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Abstract: Industrial actuator systems play an important role in mechanical manufacture, chemical
production and other industrial processes. There is important theoretical research significance and
engineering application value in accurately modeling and accurately controlling for an industrial
actuator system with dead-zone input nonlinearity. The structure and order of the system are
determined by the mechanism relationship of the system. Based on sampled data, an identification
algorithm is proposed to describe the main dynamic characteristics of the system output. The
convergence property of the proposed identification algorithm is also analyzed. Process faults may
reduce the tracking control accuracy of the industrial actuator system. By using an intermediate
observer to estimate the faults, a fault-tolerant synchronous control feedback rate is designed to
compensate faults. The input dead-zone block may weaken the feedback control performance of
the input signal and reduce the control precision. According to the dead-zone input nonlinearity
model parameter, a compensator is introduced to transform the dead-zone function into a linear
function passing through the origin of coordinates. The transformed and dynamic linear segment of
the system constitute the generalized linear system. The model predictive control (MPC) strategy is
designed to achieve robust and precise control by eliminating the effects of measurement noise. The
results of numerical simulation and experimental test verify the superiority and merit of the modeling
and fault-tolerant control strategy. The research results of this paper can provide a good reference
and guidance for other complex systems in theoretical research and engineering applications.

Keywords: industrial system; mechanism analysis; modeling; fault-tolerant control; model
predictive control

1. Introduction

With the development of the manufacturing industry, higher requirements are put
forward for the control accuracy and safe operation of industrial actuator systems [1–3].
The establishment of an accurate industrial system model is necessary for implementing
process control and safety monitoring [4]. Using the mechanism analysis method and
data-driven method, the establishing dynamic model of industrial system has important
theoretical research significance and engineering application value [5]. The model-based
controller design is easy to implement and has high control precision.

The industrial actuator system may work in a stable state, integral state, nonlinear
state, or closed-loop state [6]. Therefore, it is necessary to select an appropriate modeling
scheme according to the structure and working mode of the industrial actuator system.
The modeling methods for industrial actuator systems are mainly divided into mecha-
nism modeling method, data-driven modeling method, and hybrid modeling method [7].
The mechanism modeling method describes various characteristics of the process, and
has strong explanatory and adaptability capacity for the specific process [8]. Due to the
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complexity of the process, it is difficult for the mechanism model to accurately describe
all the characteristics of the process and the complex relationship between variables [9].
The prediction accuracy of the mechanism model is usually not high. The mechanism
model usually involves complex calculus operations and a large number of undetermined
parameters, which reduces its convenience in application [10]. The data-driven modeling
method fully mines the data information related to the process and has the advantages of
simple theory and easy implementation [11]. The internal mechanism relationship of the
industrial system has strong coupling characteristics, and the data-driven modeling scheme
is suitable for selection. By analyzing the mechanism of system, the model structure and
order can be determined [12]. The data-driven identification method can obtain the main
dynamic characteristics of the industrial system [13]. Therefore, this paper will study the
data-driven modeling of industrial actuator system based on the sampled data.

Data-driven modeling of industrial systems is a hot topic for researchers. A series of
scientific research achievements have been obtained [14]. By analyzing experiment data, the
choke finger system is modeled by a block-oriented model with a nonlinear dynamic input.
A recursive algorithm has been proposed to estimate the model parameters [15]. A two-
stage identification method for Hammerstein systems, including not necessarily symmetric
preload and dead-zone nonlinearity, has been developed and involves least-squares-like
estimators and periodic input signals, which guarantee the consistency of all estimators [16].
By combining a data assignment and parameter estimation technique, a hybrid system con-
sisting of a Piecewise Auto-Regressive eXogeneous (PWARX) structure has been developed
for a rainfall-runoff system [17]. By designing sufficient excitation signals to persistently
excite industrial Hammerstein–Wiener systems with dead-zone input nonlinearity, the
main dynamic characteristics of the system can be obtained based on the least-squares
estimation strategy [18]. A one-step adaptive parameter estimation framework has been
presented for identification of asymmetric dead-zone parameters in sandwich systems.
A continuous piecewise linear neural network and an adaptive observer are designed to
avoid using intermediate variables [19]. These modeling strategies provide a guidance for
data-driven modeling of industrial systems with dead-zone input nonlinearity.

Inevitable faults and random disturbances may affect the product quality and control
accuracy of industrial operating systems. The research of disturbance rejection control based
on the model has important engineering significance and theoretical research value [20].
Some important achievements have been made in fault-tolerant control and model pre-
dictive control. For outage faults and loss-of-effectiveness faults, a distributed adaptive
fault-tolerant controller based on finite-time observer is designed to solve the coopera-
tive output regulation problem, in which the solvability of the regulator equations is also
guaranteed [21]. A broad learning system (BLS)-based adaptive full-state constrained
controller has been investigated for a class of space unmanned systems (SUSs) subjected to
the actuator faults and input nonlinearities. By estimating the lower boundary of the non-
linear actuator effectiveness, the unstable dynamic caused by the actuator faults and input
nonlinearities can be overcome [22]. Based on the stable kernel representation, data-driven
realization and design of feed-forward fault-tolerant control systems with embedded resid-
ual generation have been studied in the literature [23]. An adaptive fault-tolerant control
design has been proposed for a flexible Timoshenko arm considering the effects of actuator
failures, backlash-like hysteresis, and external disturbances [24]. The input dead-zone block
can weaken the exciting characteristics of the control signal and limit the amplitude of
the control signal. Based on the identification model, the MPC strategy can better achieve
accurate control. By substituting event-triggered law for the receding horizon principle in
predictive control, an event-triggered closed-loop subspace predictive control algorithm
has been proposed for linear discrete-time systems with an unknown plant model [25]. A
combined MPC and deep reinforcement learning solution has been presented, which can
minimize stopping of trams at intersections while reducing delay of general vehicles [26].
A weighted-coupling CSTR (WCCSTR) model has been developed for the goethite process
by introducing weighted parameters, and an MPC scheme has been designed to achieve
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the process performance goals and minimize the process cost [27]. A multi-objective model
predictive control (MO-MPC) of constrained nonlinear systems has been proposed and the
optimal solutions are obtained by solving a hierarchy of single objective optimization prob-
lems [28]. For the control system with actuator saturation and dead-zone nonlinearity, two
different control strategies based on MPC have been implemented. One relies on hybrid
MPC, and the other is based on dead-zone inversion and standard MPC [29]. A dead-zone
compensating control law and a recursive estimator have been derived for Hammerstein
systems with symmetric dead-zone input non-linearity and colored noise [30]. This paper
presents a model-based strategy for fault tolerance in non-linear chemical processes. An
observer-based fault detection and diagnosis scheme has been implemented to compensate
the effects induced by actuator and sensor faults [31]. By employing some transformations,
a part of the unknown dead-zone and external disturbance are regarded as a composite
disturbance. An adaptive fault-tolerant boundary control has been developed by utilizing
strict formula derivations to compensate for unknown composite disturbance, dead-zone,
and actuator fault in the flexible string system [32]. By using fault detection and isolation
technology, an active fault-tolerant model predictive control strategy with a hierarchal
structural design is developed for a direct methanol fuel cell (DMFC) system with fault [33].
The controller design based on the established model can not only improve the control
performance of linear time invariant systems but also improve the control precision of
linear parameter-varying (LPV) systems. Switched gain-scheduling LPV controllers with
fault-tolerance have been designed for engine exhaust gas recirculation (EGR) valve system
with nonlinear dry friction [34]. The results of the existing literature in different fields
can provide good guidance and reference for the research of this paper [35]. Based on the
established nonlinear input dead-zone system model, the combination of fault-tolerant con-
trol technology and MPC technology can effectively eliminate the influence of dead-zones
and disturbance.

In this paper, the theory of data-driven modeling and the scheme of fault-tolerant
model predictive control are studied for industrial actuator systems with dead-zone input
nonlinearity. A typical nonlinear industrial control system is introduced and designed. The
structure and model order of the system are determined by mechanism analysis technique.
The system is described by a nonlinear Hammerstein block system. The system model is
established by a data-driven identification method. The parametric identification model
can describe the main dynamic characteristics of the system. An intermediate observer is
used to estimate the process faults signal. A fault-tolerant synchronous control feedback
rate based on fault estimation is designed to compensate faults. In order to eliminate the
weakening effect of dead-zone on control signal, a compensator has been introduced to
transform the dead-zone function into a linear function. The MPC strategy was designed
for the generalized linear system to achieve precise control. By comparing with the existing
method, the effectiveness of the proposed modeling algorithm and control strategy will
be cross-verified by using the numerical example and experimental platform. The rest of
this paper is organized as below. A typical networked industrial control system will be
introduced and designed in Section 2. Section 3 includes a system mechanism analysis
and modeling problem description. The system data-driven identification algorithm and
convergence analysis will be given in Section 4. The fault-tolerant model predictive control
method will be presented in Section 5. The numerical simulation and experiment test are
presented in Section 6. Finally, some main conclusions are drawn in Section 7.

2. Industrial Control System

An industrial actuator control system is constructed on the basis of a real-time com-
munication network and is mainly composed of a management layer, process layer, and
field equipment layer, as shown in Figure 1. The management layer is a comprehensive
information processing and human–computer interaction center, which is used to realize
data monitoring, data storage, data management, and remote settings. The process layer is
the core link for connecting the management layer and the field equipment layer, which is
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mainly used to collect sensor data of the field equipment layer and deliver management
control instructions. The field equipment layer mainly includes actuators, controlled objects,
and sensors. The remote controller and field device layers are located in different physical
spaces and interact with each other through real-time communication networks. The typical
industrial actuator control experimental system is constructed as shown in Figure 2.
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Figure 2. Industrial control system platform.

The main functional modules involved in the system include network communication
function, reset function, controlled mode function, desired trajectory function, start and
stop function, and state monitoring function. The PC communicates with the embedded
interface board by using the general Ethernet TCP/IP protocol. The data interaction
between embedded interface board and servo driver is realized by CANopen protocol.
The design based on PyQt5 and Qt Designer framework can provide an API interface
and human–computer interaction interface with graphical editing function. The upper
computer software implements data processing. The embedded interface board receives
the working condition information uploaded from the onsite device and sends it to the PC
via the Ethernet. The PC calculates the control quantity via the controller and sends it to the
embedded interface board. After the embedded interface board’s parses and transforms,
the closed-loop control of the system can be realized. The detailed parameter configuration
of the experimental platform is shown in Table 1.
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Table 1. Parameter configuration of platform.

Parameter Name Configuration

CPU Core i5-4210M 2.6 GHz
RAM 8 GM

Operating system Windows10 64 bit
Embedded interface board chip STM32F407ZGT6 168M Hz

Ethernet communication rate 100 Mb/s
CAN communication rate 1 Mb/s

Sampling period 1 ms–5 ms
AC server DeltaASDA-A2

Permanent magnet synchronous motor DeltaECMA-C10604RS
Electronic gear ratio 1/128(10,000 pulses/cycles)

Sensor position accuracy 5 × 10−4 mm
Range of liabilities for hysteresis −10 N–10 N

3. Modeling Problem Description

When the servo driver works in torque mode, the uniaxial servo system satisfies the
torque balance equation

Te − Tl = J
dωr

dt
+ Bωr. (1)

where Te is the electromagnetic torque; Tl is the no-load torque caused by cogging torque
and friction between the shaft and the bearing; ωr is the angular velocity of the motor; B is
the friction coefficient; J is the inertia of the uniaxial servo system in torque mode.

For motion control systems, no-load torque is usually used as a fixed servo parameter.
When the driving torque is less than the no-load torque, the motion system cannot be
driven, and the system presents the phenomenon of low input cutoff. With the aging of
the motor and inter-shaft wear, the no-load torque in different rotation directions often
changes slightly. Therefore, the no-load torque of the motor in different rotation directions
is defined as two unequal constants d1 and d2. According to Equation (1), the discrete time
model of the uniaxial servo system under the torque model can be described as

(J + B)ωr(k)− Jωr(k− 1) = Tm(k). (2)

where Tm(k) is the intermediate variable.

Tm(k) =


m1(Te(k)− d1), Te(k) > d1
0, d2 ≤ Te(k) ≤ d1
m2(Te(k)− d2), Te(k) < d2

. (3)

where m1 and m2 are the line segment slopes of the nonlinear input function.
Mechanism analysis can determine the model structure and parameters to be estimated

by using electromagnetic theory. However, electromagnetic torque, no-load torque, angular
velocity, friction coefficient, and moment of inertia of the motor cannot be determined
and predicted by experimental tests. The parameters in the equipment manual are ideal
values under certain assumption conditions, which are not complete and cannot reflect
the dynamic operating characteristics of the system. Therefore, the dynamic model of the
system can be established by using data-driven technology.

4. Parametric Identification Algorithm
4.1. Identification Algorithm

For industrial actuator systems with dead-zone input nonlinearity, the nonlinear
Hammerstein structural model can be used to fit the system output. Without adding
additional test sensors, the Hammerstein model can use the input and output data to
realize the decoupled identification of the linear and nonlinear parts of the system. The
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Hammerstein model uses a combination of static nonlinear block and linear dynamic block
to describe the system. Its system structure is shown in Figure 3.

Machines 2023, 11, x FOR PEER REVIEW 6 of 29 
 

 

4. Parametric Identification Algorithm 

4.1. Identification Algorithm 

For industrial actuator systems with dead-zone input nonlinearity, the nonlinear 

Hammerstein structural model can be used to fit the system output. Without adding ad-

ditional test sensors, the Hammerstein model can use the input and output data to realize 

the decoupled identification of the linear and nonlinear parts of the system. The Hammer-

stein model uses a combination of static nonlinear block and linear dynamic block to de-

scribe the system. Its system structure is shown in Figure 3. 

( )u k ( )u k

( )u k

( )u k

2d

2m

1d
1m linear 

dynamic 

block ( )y k

( )v k
+

 

Figure 3. Hammerstein structure with dead-zone input nonlinearity. 

The nonlinear system can be described as  

1 1

( ) ( ( ))

( ) ( ) ( ) ( ) ( )

k F u k

A z y k

u

uB z k v k− −





=

= +   
(4) 

where ( )u k  is the measurable input excitation signal; ( )u k  is an unmeasured interme-

diate signal; ( )y k  is the output response signal; ( )v k  is a Gaussian white noise signal 

with zero mean and variance 
2

v
 ; 1z−  is the backward shift operator. 

The polynomials 
1( )A z−  and 

1( )B z−  are coprime and defined as follows  

1 1

1
( ) 1 a

a

n

n
A z a z a z

−− −= + + +   (5) 

1 1

1
( ) b

b

n

n
B z b z b z

−− −= + +   (6) 

where 
a

n  and 
b

n  are the order of the system. Note that for unknown system dynamics, 

the model order is increased one by one, and their output prediction errors are also com-

puted. The optimal model order may be determined by using the Akaike information cri-

terion or a hypothesis testing condition [18]. 

The output function of the static nonlinear block ( )u k  is expressed as follows 

1 1 1

2

2 2

1

2

( ) , (

(

( )

0

(

)

( ) ,

)

( )

( ) , )

m u k d u k d

u k d u k d

m u k d u k d

− 


=  
 −    

(7) 

The Equation (7) can be expressed as follows 

1 1 1 1 1

2 2 2 2 2

[ ] [ ]

[ ] [ ]

 ( ) ( ( )) ( ( )) ( ( )) ( ) ( ( )) ( ) ( ( )) ( ( ))

( ( )) ( ( ) ) ( ( )) ( ) ( ( )) ( ) ( ( )) ( ( ) )

u k m d h u k h d u k h u k m u k h u k u k h u k h d u k

m d h u k h u k d h u k m u k h u k u k h u k h u k d

= − − + − −

+ − − − − + − − − −  
(8) 

where ( )h x  is an indicator function and defined as 

1, ( ) 0
( ( ))

0, ( ) 0

u k
h u k

u k


= 

   
(9) 

Figure 3. Hammerstein structure with dead-zone input nonlinearity.

The nonlinear system can be described as{
ũ(k) = F(u(k))
A(z−1)y(k) = B(z−1)ũ(k) + v(k)

. (4)

where u(k) is the measurable input excitation signal; ũ(k) is an unmeasured intermediate
signal; y(k) is the output response signal; v(k) is a Gaussian white noise signal with zero
mean and variance σ2

v ; z−1 is the backward shift operator.
The polynomials A(z−1) and B(z−1) are coprime and defined as follows

A(z−1) = 1 + a1z−1 + · · ·+ ana z−na . (5)

B(z−1) = b1z−1 + · · ·+ bnb z−nb . (6)

where na and nb are the order of the system. Note that for unknown system dynamics, the
model order is increased one by one, and their output prediction errors are also computed.
The optimal model order may be determined by using the Akaike information criterion or
a hypothesis testing condition [18].

The output function of the static nonlinear block ũ(k) is expressed as follows

ũ(k) =


m1(u(k)− d1), u(k) > d1
0, d2 ≤ u(k) ≤ d1
m2(u(k)− d2), u(k) < d2

. (7)

The Equation (7) can be expressed as follows

ũ(k) = m1d1[h(u(k))h(d1 − u(k))− h(u(k))] + m1[u(k)h(u(k))− u(k)h(u(k))h(d1 − u(k))]
+m2d2[h(−u(k))h(u(k)− d2)− h(−u(k))] + m2[u(k)h(−u(k))− u(k)h(−u(k))h(u(k)− d2)]

. (8)

where h(x) is an indicator function and defined as

h(u(k)) =
{

1, u(k) > 0
0, u(k) ≤ 0

. (9)

Assuming that the system satisfies the zero initial condition, i.e., u(k) = 0, y(k) = 0,
v(k) = 0 for k ≤ 0. The system operates in open loop conditions, i.e., u(k) is uncorrelated
with v(k). The purpose of identification is to use sampled data {u(k), y(k)} to determine
unknown model parameters.

Define the following vector

ϕn(k) = [µ1(k), µ2(k), µ3(k), µ4(k)]
T . (10)

µ1(k) = h(u(k))h(d1 − u(k))− h(u(k)). (11)

µ2(k) = u(k)h(u(k))− u(k)h(u(k))h(d1 − u(k)). (12)
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µ3(k) = h(−u(k))h(u(k)− d2)− h(−u(k)). (13)

µ4(k) = u(k)h(−u(k))− u(k)h(−u(k))h(u(k)− d2). (14)

θn = [m1d1, m1, m2d2, m2]
T . (15)

Combining Equations (10)–(15), the Equation (8) can be rewritten as

ũ(k) = ϕT
n θn. (16)

Combining Equations (4)–(6) and (16), the model output can be expressed as

y(k) = −
na

∑
i=1

aiy(k− i) +
nb

∑
j=1

bj ϕ
T
n (k− j)θn + v(k). (17)

The parameter and information vector expressions are, respectively, defined as follows

θ = [a1, · · · , ana , b1θn, · · · , bnb θn]
T ∈ Rnm . (18)

ϕ(k) = [−y(k− 1), · · · ,−y(k− na), ϕT
n (k− 1), · · · , ϕT

n (k− nb)]
T

. (19)

where nm = na + 4nb.
Equation (17) can be rewritten as

y(k) = ϕT(k)θ + v(k). (20)

The prediction output error is defined as

e(k) = y(k)− ϕT(k)θ̂(k). (21)

The estimation problem of the parameter vector is essentially the problem of minimiz-
ing the output error cost function.

θ̂ = argmin
θ

J(θ). (22)

where

J(θ) =
1
2

k

∑
i=1

∥∥∥y(k)− ϕT(k)θ̂(k)
∥∥∥. (23)

The dead-zone parameters d1 and d2 can be calculated from the estimated values of
the parameter vector, i.e.,

d̂1(k) =
θ̂na+1(k)
θ̂na+2(k)

=
b̂1m̂1d̂1

b̂1m̂1
. (24)

d̂2(k) =
θ̂na+3(k)
θ̂na+4(k)

=
b̂1m̂2d̂1

b̂1m̂2
. (25)

The established recursive least-squares algorithm for estimating θ̂(k) is summarized
as follows

es(k) = y(k)− ϕT(k)θ̂(k− 1). (26)

θ̂(k) = θ̂(k− 1) + K(k)es(k). (27)

K(k) =
P(k− 1)ϕ̂(k)

1 + ϕ̂T(k)P(k− 1)ϕ̂(k)
. (28)

P(k) = P(k− 1)(Inm×nm − K(k)ϕ̂T(k)). (29)
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By setting m1 = 1, a unique dead-zone parameter vector θn = [d1, 1, m2d2, m2]
T can be

obtained. The parameter vector is represented as

θ = [a1, · · · , ana , b1d1, b1, b1m2d2, b1m2, · · · , bnb θn]
T ∈ Rnm . (30)

4.2. Convergence Characteristic of Identification Algorithm

In this section, the convergence error of the proposed identification algorithm will be
analyzed. Define parameter estimation error by

θ̃(k) = θ̂(k)− θ. (31)

From Equations (26) and (27), we can obtain

θ̃(k) = θ̃(k− 1) + K(k)es(k)− θ

= θ̃(k− 1) + K(k)(y(k)− ϕ̂T(k)θ̂(k− 1)).
(32)

Since the gain vector satisfies K(k) = P(k)ϕ̂(k). By substituting Equation (20) into
(32), yields

θ̃(k) = θ̃(k− 1) + P(k)ϕ̂(k)[y(k)− ϕ̂T(k)θ̂(k− 1)]
= θ̃(k− 1) + P(k)ϕ̂(k)[ϕT(k)θ − ϕ̂T(k)θ̂(k− 1) + v(k)]
= θ̃(k− 1) + P(k)ϕ̂(k)ϕ̂T(k)[θ − θ̂(k− 1)] + P(k)ϕ̂(k)[v(k) + χ(k)]
= [I − P(k)ϕ̂(k)ϕ̂T(k)]θ̃(k− 1) + P(k)ϕ̂(k)[v(k) + χ(k)].

(33)

where

χ(k) =
nb
∑

j=1
bj

{
m1(u(k)− d̂1)h(u(k))h(d̂1 − u(k)) − (u(k)− d1)h(u(k))h(d1 − u(k))

+m2[(u(k)− d̂2)h(−u(k))h(u(k)− d̂2)− (u(k)− d2)h(−u(k))h(u(k)− d2)]
}

Due to

P−1(k) =
k

∑
i=0

ϕ̂(i)ϕ̂T(i) = P−1(k− 1) + ϕ̂(k)ϕ̂T(k). (34)

Multiplying both sides of Equation (34) by P(k), we have

I − P(k)ϕ̂(k)ϕ̂T(k) = P(k)P−1(k− 1). (35)

Substituting Equation (35) into Equation (33), θ̃(k) can be expressed as

θ̃(k) = P(k)P−1(k− 1)θ̃(k− 1) + P(k)ϕ̂(k)[v(k) + χ(k)]
= P(k)P−1(k− 1)[P(k− 1)P−1(k− 1)θ̃(k− 1)
+P(k− 1)ϕ̂(k− 1)(v(k) + χ(k))]
+P(k)ϕ̂(k)(v(k) + χ(k))
...

= P(k)P−1(0)θ̃(0) + P(k)[ϕ̂(k)Γ(k) + · · ·+ ϕ̂(1)Γ(1)]
= P(k)P−1(0)θ̃(0) + P(k)φ(k)ζ(k).

(36)

where Γ(k) = v(k) + χ(k), φ(k) = [ϕ̂(k), · · · , ϕ̂(1)], and ζ(k) = [Γ(k), · · · , Γ(1)]T .
Through the above analysis, it can be seen that the ζ(k) contains noise v(k) and un-

known χ(k). The χ(k) contains the estimated d̂1 and d̂2. Inaccurate dead-zone parameters
will cause system parameter estimation errors and reduce the excitation characteristics
of the input signal. Affected by measurement noise, the identification algorithm causes
an estimation error. However, the identified model can reflect the main dynamic char-
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acteristics of the system, which facilitates the implementation of model-based predictive
control strategy.

5. Fault-Tolerant MPC Control
5.1. Fault-Tolerant Control Based on Intermediate Observer

A fault-tolerant tracking control algorithm based on intermediate observer is proposed
for an industrial control system with a process fault. The main idea of fault-tolerant control
is to estimate the system state and fault signal by constructing the observer according to
the input and output information of the system. The fault-tolerant control law is designed
according to the estimated value to compensate the influence of faults on the system. A
discrete state space equation with process faults can be expressed as

x(k + 1) = Ax(k) + Bu(k) + B f (k)
y(k) = Cx(k)

. (37)

where x(k) is the system state; u(k) is the input control signal; y(k) is the system output po-
sition signal; A, B and C are state matrix, input matrix, and output matrix with appropriate
dimensions, respectively; f (k) is process fault signal. Note that in order to guarantee the
existence of the intermediate observer, it is assumed that (A, C) is observable, and (A, B) is
stabilizable [21].

To obtain an estimate of the fault signal, an intermediate variable is designed by

ξ(k) = f (k− 1)− τx(k). (38)

τ = ρBT . (39)

where τ is a gain parameter; ρ is a numerical quantity that can be set and adjusted.
According to Equation (35), ξ(k + 1) can be expressed as

ξ(k + 1) = f (k)− τ(Ax(k) + Bu(k) + B f (k))
= (I − τB) f (k)− τAx(k)− τBu(k)
= (I − τB)[ f (k− 1) + ∆ f (k)]− τAx(k)− τBu(k)
= (I − τB)[ξ(k) + τx(k) + ∆ f (k)]− τAx(k)− τBu(k)
= (I − τB)ξ(k) + (I − τB)∆ f (k) + (τ − τBτ − τA)x(k)− τBu(k).

(40)

where ∆ f (k) is the fault differential signal.
In order to estimate the state of the system, an intermediate observer is designed

x̂(k + 1) = Ax̂(k) + Bu(k) + B f̂ (k− 1) + L(y(k)− ŷ(k))
= Ax̂(k) + Bu(k) + B[ξ̂(k) + τx̂(k)) + L(y(k)− ŷ(k)]
= Ax̂(k) + Bξ̂(k) + Bu(k) + L(y(k)− ŷ(k)).

(41)

where ex(k) is the state estimation error; eξ(k) is the estimation error of the intermediate
variable; L is the observer gain; A matrix satisfies A = A + Bτ.

ξ̂(k + 1) = f̂ (k− 1)− τ[Ax̂(k) + Bu(k) + B f̂ (k− 1)]
= (I − τB) f̂ (k− 1)− τAx̂(k)− τBu(k)
= (I − τB)(ξ̂(k) + τx̂(k))− τAx̂(k)− τBu(k)
= (I − τB)ξ̂(k) + (τ − τBτ − τA)x̂(k)− τBu(k).

(42)

f̂ (k− 1) = ξ̂(k) + τx̂(k). (43)

ŷ(k + 1) = Cx̂(k). (44)

where x̂(k), ξ̂(k), ŷ(k) and f̂ (k) are the estimation of x(k), ξ(k), y(k) and f (k), respectively.



Machines 2023, 11, 240 10 of 27

The estimation error of state, intermediate variable and fault is defined as, respectively,

ex(k) = x(k)− x̂(k). (45)

eξ(k) = ξ(k)− ξ̂(k). (46)

e f (k) = f (k)− f̂ (k). (47)

where ex(k) is the estimation error of state x(k); eξ(k) is the estimation error of intermediate
variable ξ(k); e f (k) is the estimation error of fault f (k).

Therefore, the state and fault estimation error can be obtained as

ex(k + 1) = x(k + 1)− x̂(k + 1)
= Ax(k) + B f (k)− Ax̂(k)− Bξ̂(k)− L(y(k)− ŷ(k))
= Ax(k) + B(ξ(k) + τx(k) + ∆ f (k))− Ax̂(k)− Bξ̂(k)− L(y(k)− ŷ(k))
= (A− LC)x(k)− (A− LC)x̂(k) + Bξ(k)− Bξ̂(k) + B∆ f (k)
= (A− LC)ex(k) + Beξ(k) + B∆ f (k).

(48)

eξ(k + 1) = ξ(k + 1)− ξ̂(k + 1)
= (I − τB)(ξ(k)− ξ̂(k)) + (τ − τBτ − τA)(x(k)− x̂(k)) + (I − τB)∆ f (k)
= (I − τB)eξ(k) + (τ − τBτ − τA)ex(k) + (I − τB)∆ f (k)

(49)

According to Equations (41)–(44), the feedback control rate based on the intermediate
observer is expressed as

u(k) = −K(y(k)− r(k))− f̂ (k− 1). (50)

where r(k) is the output reference track signal; K is the feedback gain.
The fault-tolerant control structure based on an intermediate observer is shown

in Figure 4.
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The intermediate observer gain ρ is a parameter that needs to be adjusted in the control
algorithm. If the linear matrix inequality (LMI) has a solution, a larger ω can facilitate
higher observer estimation accuracy. However, in this case, the control output may have
overshot. A smaller ρ will reduce the observer estimation accuracy of the system, but there
will be no overshoot in the control system output. The stable convergence characteristic of
fault-tolerant control algorithm can be proved by the following Theorem 1.
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Theorem 1. If there are scalars that satisfy ρ > 0 and ε > 0, and there are positive definite matrix
P > 0, matrix H, and scalar δ > 0 satisfy

Π =


Π11 Π12 ST R1 0
∗ Π22 0 0 R2
∗ ∗ −P 0 0
∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ −εI

 < 0. (51)

where Π11 = NTQN − P, Π12 = AT PB− CT HT B + NTQM, Π22 = BT PB + MTQM− Q,
R1 = (A− LC)T PB + NTQM, R2 = BT PB + MTQM, M = I − Bτ, ST = AT P− CT HT ,
L = P−1H, N = τ − τBτ − τA . Note that the positive definite matrix P doesn’t have to be
determined in advance. The ‘lmivar’ function in the MATLAB software program can be used to
calculate and solve the LMI problem for obtaining P.

The state estimates of the global tracking error system (48) and (49) are uniformly bounded,
which means that x̂(k) and f̂ (k) converge to x(k) and f (k), respectively.

Proof. A Lyapunov function is taken as

V(k) = eT
x (k)Pex(k) + eξ

T(k)Qeξ(k). (52)

where Q = δI; δ is a scalar.
The V(k + 1) can be further obtained

V(k + 1) = η1(k + 1) + η2(k + 1). (53)

η1(k + 1) = eT
x (k + 1)Pex(k + 1)

= eT
x (k)(A− LC)T P(A− LC)ex(k) + eT

ξ (k)BT PBeξ(k)

+∆ f (k)T BT PB∆ f (k) + 2eT
x (k)(A− LC)T PBeξ(k)

+2eT
x (k)(A− LC)T PB∆ f (k) + 2eT

ξ (k)BT PB∆ f (k)

. (54)

η2(k + 1) = eT
ξ (k + 1)Qeξ(k + 1)

= eT
x (k)(τ − τBτ − τA)TQ(τ − τBτ − τA)ex(k) + eT

ξ (k)(I − τB)TQ(I − τB)eξ(k)
+∆ f (k)T(I − τB)TQ(I − τB)∆ f (k) + 2eT

x (k)(τ − τBτ − τA)TQ(I − τB)eξ(k)
+2eT

x (k)(τ − τBτ − τA)TQ(I − τB)∆ f (k) + 2eT
ξ (k)(I − τB)TQ(I − τB)∆ f (k)

(55)

According to Equations (54) and (55), it can be obtained

V(k + 1) = eT
x (k)

(
(A− LC)T P(A− LC) + NTQN

)
ex(k)

+eT
ξ (k)

(
BT PB + MTQM

)
eξ(k) + ∆ f (k)T(BT PB + MTQM

)
∆ f (k)

+2eT
x (k)

(
(A− LC)T PB + NTQM

)
eξ(k) + 2eT

x (k)
(
(A− LC)T PB + NTQM

)
∆ f (k)

+2eT
ξ (k)

(
BT PB + MTQM

)
∆ f (k)

. (56)

In order to simplify the calculation of 2eT
x (k)

(
(A− LC)T PB + NTQM

)
∆ f (k) and

2eT
ξ (k)

(
BT PB + MTQM

)
∆ f (k) in the Equation (56). Based on the elimination lemma and

Young’s inequality [23], the following relaxation inequality satisfies

2eT
x (k)R1∆ f (k) ≤ 1

ε
eT

x (k)R1RT
1 ex(k) + ε∆ f (k)T∆ f (k). (57)

2eT
ξ (k)R2∆ f (k) ≤ 1

ε
eT

ξ (k)R2RT
2 eξ(k) + ε∆ f (k)T∆ f (k). (58)

where ε > 0.
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Defining ẽ(k) = [eT
x (k), eT

ξ (k)]
T , and combining the Equations (56)–(58), there are

V(k + 1) = ẽT(k)Σẽ(k) + ∆ f (k)T
(

BT PB + MTQM + 2εI
)

f (k). (59)

Σ =

[
(A− LC)T P(A− LC) + NTQN + 1

ε R1RT
1 (A− LC)T PB + NTQM

∗ BT PB + MTQM + 1
ε R2RT

2

]
. (60)

According to Equations (52) and (59), it can be obtained

∆V(k + 1) = ẽT(k)Θẽ(k) + ∆ f (k)T
(

BT PB + MTQM + 2εI
)

f (k). (61)

Θ =

[
Θ11 (A− LC)T PB + NTQM
∗ Θ22

]
. (62)

where Θ11 = (A− LC)T P(A − LC) + NTQN + 1
ε R1RT

1 − P, Θ22 = BT PB + MTQM +
1
ε R2RT

2 −Q.
According to the equation (52), we have

V(k) ≤ λmax(P)‖ex(k)‖2 + λmax(P)
∥∥eξ(k)

∥∥2

≤ max(λmax(P), δ)(‖ex(k)‖2 +
∥∥eξ(k)

∥∥2
)
. (63)

Defining Θ = −Θ, which means that if Θ < 0 then Θ > 0. We have

∆V(k + 1) ≤ −κV(k) + α. (64)

κ =
λmin

(
Θ
)

max[λmax(Θ), δ]
. (65)

α = BT PB + MTQM + 2εI. (66)

where λmax(Θ) is the largest eigenvalue of the matrix Θ. The λmin
(
Θ
)

is the minimum
eigenvalue of the matrix Θ. Note that, Θ < 0 implies Θ11 < 0 and Θ22 < 0, and the above
inequality can be satisfied by selecting the appropriate matrix P and scalar δ. Compact set
W is defined as following

W =
{(

ex(k), eξ(k)
)∣∣λmin(P)‖ex(k)‖2 + δ

∥∥eξ(k)
∥∥2 ≤ α

κ

}
. (67)

Define W as the complement of compact set W, we have

V(k) ≥ λmin(P)‖ex(k)‖2 + δ
∥∥eξ(k)

∥∥2 ≥ α

κ
. (68)

If
(
ex(k), eξ(k)

)
∈W, combining Equations (63) and (68), it can be obtained

∆V(k + 1) ≤ 0. (69)

According to Lyapunov theorem and Equation (64), ex(k) and eξ(k) are uniformly
bounded, and they converge to W with an exponential rate greater than e−κt. In addition,
the linear matrix (51), corresponding to Θ < 0, can be obtained by using Schur’s comple-
ment formula. The above is the proof process of the fault-tolerant control algorithm. �

5.2. Fault-Tolerant Model Predictive Control Based on Identification Model

The dead-zone block can weaken the excitation characteristics of input signals, which
not only affects the estimation accuracy of model parameters, but also weakens the control
effect of control input signals. The estimation effect of the intermediate observer will also
be adversely affected. In order to solve this problem, according to the dead-zone model



Machines 2023, 11, 240 13 of 27

parameters, a dead-zone nonlinear compensator is introduced to compensate the dead-zone
nonlinear block into a linear block through the origin. The transformed linear block and
the dynamic linear block form the generalized linear system, and the MPC method will be
used to design the controller. The model predictive control mainly includes prediction time
domain and control time domain parameters [36]. The model predictive control formula
with prediction time domain p and control time domain m can be expressed as

x(k + 1) = Ax(k) + Bu(k) + B f (k)
x(k + 2) = A2x(k) + ABu(k) + Bu(k + 1) + AB f (k) + B f (k + 1)

...

x(k + m) = Amx(k) +
m
∑

i=1
Am−iBu(k + i− 1) +

m
∑

i=1
Am−iB f (k + i− 1)

...

x(k + p) = Apx(k) +
m
∑

i=1
Ap−iBu(k + i− 1) +

m
∑

i=1
Ap−iB f (k + i− 1)

. (70)

and

y(k + 1) = CAx(k) + CBu(k) + CB f (k)
y(k + 2) = CA2x(k) + CABu(k) + CBu(k + 1) + CAB f (k) + CB f (k + 1)

...

y(k + m) = CAmx(k) +
m
∑

i=1
CAm−iBu(k + i− 1) +

m
∑

i=1
CAm−iB f (k + i− 1)

...

y(k + p) = CApx(k) +
m
∑

i=1
CAp−iBu(k + i− 1) +

m
∑

i=1
CAp−iB f (k + i− 1)

. (71)

Using the matrix, it can be expressed as

y(k + 1)
y(k + 2)

...
y(k + m)

...
y(k + p)


p×1

=



CA
CA2

...
CAm

...
CAp


p×1

x(k) +



CB 0 0 0
CAB CB 0 0

...
...

...
...

CAm−1B CAm−2B · · · CB
...

...
...

...
CAp−1B CAp−2B · · · CAp−mB


p×m

×


u(k)

u(k + 1)
...

u(k + m)

+



CB 0 0 0
CAB CB 0 0

...
...

...
...

CAm−1B CAm−2B · · · CB
...

...
...

...
CAp−1B CAp−2B · · · CAp−mB


p×m


f (k)

f (k + 1)
...

f (k + m)



. (72)

The fault estimate f̂ (k) can only be obtained at the k moment. So, replace all f (k + m)
with f̂ (k), and replace x(k) with x̂(k).

In order to compensate the impact of the output noise on the system, the error
ey(k) = y(k)− ŷ(k) is used as the compensation value. We have
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y(k + 1)

y(k + 2)
...

y(k + m)

...
y(k + p)


p×1

=



CA

CA2

...
CAm

...
CAp


p×1

x̂(k) +



CB 0 0 0

CAB CB 0 0
...

...
...

...
CAm−1B CAm−2B · · · CB

...
...

...
...

CAp−1B CAp−2B · · · CAp−mB


p×m

×


u(k)

u(k + 1)
...

u(k + m)

+



CB

CAB + CB
...

m
∑

i=1
CAm−i B

...
m
∑

i=1
CAp−i B


p×1

f̂ (k) +



1

1
...
1
...
1


ey(k). (73)

The equation can also be expressed as

Y(k) = Φx̂(k) + ΠU(k) + Θ f̂ (k) + Ξey(k). (74)

where Y(k) = [y(k + 1), · · · , y(k + m), · · · , y(k + p)]T , U(k) = [u(k), · · · , u(k + m)]T ,
Φ = [CA, · · · , CAm, · · · , CAp]T ,

Θ = [CB, · · · ,
m

∑
i=1

CAm−iB, · · · ,
m

∑
i=1

CAp−iB]
T

, Ξ = [1, · · · , 1, · · · , 1]Tp×1, Π =



CB 0 0 0
CAB CB 0 0

...
...

...
...

CAm−1B CAm−2B · · · CB
...

...
...

...
CAp−1B CAp−2B · · · CAp−mB


p×m

Define the following cost function

J(k) = [Y(k)− R(k)]TQ[Y(k)− R(k)] + UT(k)RU(k). (75)

where Q is the weighted coefficient matrix of prediction error; R is the weighted coefficient
of control increment. A larger matrix value Q can make the control variable drive the state
to the origin quickly, so as to reduce the control error. A larger value of R allows the state
to reach the origin at a slower speed by reducing the control amplitude.

The control increment sequence can be calculated by minimizing the cost function.
Substitute Equation (74) into Equation (75), it can be obtained

J(k) = [Φx̂(k) + ΠU(k) + Θ f̂ (k) + Ξey(k)− R(k)]
T

×Q[Φx̂(k) + ΠU(k) + Θ f̂ (k) + Ξey(k)− R(k)] + UT(k)RU(k)
= 2[x̂T(k)ΦT + f̂ T(k)ΘT − RT(k) + eT

y (k)Ξ
T
]
×QΠU(k) + UT(k)[ΠTQΠ + R]U(k) + ζ(k).

(76)

where ζ(k) is the term unrelated to U(k).
It can be transformed into a quadratic programming problem and expressed as

minJ(k)= 2[x̂T(k)ΦT + f̂ T(k)ΘT − RT(k) + eT
y (k)Ξ

T
]
×QΠU(k) + UT(k)[ΠTQΠ + R]U(k)

= 1
2 UT(k)HU(k) + FU(k).

(77)

H = 2(ΠTQΠ + R). (78)

F = 2[x̂T(k)ΦT + f̂ T(k)ΘT − RT(k) + eT
y (k)Ξ

T
]

QΠ. (79)

By optimizing the above problems, the optimal control rate can be obtained

u∗(k) =
[
I 0 · · · 0

]
U∗(k). (80)

By substituting the control rate into the control equation and solving it circularly, the
MPC input can be obtained.
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The schematic diagram of data-driven modelling and the fault-tolerant model pre-
dictive control strategy is shown in Figure 5. The proposed control scheme firstly obtains
the estimated information of state and fault through the observer. Then, the controller
is designed based on MPC technology. Therefore, the estimated information is obtained
in advance of the control law. Observer and controller are not in a parallel relationship,
but a progressive relationship. Only when the estimated information is convergent, the
control law can guarantee the system convergence. Moreover, the computation time of the
proposed control method is less than the sampling time of the system, which can ensure
that the running time of the algorithm is less than the actuator frequency. Therefore, the
controller can converge effectively and stably in practical system application.
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Note that the intermediate observer gain of the fault-tolerant control algorithm ω
is a parameter that needs to be adjusted in the control algorithm. If ω is taken as a
small parameter, the estimated performance will be reduced. If ω is taken as a large
value, the estimation performance will be improved, but the overshoot will be increased.
The prediction time domain and control time domain have different effects on the MPC
algorithm. The prediction time domain p is the prediction of the future time step, which
represents the prediction degree of the controller for the future state. When the p is taken
as a large parameter value, the controller can predict the far future output information, but
it will increase the prediction error and reduce the control accuracy. When the p is taken as
a small value, the control performance of changing signals will be reduced and the control
will be unstable. An appropriate p can enable the controller to modify the system input
signal according to the current prediction error. The control time domain m represents the
number of control groups to be solved. The feedback correction controller applies only the
first element of the control increment to the system. So, the numerical value of the p has
little influence on the control effect of the controller. In the proposed control algorithm, the
prediction and control time domain parameters need to be manually adjusted according to
the dynamic performance and identification model of the system.

6. Validation Examples
6.1. Numerical Example

Consider the following nonlinear system with dead-zone input nonlinearity
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ũ(k) =


u(k)− 0.2, u(k) > 0.2
0, −0.1 ≤ u(k) ≤ 0.2
0.95(u(k) + 0.1), u(k) < −0.1

y(k) = −0.6y(k− 1)− 0.7y(k− 2) + 0.8ũ(k− 1) + 0.45ũ(k− 2) + v(k).

(81)

where the input signal u(k) is composed of several sinusoidal signals u(k) = sin(k) +
0.5sin(1.5 k) + 0.2sin(1.6 k) + 0.6sin(1.4 k) + 0.7sin(1.7 k), which is used to persistently
excite the system; v(k) is a white Gaussian noise with zero mean and variance σ2 = 0.22,
which causes signal-to-noise (SNR) = 14.3 dB and noise-to-signal (NSR) = 19.2%.

The system input signal and dead-zone output ũ(k) signal are illustrated, as shown in
Figure 6. The sampling length of simulation data is specified as N = 2000. The parameter
estimation error evaluation criterion is defined as θerror(k) =

∥∥θ̂(k)− θ
∥∥/‖θ‖ × 100. The

estimation values of model parameters are shown in Tables 2 and 3. The recursive parame-
ter estimation results and estimation error are shown in Figure 7. The prediction output
and error are shown in Figure 8. In order to cross-verify the performance of the model,
the input signal u(k) = 0.5sin(0.2k) + 0.3sin(0.1k) + 0.3cos(0.1k) is designed to excite the
system. The input signal, validation output signal and output prediction error are shown
in Figure 9. Output prediction error means and variances are shown in Table 4. To illustrate
the robustness of the proposed algorithm, identification methods are tested under different
noise levels. The sampling length of simulation data is specified as N = 10,000. The estima-
tion results are shown in Figure 10. Parameter estimation error under different noise levels
is shown in Table 5. The estimation results show that the identification model can describe
the main dynamic characteristics of the system output, and the algorithm can converge
stably. The established model can not only predict the output well, but also provide an
accurate model reference for the system controller design and safe operation monitoring.
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Table 2. Parameter estimation results.

a1 a2 b1 b2 b1d1 b2d1 b1m2 b2m2 b1m2d2 b2m2d2 θerror(k)

θ 0.6 0.7 0.8 0.45 0.16 0.09 0.76 0.4275 −0.076 −0.04275
θ̂ 0.603 0.6979 0.8122 0.4454 0.1691 0.077 0.7644 0.4293 −0.073 −0.0513 1.473
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Table 3. Parameter estimation results versus recursive step k.

k a1 a2 b1 b2 d1 d2 m2 θerror(k)

100 0.695 0.734 0.862 0.639 0.248 −0.082 0.860 15.079
1000 0.616 0.703 0.816 0.454 0.178 −0.100 0.961 2.053
1500 0.602 0.691 0.817 0.445 0.192 −0.101 0.941 1.454
2000 0.603 0.698 0.812 0.445 0.191 −0.108 0.952 1.120
True 0.6 0.7 0.8 0.45 0.2 −0.1 0.95
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Table 4. Output prediction error mean and variance.

Prediction Error Validation Error

Mean −0.0021 −0.0018
Variance 7.0624× 10−5 1.668× 10−5
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Table 5. Parameter estimation error under different noise levels (N = 10,000).

Noise Variance 0.1 0.2 0.3 0.4 0.5

NSR≈ 9.5% 19.1% 28.6% 38.2% 47.8
θerror(%) 0.49 0.92 1.45 2.03 2.51

Based on the identification model, the robustness and theoretical significance of fault-
tolerant model predictive control strategy will be verified. The system output control
reference signal is taken as r(k)= 10 sin( 0.1π

4 k) + 5 cos(0 .04 π
4 k
)

. The fault signal is taken

as f (k)= 1 + 3 cos(0 .05 π
4 k) + 2 sin(0 .04 π

4 k
)
. The intermediate observer gain of the fault-

tolerant control algorithm is taken as ω = 1.5. In the model predictive control algorithm,
the prediction time domain and control time domain are taken as p = 30 and m = 5,
respectively. The weighted coefficient matrix of the prediction error is taken as Q = 100.
The weighted coefficient of the control increment is taken as R = 0.1. The quadprog function
of MATLAB is used to solve the cost function of MPC in Equation (75) to obtain the optimal
control rate. In order to compare and verify the superiority of the control algorithm, the
latest MPC algorithm proposed in Ref. [37] is also performed, which also has state feedback
technology. The tracking control results and control input signals of different control
algorithms for reference signals are shown in Figure 11. The tracking estimation results
of status signals are shown in Figure 12. The tracking estimation result of fault signal is
shown in Figure 13. It can be seen that the proposed control algorithm has better tracking
control accuracy and stability.
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Due to the existence of true model parameters in the numerical simulation example,
the proposed identification algorithm can estimate parameters accurately. In addition, the
proposed identification algorithm has strong robustness and good estimation accuracy for
different noise levels. The estimated parameters of dead-zone can provide model basis for
designing a dead-zone compensator. Although the control strategy in Ref. [37] is also a kind
of model control strategy, it also compensates dead-zone parameters in simulation tests.
Because there is no fault compensation, the control strategy in Ref. [37] cannot accurately
track the reference signal and has a large control error in the dynamic control process with
process fault. The state estimation results of the method in Ref. [37] have a large error. The
control tracking error can cause production instability and product quality disqualification.
The proposed control algorithm uses an intermediate observer to accurately estimate the
fault signal. The fault-tolerant feedback control with fault estimation is used to compensate
the fault signal. The compensation estimation strategy can improve the dynamic tracking
performance of the proposed control algorithm. The precise control can not only improve
product quality, but also ensure the safe and reliable operation of the production.
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6.2. Experimental Test

The proposed modeling strategy is tested in the industrial actuator system of our
laboratory. The system input is the target torque (unit: one rated torque in a thousand)
stored in the register. In order to excite the system persistently, the composite input signal
composed of sinusoidal signals of different frequencies and amplitudes is designed as

τ(k) =
M

∑
i=1

βi · sin( fi · 2πkT). (82)

where M = 6; {β1, · · · , β6} = {9, 8, 25, 5, 6, 4}; { f1, · · · , f6} = {0.25, 0.35, 0.1, 0.8, 1, 0.5}.
The system output w(k) is velocity (unit: radians per second, rad/s). The portion of

input and output data at the sampling frequency of 100 Hz are shown in Figure 14. The
identification algorithm is used to estimate the experimental system by using 5000 points
of ample data. The parameter estimation results are shown in Table 6, and the estimation is
θ̂ = [−0.9678, 0.2141, 21.1731,−20.2032, 0.7478]. The model prediction output is shown in
Figure 15. It can be seen that the identification model can reflect the dynamic characteristics
of the system well. The identification model can be expressed as

ũ(k) =


u(k)− 21.1731, −u(k) > 21.1731
0, −20.2032 ≤ u(k) ≤ 21.1731
0.7478(u(k) + 20.2032), u(k) < −20.2032

y(k) = 0.9678y(k− 1) + 0.2141ũ(k− 1) + v(z)

. (83)
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Table 6. Estimation results of experimental system.

k a1 b1 d1 d2 m2

1000 −0.9917 −0.3142 37.4050 −23.0047 −0.1903
2000 −0.9857 0.1611 25.3040 −20.2972 0.4977
3000 −0.9779 0.1632 21.7613 −19.6379 0.6746
4000 −0.9716 0.1910 20.7626 −20.3252 0.7600
5000 −0.9678 0.2141 21.1731 −20.2032 0.7478

Machines 2023, 11, x FOR PEER REVIEW 25 of 29 
 

 

Table 6. Estimation results of experimental system. 

k  1
a  

1
b  

1
d  

2
d  

2
m  

1000 −0.9917 −0.3142 37.4050 −23.0047 −0.1903 

2000 −0.9857 0.1611 25.3040 −20.2972 0.4977 

3000 −0.9779 0.1632 21.7613 −19.6379 0.6746 

4000 −0.9716 0.1910 20.7626 −20.3252 0.7600 

5000 −0.9678 0.2141 21.1731 −20.2032 0.7478 

 

Figure 15. Output prediction on experimental platform. 

The system output control reference signal is taken as 

0.15
( )=15sin( )+10cos(0.03 )

4 4
r k k k

 
. The fault signal is taken as

( )=2+10cos(0.06 )+5sin(0.05 )
4 4

f k k k
 

. The observer gain is taken as 10 = . The 

prediction time domain and control time domain are taken as 15p =  and 3m = , re-

spectively. The weighted coefficient matrix of the prediction error is taken as 200Q = . 

The weighted coefficient of the control increment is taken as 0.5R = . The control algo-

rithm in Ref. [37] is also performed. The tracking control results and control input signals 

of different control algorithms for reference signals are shown in Figure 16. The tracking 

estimation results of status signals are shown in Figure 17. The tracking estimation of the 

fault signal is shown in Figure 18. It can be seen that the proposed control algorithm has 

better tracking accuracy and stability. The control strategy in Ref. [37] cannot accurately 

track the reference signal. The state estimation results of the method in Ref. [37] have a 

large error.  

In the actual experimental test, the true parameters of the model cannot be known, 

although the identification parameters converge stably. However, it is impossible to com-

pare the estimation errors of parameters. The estimated identification model can well re-

flect the dynamic output performances of the system as shown in Figure 15, which satis-

fies the practical application criteria of the identification algorithm. Compared with the 

mechanism modeling method and the intelligent modeling method, the proposed identi-

fication modeling method is simple and easy to apply. The identified model provides a 

good model basis for the proposed model-based control strategy. It can be seen from the 

results of identification estimation that the dead-zone parameters of the test platform are 

large. Dead-zone parameters cannot be treated as time-delay parameters or input disturb-

ances. The dead-zone may greatly reduce the excitation of small input control signals to 

the system. The dead-zone may also reduce the tracking control effect of the proposed 

Figure 15. Output prediction on experimental platform.

The system output control reference signal is taken as r(k)= 15 sin(0.15π
4 k) + 10 cos(0.03π

4 k
)

.

The fault signal is taken as f (k)= 2 + 10 cos(0 .06 π
4 k) + 5 sin(0 .05 π

4 k
)
. The observer gain is

taken as ω = 10. The prediction time domain and control time domain are taken as p = 15
and m = 3, respectively. The weighted coefficient matrix of the prediction error is taken as
Q = 200. The weighted coefficient of the control increment is taken as R = 0.5. The control
algorithm in Ref. [37] is also performed. The tracking control results and control input
signals of different control algorithms for reference signals are shown in Figure 16. The
tracking estimation results of status signals are shown in Figure 17. The tracking estimation
of the fault signal is shown in Figure 18. It can be seen that the proposed control algorithm
has better tracking accuracy and stability. The control strategy in Ref. [37] cannot accurately
track the reference signal. The state estimation results of the method in Ref. [37] have a
large error.

In the actual experimental test, the true parameters of the model cannot be known, al-
though the identification parameters converge stably. However, it is impossible to compare
the estimation errors of parameters. The estimated identification model can well reflect
the dynamic output performances of the system as shown in Figure 15, which satisfies the
practical application criteria of the identification algorithm. Compared with the mechanism
modeling method and the intelligent modeling method, the proposed identification model-
ing method is simple and easy to apply. The identified model provides a good model basis
for the proposed model-based control strategy. It can be seen from the results of identifica-
tion estimation that the dead-zone parameters of the test platform are large. Dead-zone
parameters cannot be treated as time-delay parameters or input disturbances. The dead-
zone may greatly reduce the excitation of small input control signals to the system. The
dead-zone may also reduce the tracking control effect of the proposed control algorithm and
control strategy in Ref. [37]. Based on the identification model, a dead-zone compensator is
constructed, which transform the nonlinear system with dead-zone input into a generalized
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linear system. This strategy reduces the difficulty of process control. Process fault will
reduce the estimation precision of intermediate state and the dynamic tracking accuracy
of control algorithm. Due to the lack of fault estimation and compensation technology,
it is difficult for the control strategy in Ref. [37] to accurately estimate the intermediate
state and track the dynamic reference signal in the application of the process with faults as
shown in Figures 16 and 17. Imprecise control results will reduce the production accuracy
of industrial actuator systems, resulting in difficult to produce qualified products, which
may reduce the competitive advantage of enterprises. The proposed model-based control
strategy utilizes the potential of the identification model and compensates process faults
with an intermediate observer, which ensures precise dynamic tracking control. In the pro-
cess control, the process fault is compensated dynamically and in a timely fashion, which
guarantees production stability and product quality. In addition, the closed-loop control
strategy based on MPC can also eliminate the influence of random measurement noise.
These are the advantages and characteristics of the proposed identification modeling and
fault-tolerant predictive control strategy. The superiority and applicability of the proposed
modeling and control strategy are verified by the experimental test results.
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7. Conclusions

The industrial actuator system has the nonlinear characteristics of dead-zone input,
which may weaken the excitation characteristics of the input signal. The structure and order
of the system model are determined by analyzing the mechanism relationship between
input torque and output angular velocity. A Hammerstein nonlinear model with a dead-
zone nonlinear block and a linear dynamic block in series has been used to fit the system
output. Under the framework of least squares, an online parameterized estimation method
is proposed, and the convergence of the algorithm is also analyzed. The identification
model can describe the main dynamic characteristics of the system output. The cutoff
effect of dead-zone input reduces the persistently exciting characteristics of the input
signal and the information vector. The information vector contains unknown dead-zone
parameters. An intermediate observer has been used to estimate the process faults signal.
A fault-tolerant synchronous control feedback rate based on fault estimation has been
designed to compensate faults. In order to eliminate the weakening effect of the dead-zone
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block on the control signal, a compensator has been introduced to transform the dead-zone
function into a linear function passing through the origin of coordinates based on the
dead-zone identification model. The model predictive control strategy has been designed
for the generalized linear system to achieve precise control. By comparing with the existing
methods, the effectiveness and superiority of the proposed modeling and fault-tolerant
control algorithms are verified by using the experimental platform and numerical example.
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