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Abstract: In this paper, a transonic compressor cascade was optimized to improve its aerodynamic
performance. A new blade parameterization method with 16 control variables was first proposed
to fit the shapes of the suction and the pressure side, as well as the leading edge. Then, the Kriging
surrogate-model-based genetic algorithm (GA) was used to optimize the performance of the transonic
cascade. The optimization algorithm is effective in reducing the total pressure loss while extending
the working range of the cascade. The results show that the total pressure loss coefficient could
be reduced by 11% at the best airflow angle and the working range could be extended by 6.9% for
the optimized cascade in two-dimensional simulations. Similar improvement results could also be
obtained in the simulations of their linear cascade cases. Detailed analyses show that the relative
maximum thickness positions of the optimized blades move forward by about 10% to the leading
edge, and the radii of curvature of the front half of the suction and pressure surfaces increase,
compared with the initial blade. This makes the front half of the optimized blades look more closely
like a wedge. Consequently, the passage shock strength is reduced and the shock changes from the
passage normal shock to oblique shock. The weakened shock strength leads to the disappearance of
the flow separation caused by the shock boundary layer interaction on the suction surfaces of the
optimized blades, and results in a narrowed wake width at the outlet section.

Keywords: transonic compressor cascade; optimization design; shock control; shock wave boundary
layer interaction

1. Introduction

The transonic axial flow compressor is one of the three key components of a heavy-
duty gas turbine, and its aerodynamic performance is closely related to the characteristics
of the whole machine. The high stage pressure ratio requirement presents new challenges
to the design of transonic axial flow compressors [1]. Therefore, understanding the flow
features around transonic cascades is required for the design of a transonic stage with a
high efficiency and a wide working range. Although the actual flow inside the compressor
is three-dimensional (3D), the transonic cascade data are still very helpful for exploring the
underlying mechanism for the losses and flows in the transonic compressor stages.

Unlike the common subsonic cascades, transonic cascades have two special sources
of loss: the shock loss caused by the presence of shock waves and the flow loss caused
by the shock boundary layer interaction (SBLI) [2]. Therefore, controlling the flow losses
caused by shocks and the SBLI are the major concerns of transonic compressor cascades.
Many methods have been proposed to suppress the losses due to shock waves. For the
flow control approaches, they can be divided into two categories: the active control [3,4],
such as the surface suction or blowing, and the passive control [5,6], such as the vortex
generator or the slotting method. In practice, a convenient way to control the shock wave
pattern and strength is to optimize the blade shape, because the shock loss is very sensitive
to the change in the blade profile. For example, Mazaheri and Khatibirad [7] reduced the
total pressure loss by adding a shock control bump (SCB) to the NASA rotor 67 blade
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section. A multi-point and two single-point optimizations were performed in the design
and off-design conditions. The results show that the single-point optimized shape has the
best performance at the operating point, while the multi-point optimized shape has better
overall performance over the whole working range. A similar approach was adopted by
Jinks et al. [8] for the optimal design of an adaptive shock control bump on the transonic
airfoil surface. Furthermore, according to the research of Refs. [9–11], the leading edge of
the blade has an important effect on the profile loss of the transonic compressor cascade.
Although the shape of the suction surface plays an important role in the flow losses of the
transonic blade, the SCB method does not take into account the profile loss and shock loss
caused by the variations in the profiles of the leading edge and the pressure surface, which
also are important influencing factors.

Historically, the design of a blade shape can generally be divided into four main
categories [12]: The first one is represented by C4 airfoil, NACA65 airfoil and BC6 airfoil,
all of which have parabolic mean camber lines. The second one has a double-arc and multi-
circular-arc profiles. The third type has controlled diffusion airfoil [13]. For the fourth type,
the blade shape is designed by using the aerodynamic shape parameterization methods,
such as class shape transformation [14], free deformation methods [15] and adjoint-based
shape optimization [16]. The optimization of blade profiles by altering the control points
of the blade shape parametrization has attracted much attention in the past decades,
while the computational fluid dynamic (CFD) approach has found wide application in
analyzing flow fields. The often-used blade shape parameterization methods are the ones
to determine the camber line and thickness distribution [17,18], and the ones to generate the
suction and the pressure surface profile [19,20]. For example, Ju and Zhang [21] optimized
a compressor cascade from an industrial axial flow compressor by using a multi-point,
multi-objective optimization design method to extend the working range of the cascade
while maintaining good performance. Venturelli and Benini [22] optimized an S-shape
supersonic cascade by using the second parameterization approach. Presently, the CFD
method is capable of making a reasonable prediction of the separation flow and the vortex
shedding frequency [23,24]. Therefore, the CFD method lay a reliable foundation for the
parameterization optimization based on the direction computational method, especially for
the multi-point and multi-objective aerodynamic optimization.

The present optimization of blade shape using the blade parametrization method
needs a large number of expensive CFD simulations. Researchers proposed to use the
surrogate model in the optimization framework [25,26], to save the cost of CFD computa-
tions. Consequently, many surrogate models have been proposed and developed, such as
the polynomial regression model, Kriging model, support vector machine and artificial
neural network. The examples, to cite a few, include the design and optimization of a
compressor tandem cascade by using an artificial neural network [27], and the optimization
of a compressor cascade using support vector regression [28]. The results of the above
examples showed an evident improvement in the performance of a compressor cascade
and significantly reduced CFD expenditure in the meantime.

The experimental data on a cascade derived from a rotor blade section of a real
transonic compressor are scarce, because the requirement for such an experimental rig is
very high, such as the need for a high power supply, a large space and the expensive specific
equipment for the cascade wind tunnel. In this paper, a new blade parameterization method
is proposed for a transonic compressor cascade, to control the blade profile including
the leading edge, the suction and the pressure surface. To minimize the total pressure
loss and extend the working range of the cascade, a Kriging surrogate-model-assisted
genetic algorithm (GA) optimization method was applied to optimize the aerodynamic
performance of a transonic cascade derived from an industry compressor. The underlying
mechanisms for the reduction in flow losses are also explored by analyzing the variations
in flow fields in detail.
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2. Cascade Modeling and Numerical Method
2.1. Compressor Cascade

In this paper, the geometry of the transonic compressor cascade under investigation is
shown in Figure 1. The data of the linear cascade under investigation are listed in Table 1.
The blade profile of the transonic cascade was scaled from the blade section of the first rotor
of the axial flow compressor in a heavy-duty gas turbine. The aerodynamic experiment was
carried out at inlet Mach number Ma1 = 0.9 in a wind tunnel for linear cascades at Dalian
Maritime University. For a detailed description of the test equipment and measurements,
please refer to Ref. [29].
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Figure 1. Diagram of cascade geometric parameters.

Table 1. Transonic compressor cascade parameters.

Parameters Value

Chord length c 47.15 mm
Pitch length t 32.63 mm
Solidity c/t 1.44

Span length s 100 mm
Stagger angle βs 37.46 deg

Camber angle 27.46 deg

2.2. Cascade Modeling

In this paper, as shown in Figure 2, the suction surface of the blade is fitted by using
two Bezier curves, which connect smoothly at the position of the maximum blade thickness.
The pressure surface is parametrized in the same way. For the leading edge of the blade,
its thickness distribution is parametrized by using a Bezier curve with its camber line
being a straight line, because the shape of the leading edge plays a very important role
in the surface pressure distribution and the performance of the transonic cascade [10]. In
the optimization, Points S1, S7, P1 and P7 are fixed. The degrees and directions of the
movement of all other control points are shown by the arrows. The initial coordinates of
the control points were obtained by fitting the initial blade profile. The trailing edge kept
its profile throughout the optimization process.

The suction and pressure surface were fitted by two third-order Bezier curves, respec-
tively. In contrast, a fourth-order Bezier curve was used to control the thickness distribution
for the leading edge with the camber line keeping a straight line. Here, it should be pointed
out that the changes in the positions of L2 and L4 can be determined by the angles of α1 and
α2. In the optimization, the control variables were α1 and α2, which were used to control
the thickness change rates at the starting point of the blade leading edge and at Point S1.
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Furthermore, the tangent at Point S1 was determined by the profile of the leading edge,
and the control point S2 should move along the tangent. It should be mentioned here that
Point S3 moved along the horizontal line S3–S5 and did not lie on the extension line of
S1–S2. In the same way, the second half of the suction surface could be determined. The
same fitting strategy applied to the pressure surface.
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2.3. Numerical Method

In this paper, the ANSYS® Fluent was used to solve the flow field. The steady Reynolds-
averaged Navier-Stokes (RANS) equations coupled with a turbulent model were solved
by using the finite volume method. The two-dimensional (2D) steady-state simulations in
double precision were conducted to optimize the cascade. In contrast, the three-dimensional
(3D) steady-state simulations were carried out to simulate the experimental cascade flow
field. The steady, three-dimensional (3D) RANS equations in the Cartesian coordinate
system are expressed as follows [30]:
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where ρ, U, p and T are the fluid density, velocity, pressure and temperature, respectively.
The variable ht is the total enthalpy of the fluid, and ∇(U · τ) represents the work due to
viscous stresses. To close the control equations, the ideal gas state equation is also included:

p = ρRT (4)

In order to capture the detailed flow field and analyze the internal flow loss mecha-
nisms inside the transonic compressor cascade, the shear stress transfer (SST) k-ω model
was chosen as the turbulence model, following the work of Huang et al. [12] and Ju and
Zhang [22].

Figure 3 shows the grid topology for this transonic compressor cascade. As shown in
Figure 3a, the computational domain is extended 1.5 c upstream and downstream of the
cascade. To improve the orthogonality of the grid, the H-O-H grid topology was used and a
60-layer grid was set within the blade boundary layer. The first grid layer next to the blade
surface was set to y+ < 1 to ensure the accuracy of the viscous fluid solution in the boundary
layer. The 3D domain in Figure 3b is an extension of the 2D computational domain along
the span direction with a span height of 100 mm, according to the experimental cascade
size. The grid layer along the span is 120 and the total grid number for the 3D simulation
is 6.53 million, with y+ of the first layer next to the blade being less than 1, as shown in
Figure 4.
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As for the boundary conditions, the pressure-far-field [3] was set at the inlet boundary
with a given airflow direction; meanwhile, a pressure-out boundary condition was imposed
at the outlet boundary. The turbulence intensity was set to 1% according to the wind
tunnel data, and the turbulence length scale was given as the hydraulic diameter of the
inlet section of the cascade. The periodic boundary condition was assigned to the side
boundaries of the single blade passage. The blade surfaces and the end walls (for 3D
computations) were given the adiabatic no-slip wall boundary condition. The main setups
of the density-based solver and boundary conditions are summarized in Table 2.

Table 2. Solver settings and boundary conditions.

2D 3D

Turbulence model SST-kω SST-kω
Solver type Density-based

Working material Ideal gas
Formulation Implicit

Flux type Roe-FDS
Inlet boundary conditions pressure-far-field

Outlet boundary conditions pressure-out

In the experiment [23], two stations referred to as Station 1 and 2 were used to measure
the performance of the cascade, as shown in Figure 3. Station 1 was located 15 mm in the
upstream of the leading edge while Station 2 was placed 20 mm downstream of the trailing
edge of the blade, both along the axial direction. The cascade total pressure loss coefficient
is defined as follows:

ω =
Pt1 − Pt2

Pt1 − P1
(5)

where Pt1, Pt2 and P1 are the upstream total pressure, downstream total pressure and the
upstream static pressure, respectively.

2.4. Grid Sensitivity Analysis and Numerical Method Validation

In this work, four grids for the 2D simulations and three turbulence models were
adopted to verify the numerical model and independence of the grid. The number of 2D
grid elements was increased from 30 k to 120 k. The variation in the total pressure loss
coefficient with the 2D grid size is shown in Figure 5. When the element number is greater
than 90 k, the total pressure loss coefficient almost becomes a constant. Therefore, the
number of elements for the 2D simulation will remain at 90 k in the following optimization,
to balance the computational accuracy and optimization efficiency.
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As for the turbulence models, the one-equation approach developed by Spalart and
Allmaras (SA), the two-equation shear-stress transport k-ω model (kω-SST) and the four-
equation transition SST model (also known as the γ-Reθ model) were applied to the 3D
grid. The CFD results were compared against the experimental data, which were obtained
at an inlet Mach number of 0.9 with a midspan axial velocity density ratio (AVDR) of 1.48
in the wind tunnel. The pressure coefficient distribution comparison between the CFD
and experimental results is shown in Figure 6. It can be seen that the CFD model based
on the kω-SST makes a reasonable prediction of the pressure distribution. So, the 2D and
3D flow simulations were carried out using the kω-SST turbulence model. However, the
experimental and CFD results do not agree well in the shock position (x/Cax = 0.2-0.3). This
is mainly due to the shock wave oscillation, which may smear the pressure jump measured
by the pressure taps. For a detailed description, please refer to Ref. [29].
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The pressure coefficient distribution comparison between the 2D and 3D results is
shown in Figure 7. It can be seen that the difference between the 2D results and the
experimental data is evident. However, the 3D calculation results agree well with the ex-
perimental results. This is because the 2D simulation could not take the influence of AVDR
into consideration, while the 3D computation reveals the actual flow field information.
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Therefore, the 3D computational results were used to analyze the underlying mechanisms
for the reduction in flow losses. The pressure coefficient was defined as follows:

Cp =
Pt1 − P
Pt1 − P1

(6)

where P is the local static pressure on the blade surface.
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3. Cascade Optimization
3.1. Optimization Problem

The aim of this work was to reduce the total pressure loss coefficients of the cascade
with the constraint of static pressure ratios, and to extend the cascade working range. The
working range of the cascade is specified as the angle range in which the flow loss is less
than two times the minimum loss coefficient in this paper. Therefore, the total pressure loss
coefficients at three inlet airflow angles (β1 = 53◦, β1 = 56◦ and β1 = 58◦) were chosen to
form an optimization objective to achieve the aim of reducing flow losses and extending
the working range simultaneously. The aerodynamic data at the three inlet flow angles
are weighted equally, i.e., the optimization objective is the average of the flow losses at the
three angles. In this way, the optimization of the flow losses at three different flow angles is
transformed to a single-objective optimization problem.

3.2. Optimization Algorithm

The genetic algorithm (GA) is an optimization method to search for the optimal
solution by simulating the natural evolutionary process [31]. Compared with the gradient
optimization algorithm, it is easier to obtain the global optimal solution. In this paper, the
GA is used to optimize the above proposed objective function.

To save the large number of expensive CFD simulations, the surrogate model was
used in the optimization algorithm. Because the Kriging surrogate model is a well-accepted
unbiased estimation model with both local and global statistical properties [25], the Kriging
model was employed to construct the surrogate model for the optimization objective. The
basis function of the Kriging surrogate model is defined as:

ψ(i) = exp

(
−

k

∑
j=1

θj

∣∣∣x(i)j − xj

∣∣∣Pj

)
(7)
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From the above equation, it is known that the key procedure is to estimate the values of
the parameters θ and P. One way to do this is to choose θ and P to maximize the likelihood
function of the observed data y. The likelihood function is given by:

L =
1

(2πσ2)
n
2
∣∣∣Ψ∣∣∣1/2 exp

[
− (y− 1µ)T

Ψ−1(y− 1µ)

2σ2

]
(8)

where µ and σ are the mathematical expectation and standard deviation, respectively. The
symbol Ψ represents the correlation matrix. By taking the natural logarithm of both sides of
the above equation and taking the derivative of it, the concentrated log-likelihood function
is obtained:

ln(L) ≈ −n
2

ln
(

σ2
)
− 1

2
ln
∣∣∣∣Ψ∣∣∣∣ (9)

As a result, the function can be searched directly by GA. The value of this function
depends on the unknown parameters θ and P. In this work, the model parameter P = 2 was
fixed and only θ was adjusted. Moreover, it is meaningful to search for θ on a logarithmic
scale, and a search range of 10−3–102 is appropriate. Additionally, the range of design
variables was scaled to 0-1.

3.3. Optimization Process

The optimization process is summarized in the flowchart in Figure 8. It mainly
comprises four modules: the DOE module, the blade geometry module, the CFD module
and the optimization module.
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First, the design of experiment (DOE) method was chosen to be the Latin hypercube
sampling (LHS). Two hundred optimally distributed sampling points were obtained for
the optimization problem with 16 design variables using an in-house Matlab program,
following the evolutionary operation for the LHS [32]. In the module of blade geometry, an
in-house program was used to automatically produce the blade profile for simulations. In
the CFD module, the back pressure needed to be interactively adjusted to make sure that
the inlet Mach number was 0.9 in the numerical simulations at different airflow angles. For
the detailed adjustment loop of the optimization, please refer to Ref. [18].

In the optimization module, an in-house Matlab program was used to build the
surrogate model and the GA optimization algorithm. It is known that the surrogate model
is just an approximate model of the real function to be optimized. In the optimization
module, the surrogate model needed to be updated continually by adding new sampling
points to the initial sampling group, to improve the model accuracy. In this work, the
adding-point strategy of the maximum expected improvement criterion to improve the
global accuracy of the model was adopted. This criterion combines both local excavation
and global exploration to quickly obtain the exact optimal solution and improve the model
global accuracy. In many situations, maximizing the expected improvement (EI) criterion
has been shown to be the best strategy for finding the global optimal solution [33].

If the error function (erf) is used, the EI criterion is defined as follows:

E[I(x)] = (ymin − ŷ(x))
[

1
2
+

1
2

erf
(

ymin − ŷ(x)
ŝ
√

2

)]
+ ŝ

1√
2π

exp

[
−(ymin − ŷ(x))2

2ŝ2

]
(10)

where ŷ and ŝ2 are the mean value and variance, respectively. Moreover, in the process of
optimizing the blade shape, the static pressure ratio of the cascade is required not to drop.
Therefore, a surrogate model for the pressure ratio constraint is needed, except for the
surrogate model for the objective function. Consequently, the adding-point criterion and
the expected improvement method with consideration for the constraint were developed;
the surrogate model for the constraint of pressure ratio was used to calculate the probability
that the predicted pressure ratio was greater than the required value. The probability of a
specific pressure range is defined as:

P[F(x)] =
1

ŝ
√

2π

∫ ∞

0
e−(F−ĝ(x))2/(2ŝ2)dG (11)

where g is the constraint function and F represents the feasibility. The probability of
satisfying the requirement of the constraint function was combined with the EI criterion
of the objective function. The new adding-point criterion in the intersection set of the two
surrogate models should satisfy the following expression, expressed as follows:

E[I(x) ∩ F(x)] = E[I(x)]P[F(x)] (12)

The objective function and constraint of the optimization problem are as follows:{
Objective = min(ω1+ω2+ω3

3 )
Constraint : π > πoriginal

(13)

where ω1, ω2 and ω3 correspond to the cascade total pressure loss coefficients at inlet
airflow angles of 53◦, 56◦ and 58◦, respectively, and πoriginal is the mean value of the static
pressure ratios at the three airflow angles.

4. Results and Discussion

The optimization of the compressor cascade was accomplished using the Kriging-
model-based genetic algorithm. The optimal solution was obtained after 400 generations of
evolution and about 600 rounds of CFD simulations. Three cases with a minimum total



Machines 2023, 11, 244 11 of 18

pressure loss at the three specific airflow angles, named as Case 1, Case 2 and Case 3, were
selected for the following analysis.

4.1. Comparison of Cascade Geometry and Overall Performance

First, the profiles of the initial blade and the optimization blades are shown in Figure 9.
As can be seen, compared to the initial blade, the changes in the optimized blade profiles
mainly occur in the first half of the blade. A first noticeable change is that the suction
surface of the optimized blades becomes flatter and the radii of curvature of their pressure
surface also increase, compared with the initial blade. Another interesting finding is that
the maximum relative thicknesses of the optimized blades are all slightly increased, and
their positions are also all shifted forward by roughly 10%, from nearly 54% chord length
of the initial blade to nearly 45% chord length of the optimized blades. The quantitative
comparison of the data is shown in Table 3. Another interesting finding is that the leading
edges of the optimized blades become more ‘plump’ than that of the initial blade (see the
zoomed-in figure). The underlying mechanism for the evolution trend of the blades of Case
1, Case 2 and Case 3 needs further exploration.
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Table 3. Transonic compressor cascade design variables.

Variables Initial Case 1 Case 2 Case 3

Maximum relative thickness m/c 0.0785 0.0787 0.0813 0.0814
Relative maximum thickness position S4x/c 0.5414 0.4541 0.4542 0.4567
Leading edge thickness distribution α1(◦) 87.61 87.78 87.64 87.61
Leading edge thickness distribution α2(◦) 19.76 19.59 19.11 20.56

To compare the cascade aerodynamic performance, 2D numerical simulations at
different inlet airflow angles were performed for the initial cascade and the optimized
cascades, as shown in Figure 10. It can be seen that three optimized cascades all have a
lower loss coefficient compared to the initial cascade, and the static pressure ratio does not
decrease in the working range. At the minimum loss point, the loss coefficient of Case 3
drops by 11% compared with that of the initial cascade. In addition, the working range of
the optimized cascades is extended, increasing from 7.2◦ to 7.7◦ with a 6.9% improvement
for Case 1, for example. The optimization results achieve our goal of reducing the flow loss
and extending the working range.



Machines 2023, 11, 244 12 of 18

Machines 2023, 11, x FOR PEER REVIEW 13 of 20 
 

 

 
Figure 9. Comparison of geometric characteristics of cascade before and after optimization. 

Table 3. Transonic compressor cascade design variables. 

Variables Initial Case 1 Case 2 Case 3 
Maximum relative thickness 

m/c 0.0785 0.0787 0.0813 0.0814 

Relative maximum thickness 
position S4x/c 0.5414 0.4541 0.4542 0.4567 

Leading edge thickness distri-
bution 1α (°) 87.61 87.78 87.64 87.61 

Leading edge thickness distri-
bution 2α (°) 19.76 19.59 19.11 20.56 

To compare the cascade aerodynamic performance, 2D numerical simulations at dif-
ferent inlet airflow angles were performed for the initial cascade and the optimized cas-
cades, as shown in Figure 10. It can be seen that three optimized cascades all have a lower 
loss coefficient compared to the initial cascade, and the static pressure ratio does not de-
crease in the working range. At the minimum loss point, the loss coefficient of Case 3 
drops by 11% compared with that of the initial cascade. In addition, the working range of 
the optimized cascades is extended, increasing from 7.2° to 7.7° with a 6.9% improvement 
for Case 1, for example. The optimization results achieve our goal of reducing the flow 
loss and extending the working range. 

  

(a) (b) 

Figure 10. Comparison of the cascade performances. (a) Total pressure loss coefficients; (b) static 
pressure ratios. 

  

Figure 10. Comparison of the cascade performances. (a) Total pressure loss coefficients; (b) static
pressure ratios.

4.2. Performance Improvement Mechanism

Considering the influence of AVDR on the cascade performance, a 3D numerical
simulation at an inlet airflow angle of 56◦ was selected to analyze the mechanism for the
cascade performance improvement. The flows in the middle plane were selected to make
the comparison. The total pressure loss coefficient in the middle plane at the 56◦ inlet
airflow angle is compared in Table 4. The total pressure loss coefficients of the optimized
cascades are reduced by 9.4% (Case 1), 13.3% (Case 2) and 12.3% (Case 3), compared to the
initial cascade.

Table 4. Comparison of the total pressure loss coefficient in the middle plane (β1 = 56◦).

Case ω Relative Reduction %

Initial 0.058 /
Case 1 0.052 9.4
Case 2 0.050 13.3
Case 3 0.051 12.3

To explore the mechanism for the cascade performance enhancement, the pressure
coefficient distributions in the middle plane of the 3D numerical results are illustrated in
Figure 11. Obviously, the peak of the pressure coefficient of the initial cascade decreases
evidently, which indicates that the shock strength becomes weak and the pre-shock Mach
number drops. The forward movements of the blade maximum thickness and the change in
the profiles of the optimized blades make the front half of the blades look more closely like
wedge or 2D diffusers. This greatly reduces the maximum shock strength in the cascades.
Additionally, the compressor blade often has a small ‘spike’ of the pressure distribution
on the suction surface at the leading edge. The spike height is defined as the change in Cp
from the peak to the trough of the spike (see the zoomed-in figure in Figure 11). Martin
N and Robert J [34] pointed out that the performance of a cascade is not affected by the
leading edge shape when the spike diffusion factor is kept below 0.1. The spike diffusion
factor is defined in Eq. 14. From the pressure coefficient distribution at the leading edge, it
can be seen that the suction surface spike heights of the optimized blades are higher than
those of the initial blade. The spike diffusion factors are summarized in Table 5. According
to the results of Ref. [34], if the spike diffusion factor exceeded 0.1, it would bring about a
30% rise in the profile loss of suction surface. This is mainly due to the fact that an increase
in spike height leads to an increase in the energy thickness of the trailing edge boundary
layer. In contrast, the optimized cascades all have a reduced total pressure loss coefficient
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of the cascade (see Table 4), although their spike diffusion factors are all higher than the
initial blade’s. The reason for this needs detailed investigation.

Dspike =
umax − umin

umax
(14)
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Table 5. Comparison of the spike diffusion factor.

Case Dspike

Initial 0.07
Case 1 0.11
Case 2 0.14
Case 3 0.12

It is worth noting that at the leading edge of the initial blade, the pressure coefficient
curve of the pressure surface intersects with that of the suction surface (the zoomed-in
figure in Figure 11). The Mach number contour at the leading edge reveals, as shown in
Figure 12, that two high-speed cells appear next to the pressure surface of the initial blade,
and this is the reason why there is an intersection of the two pressure coefficient curves. In
contrast, the leading edges of the optimized cascades are plumper in shape than the initial
cascade; therefore, the flow accelerates more quickly near the leading suction surface. This
results in a higher spike height for the three cases at the leading edge (Figure 11). However,
the optimized blade profiles counteract the possible increase in the momentum thickness
in the boundary layer on the suction surface and the corresponding extra profile loss.

The transonic compressor cascade often has a shock wave in the blade passage. The
interaction between the boundary layer and the strong shock wave can induce the boundary
layer to separate from the blade, and results in an evidently increased flow loss [35].
Figure 13 shows the Mach number contour over the suction surface, where the black line is
the sonic line (Ma = 1). It can be seen that the pre-shock Mach numbers of the optimized
cascades decrease significantly, resulting in weaker passage shocks than that of the initial
cascade. The shock pattern changes from a strong passage normal shock of the initial blade
to a passage oblique shock. It is noticeable that the initial passage normal shock wave
interacts with the boundary layer, resulting in boundary layer separation and a separation
bubble (as shown in Figure 13). On the contrary, all of the optimized cascades do not have
boundary layer separation, because the strength of the shock wave is evidently reduced.
In order to quantitatively analyze the separation bubble induced by the shock boundary
layer interaction, the distribution of the skin friction coefficient Cf on the suction surface is
given in Figure 14. There is an obvious separation bubble on the blade suction surface. The
separation bubble is located at the position of 30% chord length, and has a length of about
6.3% chord length. After optimization, the separation bubble induced by the shock wave
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disappears for all of the optimized cascades. According to the above analysis, it is evident
that although the shock loss and profile loss are difficult to be accurately distinguished, the
benefit from the weakened shock strength is greater than the increased profile loss caused
by the rising leading edge spike diffusion factor.
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Figure 15 shows the total pressure loss coefficient at the position of Station 2 in
the middle plane. It can be seen that the wake widths of the optimized cascade are all
significantly reduced compared to the initial cascade. If the wake width is defined as the
width at half of the depth [12], it is reduced from 28.8% of the pitch of the initial cascade to
17.5% (Case 1), 21.9% (Case 2) and 21.6% (Case 3), respectively, after optimization. Table 6
indicates that wake widths in the optimized cascades were reduced by 39.2%, 24.0% and
25% for Cases 1, 2 and 3, respectively, compared with the initial cascade. Moreover, the
contours of the total pressure loss distribution on the cross section at Station 2 for the initial
and optimized cascades are shown in Figure 16. Compared to the initial cascade, the results
show that the high loss regions (ω > 0.45) of the optimized cascades decrease considerably.
It can be concluded that the optimized cascades perform better than the initial cascade, no
matter whether they are 2D flows or 3D flows.
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5. Conclusions

In this paper, a new blade parameterization method is proposed to construct the
profile of the upper and lower surfaces and the leading edge of the transonic blade. A
Kriging-assisted optimization method is proposed and used to optimize the cascade to
reduce the total pressure loss and extend the working range. The main conclusions are
as follows:

1. The blade parameterization method proposed in this paper has the advantages of
using only 16 control variables to fit the blade profile precisely, covering the profiles
of the suction surface, the pressure surface and the leading edge.

2. The proposed optimization method is an effective approach to be used to reduce the
total pressure loss while extending the working range of the conventional transonic
cascade with about 600 rounds of CFD simulations. For the 2D simulations, the total
pressure loss coefficient of the optimized cascades has a nearly maximum reduction
of 11% at the best flow angle and the working range is extended by 6.9%, compared
to the initial cascade. For the 3D simulations, the total pressure loss coefficients of the
optimized cascades decreased by 9.4% (Case 1), 13.3% (Case 2) and 12.3% (Case 3) at
an inlet airflow angle of 56◦, respectively.

3. It was found that the maximum thickness positions of the optimized cascades move
forward by 10% toward the leading edges, and the radii of curvature of the suction
and pressure surfaces increase as well, compared with the initial cascade. This makes
the front half of the optimized blades look more like a wedge. Consequently, the
optimized cascades have a lower pre-shock Mach number and a weakened shock
strength, and the shock pattern changes from a passage normal shock to a passage
oblique shock.

4. The evident separation bubble on the suction surface of the initial blade caused by
the shock wave boundary layer interaction disappears on the optimized blades, due
to the reduced shock strength. The weakened shock wave plays a more important
role in performance improvement in the optimized transonic compressor cascades
than other factors, such as the increase in the spike diffusion at the leading edge. The
optimized cascades show better performance in both the 2D and 3D flow conditions.
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