
Citation: Alamri, S.; Alamri, H.;

Alshehri, W.; Alshehri, S.; Alaklabi,

A.; Alhmiedat, T. An Autonomous

Maze-Solving Robotic System Based

on an Enhanced Wall-Follower

Approach. Machines 2023, 11, 249.

https://doi.org/10.3390/

machines11020249

Academic Editors: Ning Sun,

He Chen, Shengquan Li, Yougang

Sun, Yinan Wu and Dan Zhang

Received: 5 December 2022

Revised: 24 January 2023

Accepted: 30 January 2023

Published: 8 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

An Autonomous Maze-Solving Robotic System Based on an
Enhanced Wall-Follower Approach
Shatha Alamri 1, Hadeel Alamri 2, Wejdan Alshehri 1,†, Shuruq Alshehri 1, Ahad Alaklabi 1

and Tareq Alhmiedat 1,3,*

1 Faculty of Computers & Information Technology, University of Tabuk, Tabuk 71491, Saudi Arabia
2 College of Computer Sciences and Information, King Saud University, Riyadh 11421, Saudi Arabia
3 Artificial Intelligence and Sensing Technologies (AIST) Research Center, University of Tabuk,

Tabuk 71491, Saudi Arabia
* Correspondence: t.alhmiedat@ut.edu.sa
† Current address: General Organization for Social Insurance, Riyadh 12622, Saudi Arabia.

Abstract: Autonomous robots are designed to discover and interpret their surroundings and orient
themselves around obstacles to reach the destination point from an initial point. Robot autonomous
navigation is a requirement for maze-solving systems, where the solver robot is required to navigate
the maze area to get its desire destination location using the fastest route possible. In this paper, a
new, modified wall-follower system for a maze-solving robot was proposed that overcame the infinite
loop-back issue in the traditional wall-follower approaches. We also investigated and analyzed the
performance of three different maze-solving algorithms and compared them with the proposed, mod-
ified wall-follower robotic system by conducting several real experiments to validate the efficiency of
the developed wall-follower robotic system.

Keywords: maze solving; autonomous robot; navigation robot; maze-solving algorithm; wall-
follower method

1. Introduction

Dense city streets, disaster regions, and war environments have common navigational
difficulties. These difficulties range from navigation through obstructions on a possible
route to navigation through dead-ends. Autonomous robot navigation involves the robot’s
ability to navigate its environment independently and its ability to determine its location
and direction and then plan a path towards the goal location. The robot must avoid
dangerous areas, including collisions and unsafe places [1,2].

The maze-solving robot is one of the most popular intelligent robots; it is an indepen-
dent robot that can solve the maze area from a known initial point to a destination point.
The maze-solving robot generally requires navigating the maze area to explore the existing
paths to the destination point. The maze-solving robot can process multiple runs in the
maze area, navigate the maze area to construct a map, and then store the obtained map in
the robot’s memory [3,4].

Usually, the navigation process consists of three main fundamental functions: self-
localization, path-planning, and map building. Self-localization is the robot’s ability to
explore its current position using one of the available localization techniques (RFID, GPS,
inertial navigation, etc.). Path-planning includes exploring the possible paths for traveling
from one point to the other. Lastly, map building includes constructing a map of the paths
for the navigation area [5,6].

Maze-solver robots may be applied in various applications, ranging from accomplish-
ing simple tasks, such as transferring goods through factories, office buildings, classrooms,
and other workspaces, to dangerous tasks, such as reaching areas to evacuate people from
buildings, bomb-sniffing, etc. [7–9].

Machines 2023, 11, 249. https://doi.org/10.3390/machines11020249 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines11020249
https://doi.org/10.3390/machines11020249
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0001-9377-4897
https://doi.org/10.3390/machines11020249
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines11020249?type=check_update&version=1

Machines 2023, 11, 249 2 of 17

Several maze-solving robotic systems have been developed recently, with various
capabilities surveyed in [10–12]. However, in this paper, we focus on the wall-follower
maze solving robotic systems for three main reasons: First, wall-follower systems can be
implemented with any robotic system (no need for complicated hardware architecture);
second, wall-follower systems are easy to deploy and are based on simple sensing technol-
ogy; and third, wall-follower systems need low-memory requirements and low-processing
overhead. However, most wall-follower systems fail in the maze areas that consist of
more than one path to the destination point, as the loop-back issue arises, and the solver
robot fails to reach the destination point. Therefore, this paper discusses the design and
development of an efficient maze-solving robotic system based on a modified wall-follower
method. The main contributions of this paper lie in the following aspects:

1. Reviewing the recently developed wall-follower maze-solving robotic systems.
2. Designing and implementing a maze-solving robotic system by employing a modified

wall-follower method.
3. Validating the implemented wall follower system through different maze environ-

ments by conducting real experiments using different maze structures.
4. Comparing the obtained results from the modified wall-follower method with three

different maze-solving algorithms.

The subsequent sections are organized as follows: Section 2 discusses the recent devel-
opment of wall-follower-based, maze-solving robotic systems. In Section 3, the proposed,
modified wall-follower system is introduced. Section 4 presents the experimental results
obtained from several real experiments conducted in maze environments. In Section 5, we
discuss and compare the obtained results and the recently developed maze-solving systems.
Finally, Section 6 concludes the work presented in this paper and proposes suggestions for
future research.

2. Related Works

Various maze-solving robotic systems have been developed recently, driven by the
requirement to build an efficient solver robot that can reach the target destination with the
minimum time and the shortest path possible. Authors of [11] discussed and analyzed
the existing maze-solving algorithms employed in the maze-solving robotic systems and
categorized them into two main categories, based on the deployment area: known and
unknown environment-based systems. In addition, authors investigated the recent devel-
opment of autonomous maze-solving robotic systems. They categorized them into two
main categories: camera-based and sensor-based solutions, where the latter was further
categorized into two subcategories: line-follower and wall-follower systems. Both systems
employ the same navigation strategy. However, they differ in the employed navigation
technology, where the first one follows the lines placed on the ground, and the second one
follows the heading walls.

The wall-follower is the most common maze-solving approach that has been employed
in robotics, where the robot solver follows walls in the maze area and observes the right
wall or the left wall throughout the maze area until it finds its way out. The wall-follower
system works according to one of two rules: the right-hand rule or the left-hand rule.
According to the rule decision, the turning priority is either right or left.

Several wall-follower robotic systems have been designed and implemented recently.
For instance, the authors of [9] developed an autonomous maze-solving robot with in-
dependent mapping and localization functions. The developed robot consisted of three
infrared sensors, where two of them were used for sidewall detection, and the third one was
employed to detect the obstacles ahead of the robot. The developed robot system was tested
and offered efficient accuracy to solve the maze area successfully without interruption.

Authors [13] presented a hybrid maze-solving robot system based on a wall-follower
method combined with left-hand and right-hand rules and implemented it in several
configurations. The authors revealed that the hybrid algorithm had improved the maze-
solving capabilities using robot systems. On the other hand, a wall-follower robot system

Machines 2023, 11, 249 3 of 17

was proposed in [14], which employed the left-hand rule using three infrared sensors to
read the environmental patterns. An artificial neural network method was adopted to
process the data received from onboard sensors and make suitable decisions accordingly.
The obtained results showed that the solver robot was able to complete the labyrinth path,
consisting of eight intersection points and a dead-end point with a distance of 595 cm,
and complete another maze pattern containing four intersection points with a distance of
360 cm.

The work presented in [15] included a maze-solving robot that could solve the
labyrinth by adopting the wall-follower algorithm. The developed robot consisted of
an array of proximity sensors to navigate the robot safely by avoiding obstacles in the
maze area.

As discussed above, the developed wall-follower, maze-solving robotic systems as-
sumed the existence of a single path to the destination point, with no other assumptions to
deal with multiple paths to reach the destination point. In addition, wall-follower systems
failed in the maze area with more than one path to the destination point. Therefore, devel-
oping an efficient maze-solving robotic system is important to work with multiple paths
and overcome the infinite loop issue.

3. Modified Wall-Follower Solver Robot System

The existing wall-follower systems [9,13,14] suffer from the loop-back issue, where
the solver robot might go in an infinite loop and hence never finds the destination point. In
addition, the existing wall-follower-, Pledge-, random mouse-, and Tremaux-based maze
solving systems cannot explore all possible routes between the source and the destination
points. Hence, these methods cannot find the shortest possible path(s).

This section discusses an efficient, modified, wall-follower system (MWFS) to solve
the above issue. Through the proposed approach, the solver robot never goes in an infinite
loop, hence finding the location of the destination point. In addition, MWFS can find all the
possible paths between any two points in the maze area, and hence, the shortest paths can
be easily computed. Algorithm 1 presents the pseudo-code for the MWFS concept, whereas
Figure 1 presents the general stages for the MWFS, including sensing, localization, path
planning, and maze solving, which are discussed below.

Algorithm 1: The modified wall-follower method

1: let SR be the solver mobile
2: let Sd = 0 be the default direction value at the source point
3: let (xi, yi) be the 2D coordinates for a point i
4: let (x f , y f) be the 2D coordinates for the destination point f
5: let nodem be the node m in the maze area
5: let list[nodes] be the list of nodes in the maze area
5: let list[visited_nodes] be the list of coordinates that SR traveled through
6: let (xSR, ySR) be the 2D coordinates for the solver robot SR

7: while ((xSR, ySR) !=/∈
n
∑

i=0
position(nodei)

8: { SR moves in the maze area until it finds an intersection point (xi, yi)
9: if (xi, yi) ∈ list[x, y] then
10: rotate_180(SR)
11: else add (xi, yi) to list[x, y] }
12: end

Machines 2023, 11, 249 4 of 17Machines 2023, 11, x FOR PEER REVIEW 4 of 18

Figure 1. General stages of the modified wall-follower maze-solving system.

3.1. Sensing
This involves collecting several data from onboard sensors, including the data from

the gyro, range-finder, and color, to allow the solver robot to obtain information about the
surrounding environment, hence performing the navigation task. For instance, the gyro
sensor offers two functions to the solver robot: identify the robot direction and balance
the solver robot to travel in straight lines. Equation (1) calculates the variance in direction
for the solver robot. 𝑣 = 𝑠 − 𝑎 , (1)

where 𝑣 is the variance (degree) in direction between the obtained rotation value from
sensor 𝑠 at time 𝑡 , and 𝑎 is the default rotation value at the time 𝑡 . The auto-balance
algorithm is presented in Algorithm 2.

Algorithm 2: Auto Balance Function
1: let 𝑆𝑑 be the rotation value obtained from the rotation sensor, where (180 >𝑆𝑑 > −180)
2: let 𝑆𝑅 be the solver robot
3: let 𝑆𝑑 = 0 be the default rotation value at the start point
4: while (𝑆𝑑 != 0)
5: { if (𝑆𝑑 < 0) then 𝒔𝒍𝒊𝒈𝒉𝒕_𝑹𝒊𝒈𝒉𝒕(𝑆𝑅, 𝑆)
6: else 𝒔𝒍𝒊𝒈𝒉𝒕_𝑳𝒆𝒇𝒕(𝑆𝑅, 𝑆) }
7: end

The auto-balance algorithm (Algorithm 2) was adopted to balance the robot when
traveling between two points. On the other hand, the range-finder sensor could measure
the distance between the solver robot and the heading walls to discover obstacle-free
paths. The color sensor was employed to recognize the labels’ color placed in the maze
area (for instance, the green label was an intersection point, whereas the black label was a
destination point) and then perform a suitable action.

3.2. Localization
In robot navigation, robot localization is an important task for two reasons: exploring

the shortest possible paths between any two nodes and calculating the solver robot’s
location. The solver robot must localize itself to navigate the terrain efficiently, estimate

Figure 1. General stages of the modified wall-follower maze-solving system.

3.1. Sensing

This involves collecting several data from onboard sensors, including the data from
the gyro, range-finder, and color, to allow the solver robot to obtain information about the
surrounding environment, hence performing the navigation task. For instance, the gyro
sensor offers two functions to the solver robot: identify the robot direction and balance the
solver robot to travel in straight lines. Equation (1) calculates the variance in direction for
the solver robot.

vr = st1 − at0 , (1)

where vr is the variance (degree) in direction between the obtained rotation value from
sensor s at time t1, and at0 is the default rotation value at the time t0. The auto-balance
algorithm is presented in Algorithm 2.

Algorithm 2: Auto Balance Function

1: let Sd be the rotation value obtained from the rotation sensor, where (180 > Sd > −180)
2: let SR be the solver robot
3: let Sd = 0 be the default rotation value at the start point
4: while (Sd != 0)
5: { if (Sd < 0) then slight_Right(SR, Sd)
6: else slight_Left(SR, Sd) }
7: end

The auto-balance algorithm (Algorithm 2) was adopted to balance the robot when
traveling between two points. On the other hand, the range-finder sensor could measure
the distance between the solver robot and the heading walls to discover obstacle-free paths.
The color sensor was employed to recognize the labels’ color placed in the maze area (for
instance, the green label was an intersection point, whereas the black label was a destination
point) and then perform a suitable action.

3.2. Localization

In robot navigation, robot localization is an important task for two reasons: exploring
the shortest possible paths between any two nodes and calculating the solver robot’s
location. The solver robot must localize itself to navigate the terrain efficiently, estimate
the traveled distance between nodes in the maze area, and then obtain the shortest path
between the source and destination points. Several localization methods [16–20] may be
employed to calculate the distance traveled by the solver robot and to estimate the robot’s
new position with various localization accuracies. However, these approaches offer high

Machines 2023, 11, 249 5 of 17

localization errors, which drastically affect the navigation process. Therefore, in this project,
we employed an inertial navigation function, where the robot obtained its current location
based on an inertial sensor that counted the number of the wheels’ rotations and then
employed a method to estimate the traveled distance by the solver robot.

3.3. Path Planning

Path planning is the computation of a path through a map area that represents the
map area. The robot’s path is selected based on the problem objectives, where the expected
destination can be obtained. According to the sensed data obtained from the gyro, inertial,
color, and range-finder sensors, the 2D map for the maze area is constructed and planned,
where the map contains all the possible routes that may exist between any two points.

The intersection points are presented in the map area using nodes, where the map area
is represented as an N-ary tree. N-ary is a tree that allows owning n number of children for
a particular node (n ≥ 0). We implemented a node class in C# code to represent the maze
area, as depicted in Figure 2, and obtained the directions and distances in the maze area.
Figure 3 presents an example of the tree nodes established for the maze area. As soon as
the solver robot starts navigation, the destination and intersection points are represented as
nodes, where each visited node is assigned a unique identifier (ID) number.

Machines 2023, 11, x FOR PEER REVIEW 5 of 18

the traveled distance between nodes in the maze area, and then obtain the shortest path
between the source and destination points. Several localization methods [16–20] may be
employed to calculate the distance traveled by the solver robot and to estimate the robot’s
new position with various localization accuracies. However, these approaches offer high
localization errors, which drastically affect the navigation process. Therefore, in this
project, we employed an inertial navigation function, where the robot obtained its current
location based on an inertial sensor that counted the number of the wheels’ rotations and
then employed a method to estimate the traveled distance by the solver robot.

3.3. Path Planning
Path planning is the computation of a path through a map area that represents the

map area. The robot’s path is selected based on the problem objectives, where the expected
destination can be obtained. According to the sensed data obtained from the gyro, inertial,
color, and range-finder sensors, the 2D map for the maze area is constructed and planned,
where the map contains all the possible routes that may exist between any two points.

The intersection points are presented in the map area using nodes, where the map
area is represented as an N-ary tree. N-ary is a tree that allows owning n number of
children for a particular node (n ≥ 0). We implemented a node class in C# code to represent
the maze area, as depicted in Figure 2, and obtained the directions and distances in the
maze area. Figure 3 presents an example of the tree nodes established for the maze area.
As soon as the solver robot starts navigation, the destination and intersection points are
represented as nodes, where each visited node is assigned a unique identifier (ID) number.

As soon as the map area is constructed using the N-ary tree, the Dijkstra’s algorithm
is employed to find out the shortest path between the source and destination points. Then,
the solver robot follows the obtained path from the Dijkstra algorithm.

Figure 2. Class node attributes. Figure 2. Class node attributes.

Machines 2023, 11, x FOR PEER REVIEW 6 of 18

Figure 3. The constructed N-ary tree after performing the navigation task.

3.4. Maze Solving
The modified wall-follower algorithm was based on the following searching priority

(Right–Left–Front hand rule). Figure 4 presents the flowchart for the implemented Right–
Left–Front hand rule, where the right paths are searched first, then the left paths are
searched next, and finally, the solver robot searches the front paths. This algorithm is
beneficial when the whole maze area is required to be searched, and all possible paths can
be explored, where the possible shortest paths can be estimated.

Figure 4. The flowchart for the MWFS approach.

Figure 3. The constructed N-ary tree after performing the navigation task.

Machines 2023, 11, 249 6 of 17

As soon as the map area is constructed using the N-ary tree, the Dijkstra’s algorithm is
employed to find out the shortest path between the source and destination points. Then,
the solver robot follows the obtained path from the Dijkstra algorithm.

3.4. Maze Solving

The modified wall-follower algorithm was based on the following searching priority
(Right–Left–Front hand rule). Figure 4 presents the flowchart for the implemented Right–
Left–Front hand rule, where the right paths are searched first, then the left paths are
searched next, and finally, the solver robot searches the front paths. This algorithm is
beneficial when the whole maze area is required to be searched, and all possible paths can
be explored, where the possible shortest paths can be estimated.

Machines 2023, 11, x FOR PEER REVIEW 6 of 18

Figure 3. The constructed N-ary tree after performing the navigation task.

3.4. Maze Solving
The modified wall-follower algorithm was based on the following searching priority

(Right–Left–Front hand rule). Figure 4 presents the flowchart for the implemented Right–
Left–Front hand rule, where the right paths are searched first, then the left paths are
searched next, and finally, the solver robot searches the front paths. This algorithm is
beneficial when the whole maze area is required to be searched, and all possible paths can
be explored, where the possible shortest paths can be estimated.

Figure 4. The flowchart for the MWFS approach. Figure 4. The flowchart for the MWFS approach.

4. Experimental Results

This section discusses the experimental testbed in terms of the solver-robot platform
and the experiment testbed area. In addition, this section discusses the results obtained
from several real experiments conducted in three different maze areas.

4.1. Expeirment Testbed

The experiment testbed consisted of two main components: the solver robot and the
testbed area. First, the Lego EV3 robot depicted in Figure 5 was employed in the validation
process. Lego EV3 was used as a development kit to test the efficiency of the proposed,
modified wall-follower system. The Lego EV3 development kit was employed in various
research works [21–24] and proved its capabilities in proof-of-concept tasks.

Machines 2023, 11, 249 7 of 17

Machines 2023, 11, x FOR PEER REVIEW 7 of 18

4. Experimental Results
This section discusses the experimental testbed in terms of the solver-robot platform

and the experiment testbed area. In addition, this section discusses the results obtained
from several real experiments conducted in three different maze areas.

4.1. Expeirment Testbed
The experiment testbed consisted of two main components: the solver robot and the

testbed area. First, the Lego EV3 robot depicted in Figure 5 was employed in the validation
process. Lego EV3 was used as a development kit to test the efficiency of the proposed,
modified wall-follower system. The Lego EV3 development kit was employed in various
research works [21–24] and proved its capabilities in proof-of-concept tasks.

Figure 5. The customized Lego EV3 robot platform.

The robot architecture is presented in Figure 6, and the robot architecture consists of
four main units.
1. Sensing unit: includes four different sensors that are required to sense the solver

robot’s surrounding environment, including: ultrasonic, gyro, color, and inertial
navigation sensors. Table 1 presents the general specifications for the ultrasonic
sensor. The specifications for the gyro sensor are shown in Table 2, whereas Table 3
presents the specifications for the color sensor, and finally, the specifications for the
inertial sensor are presented in Table 4.

2. Computing and control unit: this collects sensed data from onboard sensors,
processes the data, and makes suitable decisions accordingly.

3. Communication unit: this includes exchanging the processed data between the solver
robot and the GUI located in the computer unit.

4. Power supply unit: this involves feeding the units mentioned above with the
required energy.

Figure 5. The customized Lego EV3 robot platform.

The robot architecture is presented in Figure 6, and the robot architecture consists of
four main units.

1. Sensing unit: includes four different sensors that are required to sense the solver
robot’s surrounding environment, including: ultrasonic, gyro, color, and inertial
navigation sensors. Table 1 presents the general specifications for the ultrasonic
sensor. The specifications for the gyro sensor are shown in Table 2, whereas Table 3
presents the specifications for the color sensor, and finally, the specifications for the
inertial sensor are presented in Table 4.

2. Computing and control unit: this collects sensed data from onboard sensors, processes
the data, and makes suitable decisions accordingly.

3. Communication unit: this includes exchanging the processed data between the solver
robot and the GUI located in the computer unit.

4. Power supply unit: this involves feeding the units mentioned above with the re-
quired energy.

Machines 2023, 11, x FOR PEER REVIEW 8 of 18

Figure 6. Lego EV3 robot architecture.

Table 1. General specification parameters for the ultrasonic sensor.

Parameter Value
Distance measurement 0–255 cm

Accuracy +/− 1 cm
Frequency 40 KHz
Beam angle 90 degree

Table 2. General specification parameters for the gyro sensor.

Parameter Value
Maximum rotation speed 440 degree/second

Accuracy +/− 3 degrees
Control unit 8-bit microcontroller
Frequency 1 KHz

Table 3. General specification parameters for the color sensor.

Parameter Value
Sensitivity 900 nm
Frequency 1 KHz

Reading distance 0.5–1.5 cm
Sensor output 0–100

Table 4. General specification parameters for the inertial sensor.

Parameter Value
Resolution 1 count/degree

Rotation speed 175 RPM
Power consumption 60 mA

Second, the testbed area was considered. For a proof-of-concept purpose, we
conducted several real experiments using the maze area depicted in Figure 7 with the
dimension of 200 × 200 cm. Through this experiment testbed, we set different initial and
destination points to assess the efficiency of four different maze-solving algorithms.
Therefore, three different testbeds were available for evaluation purposes. The green
labels are the intersection points in the maze area, whereas the black label is the
destination point. The testbed’s initial (source) location might be at any point. Table 5
presents several parameters for the experimental testbed.

Figure 6. Lego EV3 robot architecture.

Second, the testbed area was considered. For a proof-of-concept purpose, we con-
ducted several real experiments using the maze area depicted in Figure 7 with the di-
mension of 200 × 200 cm. Through this experiment testbed, we set different initial and
destination points to assess the efficiency of four different maze-solving algorithms. There-
fore, three different testbeds were available for evaluation purposes. The green labels are
the intersection points in the maze area, whereas the black label is the destination point. The
testbed’s initial (source) location might be at any point. Table 5 presents several parameters
for the experimental testbed.

Machines 2023, 11, 249 8 of 17Machines 2023, 11, x FOR PEER REVIEW 9 of 18

Figure 7. Experiment testbed area.

Table 5. Several parameters for the experiment.

Parameter Value
Maze area 2D (200 × 200) cm

Robot platform Lego EV3
Robot speed 0.05 m/s

of intersections 3
of maze layouts 3
Ultrasonic range 100 cm

Green label An intersection point
Black label Destination point

4.2. Results
As mentioned earlier, we implemented four different maze-solving systems (wall-

follower (right-hand and left-hand), Pledge, and modified wall-follower) through three
different maze areas and compared the results obtained with the proposed modified wall-
follower system. All the experiments were carried out in the same maze area and under
the same circumstances to validate the efficiency of each maze-solving system. The maze
solving systems’ efficiency was validated through assessing the following parameters:
1. Average time to solve the maze: this refers to the total time (in minutes) required to

solve the maze, i.e., the time required for the solver robot to travel from the start point
to the destination point. Average time depended on the maze solving algorithm and
the taken path to reach the destination point.

2. Distance to target point: this refers to the total distance (in centimeters) traveled by
the solver robot from the start point to the destination point.

3. Total distance traveled in the maze: this indicates the total distance (in centimeters)
traveled by the solver robot through the maze area.

4. Number of visited paths: this refers to the total number of paths that the solver robot
visited during the navigation process, i.e., the path from the source (initial) point to
the destination point.

5. Robot deviation: this estimates the deviation angle for the maze-solver robot while
traveling between any two points in the maze area.

Figure 7. Experiment testbed area.

Table 1. General specification parameters for the ultrasonic sensor.

Parameter Value

Distance measurement 0–255 cm
Accuracy +/−1 cm
Frequency 40 KHz
Beam angle 90 degree

Table 2. General specification parameters for the gyro sensor.

Parameter Value

Maximum rotation speed 440 degree/second
Accuracy +/−3 degrees

Control unit 8-bit microcontroller
Frequency 1 KHz

Table 3. General specification parameters for the color sensor.

Parameter Value

Sensitivity 900 nm
Frequency 1 KHz

Reading distance 0.5–1.5 cm
Sensor output 0–100

Table 4. General specification parameters for the inertial sensor.

Parameter Value

Resolution 1 count/degree
Rotation speed 175 RPM

Power consumption 60 mA

Machines 2023, 11, 249 9 of 17

Table 5. Several parameters for the experiment.

Parameter Value

Maze area 2D (200 × 200) cm
Robot platform Lego EV3

Robot speed 0.05 m/s
of intersections 3
of maze layouts 3
Ultrasonic range 100 cm

Green label An intersection point
Black label Destination point

4.2. Results

As mentioned earlier, we implemented four different maze-solving systems (wall-
follower (right-hand and left-hand), Pledge, and modified wall-follower) through three
different maze areas and compared the results obtained with the proposed modified wall-
follower system. All the experiments were carried out in the same maze area and under
the same circumstances to validate the efficiency of each maze-solving system. The maze
solving systems’ efficiency was validated through assessing the following parameters:

1. Average time to solve the maze: this refers to the total time (in minutes) required to
solve the maze, i.e., the time required for the solver robot to travel from the start point
to the destination point. Average time depended on the maze solving algorithm and
the taken path to reach the destination point.

2. Distance to target point: this refers to the total distance (in centimeters) traveled by
the solver robot from the start point to the destination point.

3. Total distance traveled in the maze: this indicates the total distance (in centimeters)
traveled by the solver robot through the maze area.

4. Number of visited paths: this refers to the total number of paths that the solver robot
visited during the navigation process, i.e., the path from the source (initial) point to
the destination point.

5. Robot deviation: this estimates the deviation angle for the maze-solver robot while
traveling between any two points in the maze area.

6. Robot positioning accuracy: this refers to the measurement of the difference between
the estimated location of the solver robot and the real robot’s location.

In the first experiment testbed, both the start and the destination points were located at
the corners, as shown in Figure 8. The solver robot traveled autonomously in the maze area
and navigated the paths according to the employed maze-solving system. As presented in
Table 6, the left-hand rule required the minimum time to solve the maze and arrive at the
destination point (4 min and 18 s), with a total traveled distance of 636 cm. However, the
right-hand rule required the longest time (13 min and 40 s), with a total traveled distance
equal to 1898 cm. All the algorithms explored a single path to the destination point, since
no other paths existed. The modified wall-follower algorithm navigated the whole maze
area to discover all paths between the start and destination points, with the total distance
traveled being 2479 cm.

Table 6. Experimental results obtained from the first experiment testbed.

No. Maze System Average Time Distance to
Destination Total Distance # of Visited Paths

1. Pledge 4:28 646 cm 646 cm 1
2. Right-hand 13:40 1898 cm 1898 cm 1
3. Left-hand 4:18 636 cm 636 cm 1
4. MWFS 11:30 1678 cm 2479 cm 1

Machines 2023, 11, 249 10 of 17

Figure 8 presents the routes of the solver robot in maze area 1 through deploying
different maze-solving algorithms. Figure 8A shows the route of the solver robot in maze
area 1 using the Pledge maze-solving algorithm. In Figure 8B, the route of the solver robot
is presented when employing the right-hand algorithm. Figure 8C depicts the solver-robot
route for the left-hand algorithm. finally, Figure 8D presents the solver-robot route for the
modified wall-follower algorithm.

Machines 2023, 11, x FOR PEER REVIEW 10 of 18

6. Robot positioning accuracy: this refers to the measurement of the difference between
the estimated location of the solver robot and the real robot’s location.
In the first experiment testbed, both the start and the destination points were located

at the corners, as shown in Figure 8. The solver robot traveled autonomously in the maze
area and navigated the paths according to the employed maze-solving system. As
presented in Table 6, the left-hand rule required the minimum time to solve the maze and
arrive at the destination point (4 min and 18 s), with a total traveled distance of 636 cm.
However, the right-hand rule required the longest time (13 min and 40 s), with a total
traveled distance equal to 1898 cm. All the algorithms explored a single path to the
destination point, since no other paths existed. The modified wall-follower algorithm
navigated the whole maze area to discover all paths between the start and destination
points, with the total distance traveled being 2479 cm.

Table 6. Experimental results obtained from the first experiment testbed.

No.
Maze

System Average Time
Distance to
Destination

Total
Distance

of Visited
Paths

1. Pledge 4:28 646 cm 646 cm 1
2. Right-hand 13:40 1898 cm 1898 cm 1
3. Left-hand 4:18 636 cm 636 cm 1
4. MWFS 11:30 1678 cm 2479 cm 1

Figure 8 presents the routes of the solver robot in maze area 1 through deploying
different maze-solving algorithms. Figure 8A shows the route of the solver robot in maze
area 1 using the Pledge maze-solving algorithm. In Figure 8B, the route of the solver robot
is presented when employing the right-hand algorithm. Figure 8C depicts the solver-robot
route for the left-hand algorithm. finally, Figure 8D presents the solver-robot route for the
modified wall-follower algorithm.

(A) (B)

Machines 2023, 11, x FOR PEER REVIEW 11 of 18

(C) (D)

Figure 8. The route of the solver robot using 4 algorithms in testbed # 1. (A) Pledge algorithm; (B)
right-hand algorithm; (C) left-hand algorithm; (D) MWFS.

As presented in Table 2, the right-hand algorithm required the maximum time to
reach the destination point. In addition, all algorithms found a single path. In contrast, the
modified wall-follower algorithm kept looking for new paths, even if a single path had
been found, as presented in Figure 8D, where the navigation path is presented with a blue
color. Figure 9 shows the total distance traveled to the destination point and the total
distance traveled in the maze area in the four solving-robot systems.

Figure 9. The total traveled distance of the solver robot for 4 algorithms in testbed # 1.

In the second experiment testbed, the initial and the destination points were located
in different positions, as presented in Figure 10. Table 7 shows the experimental results
obtained from deploying four different maze-solving algorithms in maze area 2. As
presented, the modified wall-follower algorithm and the right-hand algorithm required
the minimum time and distance to reach the target location, with a total traveled distance
of 495 cm. On the other hand, the left-hand rule needed the maximum time and distance,
with a total traveled distance of 2031 cm. However, the total distance traveled was around
2526 cm for the modified wall-follower algorithm. This was because the modified wall-

Figure 8. The route of the solver robot using 4 algorithms in testbed # 1. (A) Pledge algorithm;
(B) right-hand algorithm; (C) left-hand algorithm; (D) MWFS.

As presented in Table 2, the right-hand algorithm required the maximum time to
reach the destination point. In addition, all algorithms found a single path. In contrast,
the modified wall-follower algorithm kept looking for new paths, even if a single path
had been found, as presented in Figure 8D, where the navigation path is presented with a
blue color. Figure 9 shows the total distance traveled to the destination point and the total
distance traveled in the maze area in the four solving-robot systems.

Machines 2023, 11, 249 11 of 17

Machines 2023, 11, x FOR PEER REVIEW 11 of 18

(C) (D)

Figure 8. The route of the solver robot using 4 algorithms in testbed # 1. (A) Pledge algorithm; (B)
right-hand algorithm; (C) left-hand algorithm; (D) MWFS.

As presented in Table 2, the right-hand algorithm required the maximum time to
reach the destination point. In addition, all algorithms found a single path. In contrast, the
modified wall-follower algorithm kept looking for new paths, even if a single path had
been found, as presented in Figure 8D, where the navigation path is presented with a blue
color. Figure 9 shows the total distance traveled to the destination point and the total
distance traveled in the maze area in the four solving-robot systems.

Figure 9. The total traveled distance of the solver robot for 4 algorithms in testbed # 1.

In the second experiment testbed, the initial and the destination points were located
in different positions, as presented in Figure 10. Table 7 shows the experimental results
obtained from deploying four different maze-solving algorithms in maze area 2. As
presented, the modified wall-follower algorithm and the right-hand algorithm required
the minimum time and distance to reach the target location, with a total traveled distance
of 495 cm. On the other hand, the left-hand rule needed the maximum time and distance,
with a total traveled distance of 2031 cm. However, the total distance traveled was around
2526 cm for the modified wall-follower algorithm. This was because the modified wall-

Figure 9. The total traveled distance of the solver robot for 4 algorithms in testbed # 1.

In the second experiment testbed, the initial and the destination points were located
in different positions, as presented in Figure 10. Table 7 shows the experimental results
obtained from deploying four different maze-solving algorithms in maze area 2. As
presented, the modified wall-follower algorithm and the right-hand algorithm required the
minimum time and distance to reach the target location, with a total traveled distance of
495 cm. On the other hand, the left-hand rule needed the maximum time and distance, with
a total traveled distance of 2031 cm. However, the total distance traveled was around 2526
cm for the modified wall-follower algorithm. This was because the modified wall-follower
algorithm needed to navigate the whole maze area to explore all the available routes to the
destination location.

Figure 10 shows the routes of the solver robot in the experiment testbed 2 through
deploying four different maze-solving algorithms. Figure 10A shows the route traveled by
the solver robot when deploying the Pledge algorithm. Figure 10B presents the route when
adopting the right-hand algorithm. In Figure 10C, the solver-robot route when employing
the left-hand rule is depicted, and finally, Figure 10D shows the route when adopting the
modified wall-follower algorithm. The modified wall-follower algorithm navigated the
whole maze area to search for other paths from the initial point to the target point. Figure 11
shows the total distance traveled to the destination point and the total distance traveled in
the maze area for the four maze-solving robot systems.

Machines 2023, 11, x FOR PEER REVIEW 12 of 18

follower algorithm needed to navigate the whole maze area to explore all the available
routes to the destination location.

(A) (B)

(C) (D)

Figure 10. The route of the solver robot using 4 algorithms in testbed # 2. (A) Pledge algorithm; (B)
right-hand algorithm; (C) left-hand algorithm; (D) MWFS.

Table 7. Experimental results obtained from the second experiment testbed.

No. Maze System Average
Time

Distance to
Destination

Total Distance
Traveled

of Visited
Paths

1. Pledge 5:02 min 826 cm 826 cm 1
2. Right-Hand 3:02 min 495 cm 495 cm 1
3. Left-Hand 15:30 min 2031 cm 2031 cm 1
4. MWFS 2:52 min 495 cm 2526 cm 1

Figure 10 shows the routes of the solver robot in the experiment testbed 2 through
deploying four different maze-solving algorithms. Figure 10A shows the route traveled
by the solver robot when deploying the Pledge algorithm. Figure 10B presents the route
when adopting the right-hand algorithm. In Figure 10C, the solver-robot route when
employing the left-hand rule is depicted, and finally, Figure 10D shows the route when

Figure 10. Cont.

Machines 2023, 11, 249 12 of 17

Machines 2023, 11, x FOR PEER REVIEW 12 of 18

follower algorithm needed to navigate the whole maze area to explore all the available
routes to the destination location.

(A) (B)

(C) (D)

Figure 10. The route of the solver robot using 4 algorithms in testbed # 2. (A) Pledge algorithm; (B)
right-hand algorithm; (C) left-hand algorithm; (D) MWFS.

Table 7. Experimental results obtained from the second experiment testbed.

No. Maze System Average
Time

Distance to
Destination

Total Distance
Traveled

of Visited
Paths

1. Pledge 5:02 min 826 cm 826 cm 1
2. Right-Hand 3:02 min 495 cm 495 cm 1
3. Left-Hand 15:30 min 2031 cm 2031 cm 1
4. MWFS 2:52 min 495 cm 2526 cm 1

Figure 10 shows the routes of the solver robot in the experiment testbed 2 through
deploying four different maze-solving algorithms. Figure 10A shows the route traveled
by the solver robot when deploying the Pledge algorithm. Figure 10B presents the route
when adopting the right-hand algorithm. In Figure 10C, the solver-robot route when
employing the left-hand rule is depicted, and finally, Figure 10D shows the route when

Figure 10. The route of the solver robot using 4 algorithms in testbed # 2. (A) Pledge algorithm;
(B) right-hand algorithm; (C) left-hand algorithm; (D) MWFS.

Table 7. Experimental results obtained from the second experiment testbed.

No. Maze System Average Time Distance to
Destination

Total Distance
Traveled # of Visited Paths

1. Pledge 5:02 min 826 cm 826 cm 1
2. Right-Hand 3:02 min 495 cm 495 cm 1
3. Left-Hand 15:30 min 2031 cm 2031 cm 1
4. MWFS 2:52 min 495 cm 2526 cm 1

Machines 2023, 11, x FOR PEER REVIEW 13 of 18

adopting the modified wall-follower algorithm. The modified wall-follower algorithm
navigated the whole maze area to search for other paths from the initial point to the target
point. Figure 11 shows the total distance traveled to the destination point and the total
distance traveled in the maze area for the four maze-solving robot systems.

Figure 11. The total traveled distance of the solver robot for 4 algorithms in testbed # 2.

The initial and destination points were placed at the corners in the third experiment
testbed, and more than one path existed between them. Table 8 shows the results obtained
from deploying four different maze-solving algorithms in experiment testbed 3. The
modified wall-follower algorithm required the minimum time to travel between the initial
location and the target location, with a total traveled distance of 500 cm. On the other
hand, the left-hand algorithm required the maximum time to reach the target location,
with a total traveled distance of 768 cm.

Table 8. Experimental results obtained from the third experiment testbed.

No. Maze System
Average

Time
Distance to
Destination

Total
Distance
Traveled

of Visited
Paths

1. Pledge 4:55 min 608 cm 608 cm 1
2. Right-Hand 4:52 min 605 cm 605 cm 1
3. Left-Hand 5:47 min 768 cm 768 cm 1
4. MWFS 2:59 min 500 cm 2547 cm 2

As presented in Table 4, the modified wall-follower algorithm required the minimum
time to reach the target point, with a total traveled distance of 500 cm. In contrast, the left-
hand algorithm required the maximum time to reach the target point, with a total traveled
distance of 768 cm. However, in the modified wall-follower algorithm, the robot needed
to navigate the whole maze area to look for another route, and the robot found two routes
in this maze area. All other maze-solving algorithms found a single path to the target
point.

Figure 12 presents the routes of the solver robot in experiment testbed 3 when
employing the four maze-solving algorithms. Figure 12A shows the solver-robot route
when using the Pledge algorithm, whereas in Figure 12B, the route of the solver robot is
presented using the right-hand algorithm. Figure 12C presents the solver-robot route
using the left-hand algorithm, and finally, Figure 12D shows the solver-robot route when
the modified wall-follower algorithm was employed. Figure 13 presents the total distance
traveled to the destination point and the total distance traveled in the maze area for each
maze-solving robot system.

Figure 11. The total traveled distance of the solver robot for 4 algorithms in testbed # 2.

The initial and destination points were placed at the corners in the third experiment
testbed, and more than one path existed between them. Table 8 shows the results obtained
from deploying four different maze-solving algorithms in experiment testbed 3. The
modified wall-follower algorithm required the minimum time to travel between the initial
location and the target location, with a total traveled distance of 500 cm. On the other hand,
the left-hand algorithm required the maximum time to reach the target location, with a
total traveled distance of 768 cm.

Machines 2023, 11, 249 13 of 17

Table 8. Experimental results obtained from the third experiment testbed.

No. Maze System Average Time Distance to
Destination

Total Distance
Traveled # of Visited Paths

1. Pledge 4:55 min 608 cm 608 cm 1
2. Right-Hand 4:52 min 605 cm 605 cm 1
3. Left-Hand 5:47 min 768 cm 768 cm 1
4. MWFS 2:59 min 500 cm 2547 cm 2

As presented in Table 4, the modified wall-follower algorithm required the minimum
time to reach the target point, with a total traveled distance of 500 cm. In contrast, the
left-hand algorithm required the maximum time to reach the target point, with a total
traveled distance of 768 cm. However, in the modified wall-follower algorithm, the robot
needed to navigate the whole maze area to look for another route, and the robot found
two routes in this maze area. All other maze-solving algorithms found a single path to the
target point.

Figure 12 presents the routes of the solver robot in experiment testbed 3 when employ-
ing the four maze-solving algorithms. Figure 12A shows the solver-robot route when using
the Pledge algorithm, whereas in Figure 12B, the route of the solver robot is presented
using the right-hand algorithm. Figure 12C presents the solver-robot route using the left-
hand algorithm, and finally, Figure 12D shows the solver-robot route when the modified
wall-follower algorithm was employed. Figure 13 presents the total distance traveled to the
destination point and the total distance traveled in the maze area for each maze-solving
robot system.

Machines 2023, 11, x FOR PEER REVIEW 14 of 18

(A) (B)

(C) (D)

Figure 12. The route of the solver robot using 4 algorithms in testbed # 3. (A) Pledge algorithm; (B)
right-hand algorithm; (C) left-hand algorithm; (D) MWFS.

Figure 13. The total traveled distance of the solver robot for 4 algorithms in testbed # 3.

Figure 12. The route of the solver robot using 4 algorithms in testbed # 3. (A) Pledge algorithm;
(B) right-hand algorithm; (C) left-hand algorithm; (D) MWFS.

Machines 2023, 11, 249 14 of 17

Machines 2023, 11, x FOR PEER REVIEW 14 of 18

(A) (B)

(C) (D)

Figure 12. The route of the solver robot using 4 algorithms in testbed # 3. (A) Pledge algorithm; (B)
right-hand algorithm; (C) left-hand algorithm; (D) MWFS.

Figure 13. The total traveled distance of the solver robot for 4 algorithms in testbed # 3.

Figure 13. The total traveled distance of the solver robot for 4 algorithms in testbed # 3.

As presented in Figure 12D, the robot found two possible routes between the initial
and destination points (black and yellow routes), since the solver robot navigated the maze
area even after finding out the first route.

The robot deviation was evaluated by assessing the deviation angle in three different
experiments using the MWFS approach. As depicted in Figure 14, the average deviation
angle was almost 3 degrees; however, in all experiments, the solver robot balanced (rotate
to 0 degrees, which is the straight mode) itself as soon as it deviated. For all experiments,
the robot deviation angle was almost the same, with no noticeable variance.

Machines 2023, 11, x FOR PEER REVIEW 15 of 18

As presented in Figure 12D, the robot found two possible routes between the initial
and destination points (black and yellow routes), since the solver robot navigated the
maze area even after finding out the first route.

The robot deviation was evaluated by assessing the deviation angle in three different
experiments using the MWFS approach. As depicted in Figure 14, the average deviation
angle was almost 3 degrees; however, in all experiments, the solver robot balanced (rotate
to 0 degrees, which is the straight mode) itself as soon as it deviated. For all experiments,
the robot deviation angle was almost the same, with no noticeable variance.

Figure 14. Estimating the deviation angle using the MWFS approach for 3 different experiments.

In addition, robot localization is a significant task in the navigation process.
Therefore, it is important to study and analyze the performance of the employed
positioning system. The localization accuracy was estimated by measuring the difference
between the estimated position by the localization system and the robot’s actual position.
The localization accuracy of the solver-robot system was evaluated in three different
scenarios by estimating the solver robot’s location in twelve different reference locations.
Figure 15 presents the localization accuracy for three different experiment testbeds
through twelve locations using the MWFS approach. As noticed, the average localization
error for the solver robot was around 9 cm in three different experiments.

Figure 15. The localization error using the MWFS approach for 3 different testbeds.

Figure 14. Estimating the deviation angle using the MWFS approach for 3 different experiments.

In addition, robot localization is a significant task in the navigation process. Therefore,
it is important to study and analyze the performance of the employed positioning system.
The localization accuracy was estimated by measuring the difference between the estimated
position by the localization system and the robot’s actual position. The localization accuracy
of the solver-robot system was evaluated in three different scenarios by estimating the solver
robot’s location in twelve different reference locations. Figure 15 presents the localization
accuracy for three different experiment testbeds through twelve locations using the MWFS
approach. As noticed, the average localization error for the solver robot was around 9 cm
in three different experiments.

Machines 2023, 11, 249 15 of 17

Machines 2023, 11, x FOR PEER REVIEW 15 of 18

As presented in Figure 12D, the robot found two possible routes between the initial
and destination points (black and yellow routes), since the solver robot navigated the
maze area even after finding out the first route.

The robot deviation was evaluated by assessing the deviation angle in three different
experiments using the MWFS approach. As depicted in Figure 14, the average deviation
angle was almost 3 degrees; however, in all experiments, the solver robot balanced (rotate
to 0 degrees, which is the straight mode) itself as soon as it deviated. For all experiments,
the robot deviation angle was almost the same, with no noticeable variance.

Figure 14. Estimating the deviation angle using the MWFS approach for 3 different experiments.

In addition, robot localization is a significant task in the navigation process.
Therefore, it is important to study and analyze the performance of the employed
positioning system. The localization accuracy was estimated by measuring the difference
between the estimated position by the localization system and the robot’s actual position.
The localization accuracy of the solver-robot system was evaluated in three different
scenarios by estimating the solver robot’s location in twelve different reference locations.
Figure 15 presents the localization accuracy for three different experiment testbeds
through twelve locations using the MWFS approach. As noticed, the average localization
error for the solver robot was around 9 cm in three different experiments.

Figure 15. The localization error using the MWFS approach for 3 different testbeds.

Figure 15. The localization error using the MWFS approach for 3 different testbeds.

5. Discussion

In general, autonomous robots are expected to work independently in the area of
interest, where the solver robot needs to move from one point to another in an autonomous
way [25]. Wall-follower maze-solving systems have been deployed in several robotic
applications. In this section, we discuss the key differences between the proposed wall-
follower robotic system and the recently developed wall-follower robotic systems. The
recently developed systems were evaluated according to the following metrics:

1. Maze solving algorithm: this refers to the algorithm that was employed to solve the
maze area.

2. Sensors: this refers to the arrays of sensors that were employed to achieve the naviga-
tion task.

3. Experiment testbed: this refers to the type of validation testbed that was used to
validate the maze-solving robotic system.

4. Ability to find out the shortest path: this refers to the robot’s ability to explore all the
existing paths between the start and the destination points and hence determine the
robot’s ability to find out the shortest path possible.

The work presented in [8,9] was based on simulation experiments, where several real
metrics were not considered. On the other hand, the developed systems in [7,9,10] did not
have the ability to navigate in the whole maze area and hence did not have the ability to
retrieve the possible paths. Moreover, most of the existing wall-follower systems [7–10] do
not take into consideration the localization and self-balancing issues, while in this paper,
we presented an efficient maze-solving solution to deal with such issues. Table 9 presents a
comparison among the recently developed wall-follower maze-solving systems.

Table 9. A comparison between the recently developed wall-follower systems.

Research Work Algorithm Sensors Experiment Testbed Shortest-Path

[7] Right-hand rule An array of infrared sensors Arduino-based robot
platform and IR-sensors NA

[8] Left-hand and right-hand
rules NA NA Yes

[9] Left-hand rule and
RAM-based neural network An array of infrared sensors Simulation experiments NA

[10] Right-hand rule An array of proximity
sensors

PIC16F877A-based robot
platform NA

MWFS Right, Left, and Front rule Ultrasonic, Inertial, rotation,
and color

Lego EV3 development
environment Yes

Machines 2023, 11, 249 16 of 17

In addition, the average time required to solve the maze area was also considered in
this study. Time is an important factor in robot maze-solving applications, where the maze-
solver robot needs to navigate the unknown environment and reach the destination point
with the minimum possible time. As noticed in the obtained results, no algorithm guaran-
tees the shortest time, and the average time mainly depends on the environment structure.

To conclude the results obtained from the conducted real experiments, no single maze-
solving algorithm is guaranteed to solve the maze in the shortest time possible. In general,
solving the maze area depends on the maze structure and the location of the initial and the
destination points. However, the proposed modified wall-follower robotic system usually
guarantees finding a single path (at least) if it exists in the maze area. In addition, the
proposed system never enters into an infinite loop-back, since it records the coordinates
for every possible node in the tree and compares the coordinates of a new node with the
coordinates of the tree’s nodes. As a result, the developed modified wall-follower system
overcomes two main limitations in the existing wall-follower solving systems:

1. The developed maze-solver robot system solves the infinite loop issues that exist in
the recently developed wall-follower systems.

2. The developed MWFS can explore all possible paths in the maze area, and hence,
MWFS is able to find out all the possible paths between the initial and the destina-
tion points.

6. Conclusions

In this paper, we designed and implemented a modified wall-follower system (MWFS)
based on the wall-follower algorithm, with tiny changes on the searching priority and with
an off-loopback. Three different maze solving systems were experimentally tested, and
the results were compared to the proposed MWFS’ results. The developed MWFS could
solve the loop-back issue that existed in the existing wall-follower systems. In addition,
the proposed maze solving robotic system efficiently navigated the maze area, found out
all the possible paths, and then estimated the shortest path possible. For future research,
we aim to develop various maze-solving algorithms and assess the speed and efficiency
for each one. Finally, we aim to conduct our experiments in large maze areas to verify
the effectiveness of the maze-solving algorithm and conduct some real experiments using
different robot platforms.

Author Contributions: S.A. (Shatha Alamri), H.A. and S.A. (Shuruq Alshehri) completed the experi-
mental study including the experiment setup and the achieved results. W.A. and A.A. surveyed the
recent developed maze solving robotic systems. T.A. developed the enhanced maze solving robotic
system, discussed the obtained results and finalized the manuscript. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gul, F.; Rahiman, W.; Nazli Alhady, S.S. A comprehensive study for robot navigation techniques. Cogent Eng. 2019, 6, 1632046.

[CrossRef]
2. Pandey, A.; Pandey, S.; Parhi, D.R. Mobile robot navigation and obstacle avoidance techniques: A review. Int. Rob. Auto. J. 2017, 2,

00022. [CrossRef]
3. Wyard-Scott, L.; Meng, Q.H. A potential maze solving algorithm for a micro mouse robot. In Proceedings of the IEEE Pacific Rim

Conference on Communications, Computers, and Signal Processing, Victoria, BC, Canada, 17–19 May 1995; IEEE: Piscataway, NJ,
USA, 1995; pp. 614–618.

4. Coufal, P.; Hubálovský, Š.; Hubálovská, M. Application of Basic Graph Theory in Autonomous Motion of Robots. Mathematics
2021, 9, 919. [CrossRef]

5. Zhang, H.Y.; Lin, W.M.; Chen, A.X. Path planning for the mobile robot: A review. Symmetry 2018, 10, 450. [CrossRef]

http://doi.org/10.1080/23311916.2019.1632046
http://doi.org/10.15406/iratj.2017.02.00023
http://doi.org/10.3390/math9090919
http://doi.org/10.3390/sym10100450

Machines 2023, 11, 249 17 of 17

6. Tullu, A.; Endale, B.; Wondosen, A.; Hwang, H.Y. Machine learning approach to real-time 3D path planning for autonomous
navigation of unmanned aerial vehicle. Appl. Sci. 2021, 11, 4706. [CrossRef]

7. Tirian, G.O. Maze-solving mobile robot. Ann. Fac. Eng. Hunedoara 2015, 13, 199.
8. Husain, Z.; Al Zaabi, A.; Hildmann, H.; Saffre, F.; Ruta, D.; Isakovic, A.F. Search and rescue in a maze-like environment with ant

and dijkstra algorithms. Drones 2022, 6, 273. [CrossRef]
9. Kumar, R.; Jitoko, P.; Kumar, S.; Pillay, K.; Prakash, P.; Sagar, A.; Singh, R.; Mehta, U. Maze solving robot with automated obstacle

avoidance. Procedia Comput. Sci. 2017, 105, 57–61. [CrossRef]
10. Kaur, N.K.S. A review of various maze-solving algorithms based on graph theory. IJSRD 2019, 6, 431–434.
11. Alamri, S.; Alshehri, S.; Alshehri, W.; Alamri, H.; Alaklabi, A.; Alhmiedat, T. Autonomous Maze Solving Robotics: Algorithms

and Systems. Int. J. Mech. Eng. Robot. Res. 2021, 10, 668–675. [CrossRef]
12. Niemczyk, R.; Zawiślak, S. Review of Maze Solving Algorithms for 2D Maze and Their Visualisation. In Engineer of the XXI

Century; Springer: Cham, Switzerland, 2020; pp. 239–252.
13. Saman, A.B.S.; Abdramane, I. Solving a reconfigurable maze using a hybrid wall follower algorithm. Int. J. Comput. Appl. 2013,

82, 0975–8887.
14. Zarkasi, A.; Ubaya, H.; Amanda, C.D.; Firsandaya, R. Implementation of RAM Based Neural Networks on Maze Mapping

Algorithms for Wall Follower Robot. J. Phys. Conf. Ser. 2019, 1196, 012043. [CrossRef]
15. Del Rosario, J.R.B.; Sanidad, J.G.; Lim, A.M.; Uy, P.S.L.; Bacar, A.J.C.; Cai, M.A.D.; Dubouzet, A.Z.A. Modeling and characterization

of a maze-solving mobile robot using wall follower algorithm. Appl. Mech. Mater. 2014, 446, 1245–1249.
16. Pire, T.; Fischer, T.; Civera, J.; De Cristóforis, P.; Berlles, J.J. Stereo parallel tracking and mapping for robot localization. In

Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28
September–3 October 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1373–1378.

17. Alhmiedat, T.; Salem, A.A. A Hybrid Range-free Localization Algorithm for ZigBee Wireless Sensor Networks. Int. Arab. J. Inf.
Technol. (IAJIT) 2017, 14, 647–653.

18. Junior, C.M.D.; da Silva, S.P.; da Nobrega, R.V.; Barros, A.C.; Sangaiah, A.K.; Reboucas Filho, P.P.; de Albuquerque, V.H.C. A new
approach for mobile robot localization based on an online IoT system. Future Gener. Comput. Syst. 2019, 100, 859–881.

19. Alhmiedat, T. An adaptive indoor positioning algorithm for ZigBee WSN. In Proceedings of the Fifth International Conference on
the Innovative Computing Technology (INTECH 2015), Galicia, Spain, 20–22 May 2015; IEEE: Piscataway, NJ, USA, 2015; pp.
51–55.

20. Alhmiedat, T.; Aborokbah, M. Social distance monitoring approach using wearable smart tags. Electronics 2021, 10, 2435.
[CrossRef]

21. Alhmiedat, T.A.; Abutaleb, A.; Samara, G. A prototype navigation system for guiding blind people indoors using NXT Mindstorms.
Int. J. Online Biomed. Eng. (IJOE) 2013, 9, 52–58. [CrossRef]

22. Chen, Q.; Chen, Y.N.; Tang, P.; Chen, R.; Jiang, Z.N.; Deng, A.B. Indoor Simultaneous Localization and Mapping for Lego Ev3.
DEStech Trans. Comput. Sci. Eng. (CCNT) 2018, 500–504. [CrossRef]

23. Alhawas, S.; Sabha, M.; Alhmiedat, T.A. The design and development of a smart fire-fighter robotic system. Int. Rob. Auto. J. 2017,
3, 00073.

24. Bienias, Ł.; Szczepański, K.; Duch, P. Maze Exploration Algorithm for Small Mobile Platforms. Image Process. Commun. 2016, 21,
15–26. [CrossRef]

25. Alenzi, Z.; Alenzi, E.; Alqasir, M.; Alruwaili, M.; Alhmiedat, T.; Alia, O.M.D. A Semantic Classification Approach for Indoor
Robot Navigation. Electronics 2022, 11, 2063. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/app11104706
http://doi.org/10.3390/drones6100273
http://doi.org/10.1016/j.procs.2017.01.192
http://doi.org/10.18178/ijmerr.10.12.668-675
http://doi.org/10.1088/1742-6596/1196/1/012043
http://doi.org/10.3390/electronics10192435
http://doi.org/10.3991/ijoe.v9i5.2848
http://doi.org/10.12783/dtcse/CCNT2018/24749
http://doi.org/10.1515/ipc-2016-0013
http://doi.org/10.3390/electronics11132063

	Introduction
	Related Works
	Modified Wall-Follower Solver Robot System
	Sensing
	Localization
	Path Planning
	Maze Solving

	Experimental Results
	Expeirment Testbed
	Results

	Discussion
	Conclusions
	References

