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Abstract: An improved chimpanzee optimization algorithm incorporating multiple strategies (IM-
SChoA) is proposed to address the problems of initialized population boundary aggregation dis-
tribution, slow convergence speed, low precision, and proneness to fall into local optimality of the
chimpanzee search algorithm. Firstly, the improved sine chaotic mapping is used to initialize the
population to solve the population boundary aggregation distribution problem. Secondly, a linear
weighting factor and an adaptive acceleration factor are added to join the particle swarm idea and
cooperate with the improved nonlinear convergence factor to balance the global search ability of
the algorithm, accelerate the convergence of the algorithm, and improve the convergence accuracy.
Finally, the sparrow elite mutation and Bernoulli chaos mapping strategy improved by adaptive
change water wave factor are added to improve the ability of individuals to jump out of the local
optimum. Through the comparative analysis of benchmark functions seeking optimization and the
comparison of Wilcoxon rank sum statistical test seeking results, it can be seen that the IMSChoA
optimization algorithm has stronger robustness and applicability. Further, the IMSChoA optimiza-
tion algorithm is applied to two engineering examples to verify the superiority of the IMSChoA
optimization algorithm in dealing with mechanical structure optimization design problems.

Keywords: improved sine chaos mapping; nonlinear decay factor; sparrow elite mutation

1. Introduction

Meta-heuristic algorithms are widely used in path planning [1], image detection [2],
system control [3], and shop floor scheduling [4] due to their excellent flexibility, practicality,
and robustness. Common meta-heuristic algorithms include the genetic algorithm (GA) [5,6],
the particle swarm optimization algorithm (PSO) [7,8], the gray wolf optimization algorithm
(GWO) [9,10], the chicken flock optimization algorithm (CSO) [11], the sparrow optimization
algorithm (CSA) [12], the whale optimization algorithm (WOA) [13], etc.

Different intelligent optimization algorithms exist with different search approaches,
but most of them aim at the balance between population diversity and search ability and
avoid premature maturity while ensuring convergence accuracy and speed [14]. In response
to the above ideas, numerous scholars have proposed improvements to the intelligent
algorithms they studied. For example, Zhi-jun Teng et al. [15] introduced the idea of PSO
on the basis of the gray wolf optimization algorithm, which preserved the individual
optimum while improving the ability of the algorithm to jump out of the local optimum;
Hussien A. G. et al. [16] proposed two transfer functions (S-shaped and V-shaped) to map
the continuous search space to the binary space, which improved the search accuracy and
speed of the whale optimization algorithm; Wang et al. [17] introduced a fuzzy system in
the process of chicken flock optimization algorithm, which adaptively adjusted the number
of individuals in the algorithm, as well as random factors to balance the local exploitation
performance and global search ability of the algorithm; Tian et al. [18] used logistic chaotic
mapping to improve the initial population quality of the particle swarm algorithm while
applying the auxiliary speed mechanism to the global optimal particles, which effectively
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improved the convergence of the algorithm; Li et al. [19] integrated two strategies, Levy
flight and dimension-by-dimension evaluation, in the mothballing algorithm to improve
the global search capability and to enhance the effectiveness of the algorithm.

The chimpanzee optimization algorithm (ChoA) is a heuristic optimization algorithm
based on the social behavior of chimpanzee populations proposed by Khishe et al. [20] in
2020. Compared with traditional algorithms, ChoA has the advantages of fewer parameters,
being prone to understand, and high stability. However, it also has the problems of
initialized population boundary aggregation distribution, slow convergence speed, low
accuracy, and being prone to fall into the local optimum. To address these problems, many
researchers have proposed different improvement methods. Du et al. [21] introduced a
somersault foraging strategy in ChoA to avoid the algorithmic population from easily
falling into the local optimum, as well as to improve the diversity of the pre-population.
However, this relatively single improvement leads to its less obvious improvement effect;
Kumari et al. [22] combined the SHO algorithm with the ChoA algorithm, which improved
the convergence accuracy of the ChoA algorithm itself and enhanced its local exploitation
ability to deal with high-dimensional problems; Houssein et al. [23] proposed to extend the
population diversity in the search space of the ChoA algorithm in relation to the algorithm
initialization phase by applying opposition-based learning (OBL).

In summary, there are numerous improvements to the chimpanzee optimization algo-
rithm, and the improved algorithms are suitable for the optimization of some single prob-
lems but reveal shortcomings for others. Therefore, in order to improve the performance
of ChoA optimization, an improved chimpanzee optimization algorithm incorporating
multiple strategies (IMSChoA) is proposed in this paper. Firstly, an improved sine chaotic
mapping is used to initialize the population and solve the phenomenon of population
boundary aggregation distribution. Secondly, a linear weight factor and an adaptive accel-
eration factor are introduced to add to the particle swarm algorithm and cooperate with
the improved nonlinear convergence factor to balance the search ability of the algorithm,
accelerate the convergence of the algorithm, and improve the convergence accuracy. Finally,
the sparrow elite mutation and Bernoulli chaos mapping strategy improved by adaptive
change water wave factor are introduced to improve the ability of individuals to jump
out of the local optimum. After 21 standard test functions for the optimization search test,
and with the help of the Wilcoxon rank sum statistical test for the optimization results, the
robustness and applicability of the improved algorithm are verified. Finally, the IMSChoA
optimization algorithm is applied to two engineering examples to further verify the su-
periority of the IMSChoA optimization algorithm in dealing with mechanical structure
optimization design problems.

The other sections of the article are organized as follows: in Section 2, the mathematical
model of the traditional ChoA algorithm is presented. Section 3 presents the specific
improvement strategies incorporated on top of the ChoA algorithm. Section 4 shows
the comparison and analysis of the results of IMSChoA with the other four optimization
algorithms after 21 standard test function search tests. Section 5 applies the IMSChoA
algorithm to two engineering examples and analyzes their optimization results accordingly.
Finally, the full text is summarized in Section 6 for discussion.

2. Basic Chimpanzee Algorithm

The ChoA algorithm is an intelligent algorithm proposed by simulating the prey-hunting
behavior of chimpanzee groups. According to the abilities shown in the chimpanzee hunting
process, individual chimpanzees are classified into driver, barrier, chaser, and attacker. The
chimpanzee group hunting process is mainly divided into exploratory phases, i.e., repelling,
blocking, and chasing prey. The development stage involves attacking the prey. Each type
of chimpanzee has the ability to think independently and search for the location of prey in
its own way, while chimpanzees are also affected by sexual behavior, making them appear
to confuse individual hunting behavior in the final stage. It is assumed that the first driver,
barrier, chaser, and attacker are able to predict the location of prey and the others update their
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position according to the closest chimpanzee to the prey. The equation model for chimpanzee
repelling and chasing prey is shown in Equations (1) and (2).

d(t) =|cXP(t)−mXE(t)| (1)

XE(t + 1) = XP(t)− a ∗ d(t) (2)

where XP is the position of the prey, XE is the position of the chimpanzee, m is the chaotic
vector, t is the number of iterations, d(t) is the distance of the chimpanzee from the prey, and
a and c are the coefficient vectors. a and c are calculated by Equations (3) and (4), respectively.
When |a| < 1, the chimpanzee individual tends to the prey, and when |a| > 1, it means the
chimpanzee has deviated from the prey position and expanded the search range.

a = 2 ∗ f ∗ r1 − f (3)

c = 2 ∗ r2 (4)

where r1 and r2 are random numbers taking values of [0, 1], a is a random variable between
[−2f, 2f ], f is a linear convergence factor, and the calculation of the f formula is Equation (5).

f = 2− 2 ∗ t
tmax

(5)

During the iterations, f decays linearly from 2 to 0, and tmax is the maximum number
of iterations.

The position of chimpanzees in the population is co-determined by the position of the
driver, barrier, chaser, and attacker. The mathematical model of chimpanzee attack on prey
is shown in Equations (6)–(8).

DA =|c ∗ XA −m ∗ X|
DB =|c ∗ XB −m ∗ X|
DC =|c ∗ XC −m ∗ X|
DD =|c ∗ XD −m ∗ X|

(6)

X1 = XA − a ∗ XA
X2 = XB − a ∗ XB
X3 = XC − a ∗ XC
X4 = XD − a ∗ XD

(7)

X(t + 1) =
1
4
∗ (X1 + X2 + X3 + X4) (8)

From Equations (6)–(8), the position of the prey is estimated from the position of
the driver, barrier, chaser, and attacker. Other chimpanzees update their position in the
direction of the prey.

In the final stages of a population’s predation, when individuals obtain food satisfac-
tion, chimpanzees unleash their natural instinct to force chaotic access to food. The chaotic
behavior of chimpanzees in the final stage helps to further alleviate the two problems
of local optimal traps and slow convergence when the problem is high-dimensional. To
simulate the chimpanzee’s chaotic behavior, it is assumed that there is a 50% probability of
choosing one of the update positions in either the normal update position mechanism or
the chaotic model, and the model formulation is shown in Equation (9) [24].

XE(t + 1) =
{

XP(t)− a ∗ d, µ < 0.5
Chaotic, µ > 0.5

(9)

where µ takes the value of [0, 1] random number, and Chaotic is the chaotic mapping used
to update the position.
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3. Improving the Chimpanzee Algorithm

Firstly, for ChoA, the population initialization is performed by the random distribution
method. This approach leads to population diversity, poor uniformity, easy boundary
aggregation phenomenon, and large blindness of individual search for the best result.
Secondly, the convergence factor of linear decay of the algorithm balancing local search
and global search does not conform to the nonlinear merit-seeking characteristics of the
algorithm, and finally, the algorithm jumps out of the local optimum with low chaotic
perturbation trigger probability, which has great instability.

In summary, the corresponding improvement strategies are introduced for the prob-
lems of the ChoA algorithm, as follows.

3.1. Improved Sine Chaotic Mapping for Initializing Populations

Because the size of each dimension of chimpanzee individuals is randomly generated
in the initialization stage, which leads to poor population diversity, serious boundary
aggregation, and low individual variability. Chaotic searches are based on non-repetition
and ergodicity, which are different from stochastic search methods, which are based on
probabilities [25]. The common chaotic mappings include circle chaotic mapping, tent
chaotic mapping, iteration chaotic mapping, logistic chaotic mapping, and sine chaotic
mapping. Among them, sine mapping has good stability and high coverage, but it still has
uneven distribution and boundary aggregation phenomena.

The expression of the original sine chaos mapping is:

X(t) = µ ∗ sin(πX(t− 1)) (10)

Therefore, the sine mapping is improved by introducing the Chebyshev mapping for
the above problem. At the same time, a high-dimensional chaotic mapping is established
to make it better represent the chaotic property based on the original one.

The expression of the improved sine chaos mapping is:

P(t) = µ ∗ sin(πX(t− 1)) + λ cos(i ∗ cos−1(X(t− 1))) (11)
W(t) = µ sin(πW(t− 1)) + λ cos(t ∗ cos−1(W(t− 1))
O(t) = µ sin(πO(t− 1)) + λ cos(t ∗ cos−1(O(t− 1))
E(t) = µ sin(πE(t− 1)) + λ cos(t ∗ cos−1(E(t− 1))
H(t) = µ sin(πH(t− 1)) + λ cos(t ∗ cos−1(H(t− 1))
X(t) = mod(W(t) + O(t) + E(t) + H(t), 1)

(12)

where λ and µ are random numbers between [0, 1] and satisfy the sum of λ and µ as 1.
The dimensional distribution map and dimensional distribution histograms of both

initial solutions before and after the improvement are shown in Figure 1. Here, Figure 1a,c
is the original sine mapping, and Figure 1b,d is the improved sine mapping. Comparing
Figure 1a,b and Figure 1c,d, it was found that the value distribution of the improved sine
mapping chaos is more uniform, and the boundary aggregation problem is effectively solved.
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3.2. PSO Idea and Nonlinear Convergence Factor
3.2.1. PSO Idea

In order to regulate the balance of global and local search ability in the early and late
stages of the ChoA algorithm, the particle swarm idea is introduced to improve the position
updating method of the ChoA algorithm. The best position information experienced by the
particle itself and the best position information of the population are used to update the
current position of the particle and realize the information exchange between individual
chimpanzees and the population [26]. The position update formula is Equation (13).

X(t + 1) = C ∗ (rand ∗ w ∗ (X1 + X2 + X3 + X4)+ rand ∗ (X1 − X(t))) (13)

where w is the inertia weight coefficient and C is the acceleration factor. The inertia weight
w and acceleration factor C take values related to the influence of the past motion state of
the particle on the present motion state, when w and C become large, the search space of
the particle will be expanded, and, when w and C become small, the direction of particle
motion produces many changes, and the search space is relatively small, which will lead
the algorithm to fall into the local optimum. The convergence speed of the algorithm is
accelerated by adjusting the size of w, C to regulate the ability of local search and global
search of the algorithm [27].

In order to improve the global search ability of the algorithm in the early stage while
strengthening the local optimization ability of the particle swarm in the later stage, this
paper introduces an adaptive linear acceleration factor: at the beginning of the algorithm
iteration, a larger value of C is given to complete a wide range of search, which is conducive
to the algorithm to quickly search for the global optimal position, and, as the number of
iterations increases, the algorithm gradually converges, and individuals search for the
optimal solution locally, and, at this time, a smaller C value is given to achieve accurate
exploration of the optimal position in small steps size so as to improve the convergence
accuracy of the algorithm. At the same time, in order to prevent the algorithm from falling



Machines 2023, 11, 250 6 of 22

into the local optimum during the iteration process, the cosine function is introduced to
correct the acceleration factor and to keep the acceleration factor fluctuating at all times.
The adaptive acceleration factor mathematical model is shown in Equation (14), and the
variation of C with the number of iterations is shown in Figure 2.

C = g ∗ e−0.1
√

t

tmax
∗ cos(0.1t + 24.5) + 1.1 (14)

where g is the adjustment trade-off factor, and tmax is the maximum number of iterations.
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Figure 2. Change curve of acceleration factor.

At the same time, in order to accelerate the convergence of the algorithm and improve
the convergence accuracy, the linear inertia weight model is introduced. At the beginning of
the algorithm iteration, a large weight is given to make the population search the solution
space extensively in large steps and to search the global optimal position quickly. With an
increase in iteration number, the algorithm converges gradually at this time. At this time,
the inertia weight coefficient gradually becomes smaller to facilitate the fine search of the
optimal position in small steps and to improve the convergence accuracy of the algorithm.
The linear inertia weight mathematical model is shown in Equation (15), and w varies with
the number of iterations, as in Figure 3.

w = 0.5 ∗
(

wmax −
t ∗ (wmax − wmin)

tmax
∗ cos2(0.005 ∗ t + 10)

)
(15)

where wmax and wmin are the maximum weight coefficient and minimum weight coefficient,
respectively, t is the number of iterations, and tmax is the maximum number of iterations.

Machines 2022, 10, x FOR PEER REVIEW 6 of 22 
 

 

optimal solution locally, and, at this time, a smaller C value is given to achieve accurate 
exploration of the optimal position in small steps size so as to improve the convergence 
accuracy of the algorithm. At the same time, in order to prevent the algorithm from falling 
into the local optimum during the iteration process, the cosine function is introduced to 
correct the acceleration factor and to keep the acceleration factor fluctuating at all times. 
The adaptive acceleration factor mathematical model is shown in Equation (14), and the 
variation of C with the number of iterations is shown in Figure 2. 

( )
−

= + +
0.1

max
* * cos 0.1 24.5 1.1

teC g t
t  (14)

where g is the adjustment trade-off factor, and tmax is the maximum number of iterations. 

 
Figure 2. Change curve of acceleration factor. 

At the same time, in order to accelerate the convergence of the algorithm and im-
prove the convergence accuracy, the linear inertia weight model is introduced. At the be-
ginning of the algorithm iteration, a large weight is given to make the population search 
the solution space extensively in large steps and to search the global optimal position 
quickly. With an increase in iteration number, the algorithm converges gradually at this 
time. At this time, the inertia weight coefficient gradually becomes smaller to facilitate the 
fine search of the optimal position in small steps and to improve the convergence accuracy 
of the algorithm. The linear inertia weight mathematical model is shown in Equation (15), 
and w varies with the number of iterations, as in Figure 3. 

( ) −
=  − + 

 

max min 2
max

max

*0.5 cos (0.005 10)* * *
t w w

w w t
t

 (15)

where wmax and wmin are the maximum weight coefficient and minimum weight coefficient, 
respectively, t is the number of iterations, and tmax is the maximum number of iterations. 

 
Figure 3. Curve of inertia weight change. Figure 3. Curve of inertia weight change.



Machines 2023, 11, 250 7 of 22

3.2.2. Nonlinear Decay Convergence Factor

One of the important factors in evaluating the performance of heuristic algorithms is
the ability to balance the algorithm’s global search ability and local search ability. From
the analysis of the chimpanzee algorithm, it is known that, when |a| < 1, the chimpanzee
individual converges to the prey, and, when |a| > 1, this means that the chimpanzee has
deviated from the prey position and expanded the search range. Therefore, the change
in the convergence factor determines the global and local search ability of the algorithm.
According to the above description, this paper introduces a nonlinear decay variation model,
which cooperates with the adaptive acceleration factor in the particle swarm idea to jointly
balance the global search ability and local search ability of the algorithm. Meanwhile,
a control factor б is introduced to control the decay amplitude. The nonlinear decay
convergence factor mathematical model is described as Equation (16).

f = fg ∗

1−
(

e
t

tmax − 1
e− 1

)δ
 (16)

where t is the number of iterations, tmax is the maximum number of iterations, and fg is
the initial convergence factor. б∈[1, 10], and, the larger the б, the slower the decay rate, as
shown in Figure 4.
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3.3. Improved Sparrow Elite Variation and Logistic Chaos Mapping

In the ChoA algorithm, the individual update is affected by the last optimal individual
in each iteration, so the ChoA algorithm is easy to converge to the local optimum during
the iterative process. To address the above problems, an optimization strategy combin-
ing adaptive water wave factor improved sparrow elite mutation and Bernoulli chaotic
mapping is proposed.

3.3.1. Improved Sparrow Elite Variation and Logistic Chaos Mapping

The sparrow search algorithm is an efficient population intelligence optimization
algorithm, which divides the search population into three parts: explorers, followers, and
early warners, whose work is divided among themselves to find the optimal value [28].
Sparrow elite mutation is used to assign the capabilities of individuals with higher search
performance to the current optimal individual. At each ChoA iteration, the individuals
with the top 40% of the current fitness value are given a stronger optimization ability, and
an adaptive water wave factor is added to the mutant individual update formula [29] to
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further improve the optimization ability of mutant individuals. The sparrow elite mutation
mathematical description is shown in Equation (17).

X(t + 1)0.4 =

{
X(t)0.4 · v · exp

(
− t

α·tmax

)
R < ST

X(t)0.4 + v ·Q · L R ≥ ST
(17)

where X(t)0.4 is for the top 40% of the current fitness value of the individual, Q is a random
number obeying a normal distribution of [0, 1], L is a 1 × d matrix with all elements of 1,
ST is the warning value, taken as 0.6, and v is the water wave factor, which varies adaptively
with the number of iterations. The mathematical model of the adaptive water wave factor
is shown in Equation (18).

v = 1− sin
(

π · t
2 · tmax

+ 2 · π
)

(18)

As the iterations increase, the uncertainty in the iterative process and the dramatic
abrupt changes in the water wave factor enhance the ability of individuals to jump out of
the local optimum. The water wave factor changes are shown in Figure 5.
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3.3.2. Bernoulli Chaotic Mappings

Bernoulli chaotic mapping is a classical representative of chaotic mapping and is more
widely used [30]. Its mathematical expression is shown in Equation (19).

Zt+1 =

{
Zt/(1− λ) Zt ∈ (0, 1− λ]
(Zt − 1 + λ)/λ Zt ∈ (0, 1− λ]

(19)

where t is the number of chaotic iterations and λ is the conditioning factor, generally taken
as 0.4. The resulting new chaotic sequence roots are mapped into the search space of the
solution as follows.

Xtd = XL + (XU − XL) ∗ Ztd (20)

where Xtd is the position of the tth element in d dimensions, XU and XL are analyzed as
the upper and lower bounds of the search space, and Ztd is the chaotic value generated by
Equation (19).

3.4. IMSChoA Algorithm Flow

The specific implementation steps of the IMSChoA algorithm are as follows.

Step 1: Initialize the population using the improved sine chaotic mapping, including
the number of population individuals N, the maximum number of iterations tmax, the
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dimension d, the search boundary ub, and lb, the maximum and minimum weight factors,
and the adjustment trade-off factor g, and set the relevant parameters.
Step 2: Update the acceleration factor, inertia weight, convergence factor, and water wave factor.
Step 3: Calculate the position of each chimpanzee.
Step 4: Update the positions of repellers, blockers, pursuers, and attackers.
Step 5: Calculate the adaptation degree value and the average value of the adaptation
degree to find the global optimum and individual optimum.
Step 6: Compare the individual adaptation degree value f with the average value of
adaptation degree favg. If f < favg, perform Brenoylli perturbation to determine whether the
perturbed individual is better than the original individual, and update if better. Otherwise,
keep the original individual unchanged; if f > favg, perform sparrow elite variation, and
replace it if it is better than the original individual, otherwise keep it.
Step 7: Update the global optimal value of the population and the individual optimal value.
Step 8: Determine whether the condition is satisfied, and output the result if satisfied,
otherwise return to step 2 for execution.

The flow chart is shown in Figure 6.
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3.5. Time Complexity Analysis

Time complexity is an important index reflecting the performance of the algorithm [31].
Assuming that the chimpanzee population size is N, the search space dimension is n, the
initialization time is t1, the update time of individual chimpanzee positions is t2, and the
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time to solve for the value of the target fitness function is f (n), the time complexity of the
ChoA algorithm is:

T1(n) = O(t1 + N(nt2 + f (n))) = O(n + f (n)) (21)

In the IMSChoA algorithm, the time required to initialize the parameters is kept
consistent with the standard ChoA. The time used to initialize the population using the
modified sine is t3, which is employed in the loop phase, assuming that the time required to
introduce the particle swarm idea, the nonlinear convergence factor, the modified sparrow
elite variation, and the logistic chaos mapping are t4, t5, and t6, respectively. Then, the time
complexity of IMSChoA is:

T2(n) = O(t1 + t3 + N(nt2 + t4 + t5 + nt6 + f (n))) = O(n + f (n)) (22)

The time complexity of SPWChoA and ChoA is the same by Equations (21) and (22).
It is shown in Equation (23).

T1(n) = T2(n) = O(n + f (n)) (23)

In summary, the improvement strategy proposed in this paper for the ChoA defect
does not increase the time complexity.

4. Algorithm Performance Testing
4.1. Experimental Parameter Settings

In this paper, the PSO algorithm, GWO algorithm, IMSChoA algorithm, ChoA algo-
rithm, and MFO algorithm are selected for the optimization search comparison. The basic
parameters were uniformly set as follows: population size N = 30, the maximum number
of iterations tmax = 500, and the internal parameters of the algorithm are shown in Table 1.

Table 1. Parameter table of the algorithm.

Algorithm Parameters

PSO C1 = 1.445; C2 = 1.445; wmax = 2.0; wmin = 0.5
GWO a decreases linearly from 1.5 to 0; r1,r2∈[0, 1]

IMSChoA wmax = 2.5; wmin = 0.05; fg = 2.5; λ = 0.4; g = 1000
ChoA m = chaos (3,1,1)
MFO t∈[k, 1]; k varies linearly between −1 and −2; b = 1

4.2. Benchmark Test Functions

To verify the effectiveness of the improved chimpanzee algorithm (IMSChoA),
21 benchmark test functions used in the literature [32] were experimentally selected for
the optimization test, as shown in Table 2. F1~F7 are continuous unimodal test functions,
F8~F12 are continuous multimodal test functions, and F13~F21 are fixed multimodal test
functions. Figures 7–9 show some of the several continuous unimodal test functions, con-
tinuous multimodal test functions, and fixed multimodal test functions function value
distributions, respectively.

Table 2. Benchmark functions.

No. Function Name Definition
Domain Dimensionality Optimal Value Absolute Accuracy

Error

F1 Sphere [−100, 100] 30 0 1.00 × 10−3

F2 Schwefel’ problem 2.22 [−10, 10] 30 0 1.00 × 10−3

F3 Schwefel’ problem 1.2 [−100, 100] 30 0 1.00 × 10−3
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Table 2. Cont.

No. Function Name Definition
Domain Dimensionality Optimal Value Absolute Accuracy

Error

F4 Schwefel’ problem 2.21 [−100, 100] 30 0 1.00 × 10−3

F5 Generalized Rosenbrock’s
Function [−30, 30] 30 0 1.00 × 10−2

F6 Step Function [−100, 100] 30 0 1.00 × 10−2

F7 Quartic Function [−1.28, 1.28] 30 0 1.00 × 10−2

F8 Generalized Schwefel’s
problem [−500, 500] 30 −12,569.5 1.00 × 102

F9 Generalized Rastrigin’s
Function [−5.12, 5.12] 30 0 1.00 × 10−2

F10 Ackley’s Function [−32, 32] 30 0 1.00 × 10−2

F11 Ceneralized Criewank
Function [−600, 600] 30 0 1.00 × 10−2

F12 Ceneralized Penalized
Function [−50, 50] 30 0 1.00 × 10−2

F13 Branin Function [−5, 5] 2 0.398 1.00 × 10−2

F14 Shekell’s Foxholes Function [−65, 65] 2 1 1.00 × 10−2

F15 Kowalik’s Function [−5, 5] 4 0.0003 1.00 × 10−2

F16 Six-Hump Camel-Back
Function [−5, 5] 2 −1.03 1.00×10−2

F17 Goldstein-Price Function [−2, 2] 2 3 1.00 × 10−2

F18 Hatman’s Function1 [0, 1] 3 −3.86 1.00 × 10−2

F19 Hatman’s Function2 [0, 1] 6 −3.32 1.00 × 10−2

F20 Shekel’s Family 1 [0, 10] 4 −10 1.00 × 10−2

F21 Shekel’s Family 2 [0, 10] 4 −10 1.00 × 10−2
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4.3. Comparison of the IMSChoA Algorithm with Other Algorithms

Twenty-one basic test functions are selected to perform the optimization search test
for the algorithm mentioned in the summary of 4.1, and the iteration curves are shown
in Figure 10. Among them, F1~F7 are continuous unimodal test functions with only one
global optimum and no local optimum, which are used to test the global search ability and
convergence speed of the algorithm. From Figure 10a–g, it can be seen that the IMSChoA
optimization algorithm has a fast convergence speed and strong global search capability,
which is faster and stronger than other group intelligence optimization algorithms in terms of
iteration speed and preliminary global search capability. F8~F13 are continuous multimodal
test functions with multiple local optima, which are used to test the ability of the algorithm
to jump out of the local optimum. From Figure 10h–l, it can be seen that the IMSChoA
optimization algorithm falls into the local optimum when calculating F8, F9, F11, and F12
functions, but it quickly jumps out of the current state and continues to search for the optimal
iteration, which proves that the IMSChoA optimization algorithm has a strong ability to jump
out of the local optimum, which is further improved compared with the ChoA optimization
algorithm. F13~F21 are fixed multimodal test functions, which are used to test the equilibrium
development capability and stability of the system. As can be seen from Figure 10m–u, the
IMSChoA optimization algorithm can well balance the iterative ability of the algorithm and
quickly complete the optimization search test, and the algorithm has significantly improved
in terms of convergence accuracy and stability. However, it can be seen in Figure 10t,u that
there are still some functions that still fall into the local optimum in the iterative process,
and although the final completion jumps out of the local optimum in relation to finding the
optimal solution, the iteration time is longer. For the overall function iteration graph, we
can conclude that the algorithm is better for the high-dimensional, large range of optimal
function search, while for the low-dimensional one, a small range of optimal search still has a
certain disadvantage, although compared with the other optimization algorithms, they still
have some inadequacies regarding the iteration speed and jumping out of the local optimum
problem. There is still room for improvement.
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In order to maintain the fairness of the test environment, twenty-one basic test func-
tions are selected, and each algorithm is run 50 times independently, and the test results 
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(d) F4 function; (e) F5 function; (f) F6 function; (g) F7 function; (h) F8 function; (i) F9 function;
(j) F10 function; (k) F11 function; (l) F12 function; (m) F13 function; (n) F14 function; (o) F15 function;
(p) F16 function; (q) F17 function; (r) F18 function; (s) F19 function; (t) F20 function; (u) F21 function.

In order to maintain the fairness of the test environment, twenty-one basic test functions
are selected, and each algorithm is run 50 times independently, and the test results are shown
in Table 3. The optimal value, mean value, and standard deviation reflect the convergence
accuracy, convergence speed, and optimality-seeking stability of the algorithms, respectively.
Compared with other algorithms, the IMSChoA algorithm can find a fixed optimal value in
each function, and the computational performance of all functions is better than that of the
PSO algorithm, except for F20 and F21, which are slightly worse than the PSO algorithm in
terms of finding speed. Compared with the MFO algorithm, IMSChoA outperforms the MFO
algorithm in terms of computational performance for all functions, except for the F18 function,
which is slightly less stable than the MFO algorithm. Compared with the ChoA algorithm
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and the GWO algorithm, IMSChoA outperforms both of them in all aspects. This proves
that the IMSChoA optimization algorithm has certain advantages in convergence accuracy,
convergence speed, and stability of the optimization search.

Table 3. Experimental results of function test (30 dimensions).

Function Name Algorithm Optimum Value Average Value Standard Deviation

F1

PSO 1.7739 × 100 4.2242 × 103 1.3399 × 104

GWO 3.8341 × 10−6 3.8284 × 104 4.0132 × 104

IMSChoA 2.3526 × 10−30 9.8425 × 102 7.5512 × 103

ChoA 6.2740 × 10−11 4.1370 × 104 3.9220 × 104

MFO 7.8368 × 101 1.0170 × 104 1.8759 × 104

F2

PSO 5.8589 × 100 9.9897 × 108 2.2020 × 1010

GWO 0.0008 × 100 5.5000 × 1016 7.3352 × 1016

IMSChoA 3.3714 × 10−18 8.1379 × 103 1.8164 × 108

ChoA 9.2287 × 10−6 1.4540 × 1013 43.4356 × 1013

MFO 5.0048 × 101 2.4481 × 1016 3.4463 × 1017

F3

PSO 0.6379 × 100 5.2282 × 103 1.3308 × 104

GWO 5.7064 × 10−6 3.2449 × 104 3.1888 × 104

IMSChoA 1.2559 × 10−30 7.7739 × 102 6.0601 × 103

ChoA 9.8877 × 10−8 4.5275 × 104 4.3573 × 104

MFO 2.0501 × 100 1.4254 × 104 2.5940 × 104

F4

PSO 2.8173 × 100 1.2901 × 101 1.6815 × 101

GWO 4.9114 × 10−4 3.6630 × 101 3.0889 × 101

IMSChoA 2.4606 × 10−4 1.2484 × 101 2.8149 × 101

ChoA 1.8419 × 10−2 6.0327 × 101 4.3718 × 101

MFO 9.2480 × 101 9.2986 × 101 1.3286 × 102

F5

PSO 6.7185 × 102 2.4067 × 106 1.6751 × 107

GWO 2.9001 × 101 1.4677 × 108 2.1058 × 108

IMSChoA 2.6094 × 101 3.8713 × 106 3.9511 × 107

ChoA 2.8961 × 101 3.2706 × 107 3.2469 × 106

MFO 9.0475 × 104 4.8562 × 107 1.0463 × 108

F6

PSO 1.2471 × 100 4.1923 × 103 1.3160 × 104

GWO 7.5015 × 100 4.0337 × 104 4.3493 × 104

IMSChoA 0.4743 × 100 9.2983 × 102 8.0821 × 103

ChoA 4.0870 × 100 4.5433 × 104 4.1956 × 104

MFO 7.7287 × 100 2.6025 × 104 3.1180 × 104

F7

PSO 3.2543 × 100 8.8942 × 106 5.3271 × 107

GWO 1.6692 × 100 2.8689 × 108 4.6735 × 108

IMSChoA 0.7521 × 10−1 5.5112 × 106 5.1999 × 107

ChoA 0.3327 × 100 8.0941 × 108 2.5548 × 108

MFO 7.918 × 100 7.7442 × 107 1.7117 × 108

F8

PSO 1.2435 × 101 2.1457 × 102 3.2457 × 103

GWO 4.5876 × 10−3 2.1475 × 100 2.4785 × 101

IMSChoA 8.7812 × 10−5 7.7865 × 10−1 1.5782 × 101

ChoA 4.7852 × 10−4 1.4231 × 102 2.4785 × 103

MFO 7.2145 × 100 2.1452 × 101 7.8452 × 103

F9

PSO 4.2127 × 100 1.0856 × 107 5.8853 × 107

GWO 1.6693 × 100 1.9264 × 108 2.9353 × 108

IMSChoA 0.4157 × 10−1 7.6690 × 106 7.0082 × 107

ChoA 0.4032 × 100 3.1662 × 108 2.8858 × 108

MFO 3.1148 × 101 1.8874 × 108 3.0155 × 108
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Table 3. Cont.

Function Name Algorithm Optimum Value Average Value Standard Deviation

F10

PSO 2.3462 × 102 1.1810 × 107 6.7967 × 107

GWO 1.6697 × 100 1.7130 × 108 2.5750 × 108

IMSChoA 0.1330 × 10−1 6.1348 × 106 6.4309 × 107

ChoA 0.4086 × 100 6.1276 × 108 6.0678 × 108

MFO 5.2633 × 100 5.8286 × 107 1.4566 × 108

F11

PSO 3.9789 × 10−1 3.9946 × 10−1 9.5817 × 10−3

GWO 5.1327 × 100 5.2427 × 100 2.1338 × 10−14

IMSChoA 3.9789 × 10−1 4.1277 × 10−2 1.4810 × 10−1

ChoA 3.9814 × 10−1 4.3905 × 10−1 1.8777 × 10−1

MFO 7.8961 × 10−1 4.0922 × 10−1 1.0551 × 10−1

F12

PSO 9.5104 × 10−1 4.9024 × 103 1.2576 × 104

GWO 7.5020 × 100 4.0944 × 104 4.4157 × 104

IMSChoA 4.9153 × 10−1 9.6161 × 102 7.6567 × 103

ChoA 3.7205 × 100 5.0133 × 104 4.4403 × 104

MFO 1.0101 × 104 2.3015 × 104 2.2183 × 104

F13

PSO 3.9789 × 10−1 4.1037 × 10−1 1.1297 × 10−1

GWO 4.0002 × 10−1 4.6941 × 10−1 2.4898 × 10−1

IMSChoA 3.6787 × 10−1 3.1971 × 10−1 1.3684 × 10−1

ChoA 3.9810 × 10−1 4.2046 × 10−1 5.9657 × 10−1

MFO 3.9787 × 10−1 5.0134 × 10−1 9.5415 × 10−1

F14

PSO 1.9920 × 100 2.2788 × 100 1.2463 × 102

GWO 9.9954 × 10−1 2.3876 × 101 9.0365 × 101

IMSChoA 9.9800 × 10−1 2.0056 × 100 1.4190 × 101

ChoA 9.9961 × 10−1 2.1719 × 101 9.3934 × 101

MFO 3.9683 × 100 1.1003 × 101 5.5468 × 101

F15

PSO 9.1133 × 10−4 6.6071 × 10−3 1.0972 × 10−2

GWO 1.8780 × 10−3 4.1942 × 10−2 7.6213 × 10−1

IMSChoA 3.9751 × 10−4 2.2051 × 10−3 1.0951 × 10−2

ChoA 1.3171 × 10−3 1.6130 × 10−3 7.6465 × 10−4

MFO 1.4888 × 10−3 1.6207 × 10−3 9.3492 × 10−4

F16

PSO 3.3912 × 100 1.9896 × 107 1.2035 × 108

GWO 3.0040 × 100 6.8273 × 108 1.0925 × 109

IMSChoA 4.0537 × 10−1 1.5265 × 107 1.6062 × 107

ChoA 2.8445 × 100 1.2423 × 109 1.2502 × 109

MFO 3.4422 × 101 1.3698 × 108 3.1584 × 108

F17

PSO 3.0287 × 100 3.6754 × 100 1.4510 × 100

GWO 3.0159 × 100 3.5667 × 100 3.8514 × 10−1

IMSChoA 3.0000 × 100 3.3619 × 100 9.2576 × 10−2

ChoA 3.1006 × 100 4.0996 × 100 4.3993 × 100

MFO 3.0505 × 100 6.6287 × 100 3.8731 × 101

F18

PSO −3.8538 × 100 −3.0897 × 10−0 4.8218 × 10−1

GWO −3.7439 × 100 −3.7220 × 100 1.4091 × 10−1

IMSChoA −3.8628 × 100 −3.8573 × 100 3.4272 × 10−2

ChoA −3.8549 × 100 −3.8158 × 100 2.0926 × 10−1

MFO −3.7436 × 100 −3.5870 × 100 3.2694 × 10−2

F19

PSO −2.8067 × 100 −1.7476 × 100 8.7338 × 10−1

GWO −2.0159 × 10−1 −2.0159 × 10−1 1.1669 × 10−1

IMSChoA −3.3220 × 100 −3.2524 × 100 2.6905 × 10−2

ChoA −3.0124 × 100 −2.8667 × 100 4.4520 × 10−1

MFO −3.3220 × 100 −3.0003 × 100 3.7082 × 10−1
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Table 3. Cont.

Function Name Algorithm Optimum Value Average Value Standard Deviation

F20

PSO −1.0138 × 101 −9.7699 × 100 1.2788 × 10−1

GWO −2.7312 × 10−1 −2.7312 × 10−1 1.6670 × 100

IMSChoA −1.0152 × 101 −7.2606 × 100 2.7155 × 10−1

ChoA −4.9481 × 10−1 −4.2491 × 100 1.1362 × 100

MFO −5.0552 × 100 −4.8248 × 100 8.9123 × 10−1

F21

PSO −1.0518 × 101 −1.0113 × 101 1.3731 × 100

GWO −1.6697 × 100 −1.5444 × 100 2.8352 × 10−1

IMSChoA −1.0536 × 101 −7.3240 × 100 2.6989 × 10−1

ChoA −5.0690 × 100 −4.3478 × 10−1 1.1266 × 100

MFO −5.1285 × 100 −4.9702 × 100 7.2547 × 100

4.4. Wilcoxon Rank Sum Test

In order to reflect the effectiveness of the improved algorithm, the literature suggests
that a statistical test should be performed for the evaluation of the performance of the
improved algorithm, and the effectiveness of the improved algorithm should be proved
by the results of the statistical test. In this paper, the Wilcoxon rank sum test is used at the
5% significance level to determine whether the results of each iteration of IMSChoA are
significantly different from PSO, GWO, ChoA, and MFO. The Wilcoxon rank sum test is
a nonparametric statistical test that can detect more complex data distributions, and the
general data analysis is only for the current data mean and standard deviation and does
not compare with the data from multiple runs of the algorithm, so this data comparison
analysis is not scientific. To demonstrate the superiority of the IMSChoA optimization
algorithm, the results of the 12 runs of the test function were selected, and the results of
the PSO, GWO, ChoA, and MFO algorithm runs were subjected to then Wilcoxon rank
sum test, and the p-value was calculated, and, when p < 5%, they can be considered as a
strong verification of the rejection of the null hypothesis [33]. The results of the Wilcoxon
rank sum test are shown in Table 4. The symbols “+”, “−”, and “=“ indicate that IMSChoA
outperforms, underperforms, and cannot make significant judgments of other algorithms,
respectively. From the results in Table 4, the p-values of the Wilcoxon rank sum test for
IMSChoA are basically less than 5%, indicating that, statistically speaking, IMSChoA has a
significant advantage in the performance of the basic function search, which further reflects
the robustness of IMSChoA.

Table 4. Wilcoxon rank-sum test results.

No. PSO GWO ChoA MFO

F1 3.04 × 10−20 3.04 × 10−20 3.04 × 10−20 3.04 × 10−20

F2 3.04 × 10−20 3.04 × 10−20 3.04 × 10−20 3.04 × 10−20

F3 3.04 × 10−20 3.04 × 10−20 3.04 × 10−20 3.04 × 10−20

F4 3.04 × 10−20 3.04 × 10−20 3.04 × 10−20 3.04 × 10−20

F5 1.29 × 10−17 2.69 × 10−17 2.33 × 10−10 1.06 × 10−10

F6 7.24 × 10−18 7.11 × 10−18 1.39 × 10−17 1.43 × 10−10

F7 4.28 × 10−17 7.09 × 10−18 1.38 × 10−17 6.77 × 10−14

F8 7.09 × 10−18 7.09 × 10−18 7.24 × 10−18 2.24 × 10−10

F9 3.45 × 10−20 3.33 × 10−20 1.23 × 10−19 NaN
F10 3.45 × 10−20 3.33 × 10−20 2.98 × 10−20 2.42 × 10−16

F11 3.49 × 10−20 3.31 × 10−20 2.69 × 10−04 3.65 × 10−14

F12 7.07 × 10−20 9.55 × 10−11 8.01 × 10−10 1.85 × 10−17

+/=/− 12/0/0 12/0/0 12/0/0 11/0/1
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5. Application Analysis of IMSChoA Algorithm Engineering Calculations
5.1. Spring Optimization Design Case Study

The optimization goal of the extension and compression spring design problem is to
reduce the weight of the spring. The spring mechanism design is shown in Figure 11. The
constraints of this design are shear stress, vibration frequency, and minimum vibration
deflection. The variables y1, y2, and y3 represent the coil diameter d, spring coil diameter D,
and the number of coils N, respectively, and f (x) is the minimum spring weight. The spring
stretching mathematical model is described as follows.
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Objective function:
min f (x) = y2

1y2(2 + y3) (24)

Constraints: 

s1(y) = 1− y3
2y3

71785y4
1
≤ 0

s2(y) =
4y2

2−y1y2
12566(y2y3

1−y4
1)
+ 1

5108y2
1
− 1 ≤ 0

s3(y) = 1− 140.45y1
y3

2y3
≤ 0

s4(y) =
y1+y2

1.5 − 1 ≤ 0

(25)

Among them: 0.05 ≤ y1 ≤ 2, 0.05 ≤ y2 ≤ 2, 0.05 ≤ y3 ≤ 2, 0.05 ≤ y4 ≤ 2.
The PSO algorithm, GWO algorithm, IMSChoA algorithm, ChoA algorithm, and MFO

algorithm proposed in this paper were compared experimentally, where the data of the
compared algorithms were obtained from the literature [24,34]. The experiments were
selected with a population size of 50 and a maximum number of iterations of 500, and each
algorithm was run 100 times independently to take the average value. The optimization
results are shown in Table 5.

Table 5. The optimal solutions of each algorithm in the stretching/compression spring design problem.

Algorithm Kp Ki Kd Adaptability Value

PSO 0.5232 0.0603 0.5821 64.7664
GWO 0.5114 0.3415 0.0734 55.3211

IMSChoA 0.2615 0.0215 0.4115 43.1124
ChoA 0.4562 0.4754 0.4214 53.1451
MFO 0.6533 0.3147 0.4315 57.5521

As shown in Table 5, the IMSChoA algorithm obtains the optimal solution of the func-
tion [y1, y2, y3] = [0.0615, 0.7215, 5.5122] and the optimal solution f (x) = 0.0124. IMSChoA
has good optimization results for the extension/compression spring design problem, and
the optimization results for the spring coil diameter, spring coil diameter, and spring
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coil number are better than other algorithms. This shows that IMSChoA obtains the best
solution for reducing the weight of the spring.

5.2. Optimization Experiments of the Fully Automatic Piston Manometer Control System

The ultimate goal of the optimization of the manometer control system is to check
that the piston quickly and stably reaches the equilibrium position and achieves pressure
measurement. The PID controller optimized by a group intelligence algorithm is generally
used in engineering for regulation to achieve fast, stable, and accurate control. the PID
control expression is shown in Equation (26), where kp is a proportional coefficient; ki is
an integral coefficient; and kd is a differential coefficient. The structure of the manometer
control system is shown in Figure 12.

u(k) = kpe(k) + ki

k

∑
n=0

e(k) + kd[e(k)− e(k− 1)] (26)
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The experiment uses a 500 Mpa fully automatic piston manometer, as shown in
Figure 13. The device uses STM32F429IGT6 as the control core, equipped with a series
of control circuits. By controlling the pneumatic solenoid valve to control the weight
configuration, the servo motor carries out pressure to make the piston float to the balance
position to complete the pressure check. The range of piston movement is set from −2 mm
to 2 mm, and 0 mm is the equilibrium position.
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The experiment uses a 500 Mpa fully automatic piston manometer, as shown in
Figure 13. The device uses STM32F429IGT6 as the control core, equipped with a series
of control circuits. By controlling the pneumatic solenoid valve to control the weight
configuration, the servo motor carries out pressure to make the piston float to the balance
position to complete the pressure check. The range of piston movement is set from −2 mm
to 2 mm, and 0 mm is the equilibrium position.

The PSO algorithm, GWO algorithm, IMSChoA algorithm, ChoA algorithm, and MFO
algorithm were used to adjust the parameters of the PID controller and to compare the
results of the manometer operation, respectively. The initial conditions of each algorithm
are the same. Each algorithm is run 50 times independently, and the average value is taken.
The results of PID parameter adjustment were obtained in Table 6, and the displacement
curve and velocity curve of the check piston movement are shown in Figures 14 and 15.
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Table 6. Tuning parameters of PID controller optimized by different algorithms.

Algorithm Kp Ki Kd Adaptability Value

PSO 0.5232 0.0603 0.5821 64.7664
GWO 0.5114 0.3415 0.0734 55.3211

IMSChoA 0.2615 0.0215 0.4115 43.1124
ChoA 0.4562 0.4754 0.4214 53.1451
MFO 0.6533 0.3147 0.4315 57.5521
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As shown in Figures 14 and 15, the PID controller optimized by the IMSChoA algo-
rithm has the best control effect on the manometer system, and the check piston can reach
the balance position quickly and stably to complete the pressure detection. This further
proves the feasibility of IMSChoA in practical engineering applications for the optimal
design of mechanical structures.

6. Conclusions

In this paper, we propose an improved chimpanzee search algorithm with multi-
strategy fusion, namely, IMSChoA, to address the problems of the ChoA optimization
algorithm, such as low convergence accuracy and being prone to fall into local optimality.
Firstly, we use improved sine chaotic mapping to initialize the population and solve the
phenomenon of population boundary aggregation distribution. Secondly, the particle
swarm algorithm idea was added, cooperating with the improved nonlinear convergence
factor to balance the searchability of the algorithm, to accelerate the convergence of the
algorithm, and to improve the convergence accuracy. Finally, the adaptive water wave factor
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improved sparrow elite mutation, and the Bernoulli chaos mapping strategy was added
to improve the ability of individuals to jump out of the local optimum. After 21 standard
test functions for the optimization search test and analysis with the help of Wilcoxon
rank sum statistical test results, the robustness and applicability of the algorithm were
verified. Finally, the IMSChoA optimization algorithm was applied to the spring design
case study and the optimization analysis of the fully automatic piston manometer control
system, and the experimental results showed that the IMSChoA optimization algorithm
also has good applicability to mechanical structure optimization design problems, but it
has to be said that the comprehensive performance of the algorithm for low-dimensional,
small-range high-precision search is still inadequate. Therefore, the next step will be to
consider combining the IMSChoA algorithm with deep learning to eliminate the limitations
of the algorithm in optimizing high-precision, as well as complex, problems, as well as to
use it to solve more practical engineering problems.
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