comparison of the precision of the EfferDeepNet network and other
mainstream segmentation networks on the Cityscapes dataset. Here, mIOU is the mean
intersection over union and mPA is the mean pixel accuracy. The experimental results show
that our proposed EfferDeepNet network achieves 83.2% on mIOU, which is considered a
high semantic segmentation accuracy. The accuracy of the EfficientNet network in terms
of mIOU is 82.5%, which is lower than that of our proposed EfferDeepNet network. In
addition, the accuracy of EfferDeepNet in terms of mPA reaches 89.3%, which is higher
than the compared network models.

Table 4. Precision comparison between the proposed EfferDeepNet network and similar networks on
the Cityscapes dataset.

ResNet38 PSPNet DeepLabV3+ EfficientNet EfferDeepNet

mIOU 80.6% 81.2% 82.1% 82.5% 83.2%
mPA 82.7% 85.4% 87.1% 88.6% 89.3%

To better compare the accuracy of each segmentation network method, the same
training parameters were used. In the process of network training, we recorded and
visualized the experimental results in real time, as shown in Figure 12. It can be seen
from the results that the training accuracy of each network reaches convergence. The
semantic segmentation accuracy of our proposed EfferDeepNet method is the best, and
the required number of training iterations is lower. Compared with similar segmentation
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networks, EfferDeepNet achieves convergence and higher accuracy with the least number
of iterations, showing that the proposed method has advantages in semantic recognition of
complex terrain.

Figure 12. Accuracy comparison of different methods.

4.2. Real-Time Performance Comparison

The number of parameters affects the processing speed of network models used for
semantic segmentation. Therefore, we tested and analyzed the parameters of each network
model; the results are shown in Table 5. Here, MS is the model size and FPS is the frames
per second. It can be seen from Table 5 that the size of the backbone feature extraction
network parameters in EfferDeepNet is 16 MB, and the image processing efficiency reaches
41.7%. Compared with other methods, its image processing efficiency is better. The size
of the parameters in the backbone feature extraction network of EfficientNet is 19.7 MB,
further showing that our method is more lightweight and efficient.
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Table 5. Real-time performance comparison between the EfferDeepNet network and other networks
on the Cityscapes dataset.

ResNet38 PSPNet DeepLabV3+ EfficientNet EfferDeepNet

MS 18.4 MB 20.1 MB 22.9 MB 19.7 MB 16 MB
FPS 22.6% 28.9% 12.3% 33.4% 41.7%

In addition, we conducted five repeated experiments on each network model; the
real-time experimental results are shown in Figure 13. The results of this experiment visu-
alize the average semantic segmentation times of each frame image in order to compare
the efficiency of each method. The comparison results show that the proposed EfferDeep-
Net method has the fastest time for semantic segmentation of environmental terrain and
high real-time performance. Compared with EfficientNet method, our method is much
faster in semantic segmentation. Compared with other semantic segmentation methods,
EfferDeepNet is able to efficiently perform semantic segmentation of terrain in complex
environments.

Figure 13. Average semantic segmentation time of different methods.
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5. Conclusions

This paper proposes an efficient and lightweight EfferDeepNet network model for
pixel-level semantic segmentation of terrain in complex environments, which is a basic
necessity for robotic system to achieve autonomous work. EfferDeepNet combines the
powerful texture feature extraction performance of the backbone feature network with the
enhanced feature network’s multi-scale feature fusion and spatial information recovery
performance. This method realizes the end-to-end training task of the network, and has
remarkable effects on pixel-level semantic recognition and segmentation of complex terrain.
Our experimental results show that the proposed method achieves 83.2% on the mIOU
index and 89.3% on the mPA index in terms of semantic segmentation accuracy. In terms
of real-time performance, the FPS index of our method reaches 41.7%. In summation, the
method proposed in this paper is able to efficiently perform semantic segmentation of
complex terrain.
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