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Abstract: In this work, we discuss the numerical challenges involved in the computation of the
complex eigenvalues of damped multi-flexible-body problems. Aiming at the highest generality,
the candidate method must be able to deal with arbitrary rigid body modes (free–free mechanisms),
arbitrary algebraic constraints, and must be able to exploit the sparsity pattern of Jacobians of large
systems. We propose a custom implementation of the Krylov–Schur method, proving its robustness
and its accuracy in a variety of different complex test cases.
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1. Introduction

Equations of the motion of multibody systems are highly nonlinear in general, but there
are cases where one is interested in a linearization of such equations as a way to study the
effects of perturbations around a given configuration. To this end, being able to compute
the eigenvalues and eigenvectors of the linearized model is of fundamental importance,
and it is not limited to the conventional methods of a modal analysis.

For instance, among other applications, eigenvectors can be used to perform a compo-
nent mode synthesis, also known as modal reduction, that is an effective approach which
turns a complex system into a surrogate model with a smaller set of coordinates, hence
obtaining faster simulations [1–3]. Another application that requires the computation of
eigenpairs is the stability analysis of dynamic systems, for instance, the aeroelastic stability
of helicopter blades, wind turbines and other slender structures. In this case, one needs to
implement a complex-valued eigenvalue problem, where the imaginary and real parts of
the eigenvalues give an indication of the damping factor and, consequently, an indication
about the impending instability [4,5]. Finally, we can mention that, in the field of control
theory, often a state-space representation of the linearized system is required, and this is
another problem that motivates the research of efficient methods to recover the eigenvalues
of the multibody system [6,7].

Motivated by the above-mentioned applications, in this paper, we discuss the nu-
merical difficulties related to the computation of eigenvalues and eigenvectors in multi-
flexible-body systems under the most general assumptions: we assume that the system
can present singular modes (also called rigid body or free–free modes); we consider the
optional presence of damping, hence leading to complex-valued eigenpairs; we consider
an arbitrary number of parts and constraints; and we assume that the size of the system
could be arbitrarily large. In particular, this last requirement imposes some limitations
on the type of solver that must preserve the sparsity of the matrices for the sake of an
acceptable computational performance and that should be able to output just a small subset
of eigenvalues, either the lowest ones or those clustered around a frequency of interest.

The problem of the eigenvalue computation in multibody systems is discussed by
various authors in the literature, although the topic is more common in the field of the finite
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element analysis (FEA). A difficulty of multibody systems with respect to a conventional
FEA is that constraints are ubiquitous and often described by algebraic equations and
Lagrange multipliers. A classical approach is to remove constraints by means of an orthog-
onal complement that reduces the generalized coordinates to the lowest amount possible,
as discussed, for instance, in [8,9]. This idea has the benefit that the linearized equations are
those of an unconstrained system; thus, a conventional eigenvalue solver can be applied.
However, there are also drawbacks that will be discussed in the next paragraphs.

Alternatively, one can solve an eigenvalue problem paired with constraints, thus
leading to matrices that are larger but sparser. This approach is shown, for example,
in [10,11]. Despite the increment in the number of unknown eigenvalues and the increment
in the dimension of eigenvectors, we experienced that this approach leads to a simpler
formulation. Most important, we noticed that this method preserves the sparsity of the
matrices so that we could design a solver that can leverage this useful property.

An eigenvalue solver that achieved big popularity in the past years is the Implicitly
Restarted Arnoldi Method (IRAM) [12]. In fact, this is the method implemented in ARPACK,
a widespread Fortran77 library that can solve generalized eigenvalue problems, with both
sparse or structured matrices [13]. As such, the IRAM would be sufficient to satisfy our
requirements; however, we experienced that it fails to provide good convergence in some
difficult cases, so we pointed our attention to the more recent Krylov–Schur method.

The Krylov–Schur method was presented in [14] as an improvement over previous
Krylov subspace methods, such as the IRAM and Lanczos. Because of an efficient and
robust restarting strategy, it is often able to converge even in cases where the IRAM stalls,
and in general, it exhibits a superior robustness and faster convergence [15]. For these
reasons, the Krylov–Schur method has become the default for the MATLAB eigs command,
and it is also available in the SLEPC library [16], an extension of the PETSC linear algebra
library, as well as in the TRILINOS library [17]. However, both are large libraries that
target supercomputing and require complex build toolchains. On the other hand, there
are efforts such as the SPECTRA C++ library [18] that are lightweight but might not offer
all the desired functionalities, for instance, SPECTRA contains the Krylov–Schur method
in a partially implemented form, making it usable only for symmetric matrices (hence the
complex eigenvalue problem is out of reach, making it unuseful for a damped eigenmode
computation at the moment of writing). The lack of reliable, complete and lightweight
open-source libraries for computing eigenvalues with the Krylov–Schur method motivated
us to develop our C++ version of it, which is described in the following pages.

In the next section, we will discuss how to obtain the needed matrices from a lineariza-
tion of the multibody system; then we will review different formulations for expressing the
eigenvalue problem, with or without constraints, with or without damping; then we will dis-
cuss some computational aspects related to the implementation of the sparsity-preserving
Krylov–Schur solver; and finally, we will show some applications and benchmarks.

2. Linearization of Multibody Structures

We introduce the semi-explicit Differential Algebraic Equations (DAE) of a generic,
nonlinear multi-flexible-body system with generalized coordinates q ∈ Rn:{

M(q)q̈ + Cq(q, t)Tγ = f (q, q̇, t)− f g(q̇)

C(q, t) = 0

(1)

(2)

where C(q, t) = 0 is a vector of m holonomic-rheonomic constraints with an m× n sparse
Jacobian Cq(q, t) = ∂C(q,t)

∂q . Moreover, f is the vector of external and internal forces, and f g
represent the gyroscopic and centrifugal components of the inertial forces (the full inertial
forces are in fact f i = Mq̈ + f g).

By rewriting Equation (1) into a multivariate function

F(q̈, q̇, q, t) = M(q)q̈ + Cq(q, t)Tγ− f (q, q̇, t) + f g(q̇) = 0 (3)
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it is easier to see that any feasible infinitesimal variation of the unknowns δq̈, δq̇, δq will still be of
equilibrium, thus leading again to a zero-valued function, i.e., F(q̈ + δq̈, q̇ + δq̇, q + δq, t) = 0.
No variation takes place on the time variable. This leads to the trivial conclusion that any
step along the total derivative of the F function does not lead to any variation of F, i.e.,

[
δq̈ δq̇ δq

] [ ∂F
∂q̈

∂F
∂q̇

∂F
∂q

]T
∣∣∣∣
q̈,q̇,q,t

= 0 (4)

By expanding the evaluation of the partial derivatives of F to all the terms contained
in it the following result is obtained where all the derivatives of the forces have been
meaningfully collected into more readable stiffness K and damping R matrices:{

M(q)δq̈ + R(q, q̇)δq̇ + K(q, q̇, q̈, γ)δq + Cq(q, t)Tδγ = 0

Cq(q, t)δq = 0

(5)

(6)

In the formula above, the damping matrix R comes from the linearization of inter-
nal/external forces f about q̇, plus the linearization of f g, the quadratic part of the inertial
forces; hence,

R(q, q̇) = −∂ f (q, q̇, t)
∂q̇

+
∂ f g(q̇)

∂q̇
(7)

= R f + Ri (8)

Note that the Ri part also includes the so-called gyroscopic damping, and it is null for q̇ = 0.
The tangent stiffness K contains the effect of the linearization of internal and external

forces (K f i.e. the conventional stiffness matrix), the linearization of the inertial forces
(Ki)—that is null if, as often happens, the system is studied in a static configuration,
but might be relevant otherwise when studying, for example, eigenmodes of a rotating
wind turbine—and the linearization of the constraint reaction forces Kc. It can be noted
that the latter can introduce a contribution to the tangent stiffness due to the geometric
effect of changes in Cq(q, t) about the linearization point. One example is offered by the
gravity-induced stiffness of a pendulum, where the rotation of the pendulum generate
changes in Cq due to the change of the reaction force at the pendulum hinge. If the other
sources of stiffness are more relevant (e.g., springs, elastic internal forces in beams, etc.)
or if λ is small at the linearization point, then this term might be neglected.

Because of these reasons, a static or dynamic analysis should be performed right before
computing eigenvectors, since the value of γ must be known when computing (9):

K(q, q̇, q̈, γ) =
∂(M(q)q̈ + f g)

∂q
+

∂(Cq(q, t)Tγ)

∂q
− ∂ f (q, q̇, t)

∂q
(9)

= Ki + Kc + K f (10)

Oftentimes, especially in the FEA literature, the K f matrix is split in two components
K f = K fm + K fg , where K fm is the material stiffness and K fg is the geometric stiffness—the
latter is caused, for example, by change in orientation of internal forces in beams, and its
effect is null in configurations that have no initial stress at the linearization point.

A further splitting can be performed by distinguishing internal forces, caused by finite ele-
ments, and external forces, caused by applied loads; thus, f(q, q̇, t) = f(q, q̇, t)int + f(q, q̇, t)ext,
and K f = K fmint + K fgint + K fmext + K fgext. In many cases, K f ext matrices are of small value
if compared to K f int matrices and can be neglected, but in other cases, for example, when
considering aerodynamic loads, they might be relevant.

We remark that (5) and (6) require the introduction of constraints via Jacobian matrices
Cq(q, t) and Lagrange multipliers δγ: in fact, in the following, we will handle this compli-
cation by solving constrained eigenvalue problems. However, one might wonder if there
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is an alternative approach that avoids Cq(q, t) and δγ at all, so that a conventional (not
constrained) eigenvalue solver could be used. Actually, this would be possible, for example,
by running a QR decomposition on the Cq matrix in order to find a Ξ ∈ Rn×m matrix
such that ΞTCq(q, t)T = 0. In this way, one could introduce a smaller set of independent
variables y ∈ Rn−m for whom q̇ = Ξẏ, hence rewriting the DAE (1) as a simple ODE

ΞT M(q)Ξÿ + ΞT M(q)Ξ̇ẏ = ΞT f (q, q̇, t)− ΞT f g(q̇) (11)

This can be linearized to give a single expression which is an alternative to (5) and (6):

MY(q)δÿ + RY(q, q̇)δẏ + KY(q, q̇, q̈)δy = 0 (12)

with

MY(q) = ΞT M(q)Ξ (13)

RY(q) = −ΞT ∂ f (q, q̇, t)
∂ẏ

+ ΞT
∂ f g(q̇)

∂ẏ
+ ΞT M(q)

∂Ξ̇ẏ
∂ẏ

(14)

KY(q, q̇, q̈) =
(

∂ΞT

∂y
M(q)Ξ + ΞT ∂M

∂y
(q)Ξ + ΞT M(q)

∂Ξ
∂y

)
ÿ (15)

+

(
∂ΞT

∂y
M(q)Ξ̇ + ΞT M(q)

∂y
Ξ̇
)

ẏ

− ∂ΞT

∂y
f (q, q̇, t)− ΞT ∂ f (q, q̇, t)

∂y
+

∂ΞT

∂y
f g(q̇) + ΞT

∂ f g(q̇)

∂y

However, we note that the expressions of RY and KY are substantially more intricate
than the expression of R and K in (7) and (9), especially considering that (15) would require
the knowledge of Ξ̇ and ∂ΞT/∂y.

While these latter terms might be neglected in some cases—thus reducing matrices
to the approximated forms RY(q) ≈ ΞT RΞ, KY(q) ≈ ΞTKΞ—we experienced that such a
simplification is possible only when constraints do not change direction in a significant
way: in fact, even a simple example of an oscillating pendulum would erroneously give
zero natural frequency with this simplification.

Moreover, the multiplications by Ξ and ΞT will destroy the sparsity of the original
matrices M, R, K: this is not an issue in problems of small size, but for large problems this
would lead to unacceptable memory and performance requirements.

For these reasons, we prefer to proceed with the linearization expressed in (5) and (6)
at the cost of dealing with constraints during the iterative eigenvalue solution process.
The following section will explain how to use the M, R, K, Cq matrices to this end.

3. Modal Analysis

We can distinguish two types of modal analysis: in the first case, we search for real-
valued eigenvalues of the undamped system; in the second case, we search for complex-
valued eigenvalues of the damped system. The former can be considered a subcase of the
latter for R = 0, and hence a single solver could attack both problems; however, it is better
to adopt two different solution schemes in order to exploit some optimizations that lead to
a high computational performance if the damping is of no interest.

3.1. Undamped Case—Real Valued

We recall some basic concepts in eigenvalue analysis of dynamic systems.
For the simple case of an unconstrained, undamped system with R = 0, with solutions

q = Σ(Φieiωt + Φie−iωt)

Mq̈ + Kq = 0 (16)
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it is possible to compute the eigenmodes from the following characteristic expression:(
−ω2

i M + K
)

Φi = 0 (17)

that leads to a standard eigenvalue problem (SEP) with eigenvalues λi = ω2
i and matrix

C = M−1K: (
M−1K− λi I

)
Φi = 0 (18)

(C− λi I)Φi = 0 (19)

For symmetric K and M, by the spectral theorem, eigenpairs are real.
However, there are some difficulties that prevent the direct use of (18) in engineering

problems of practical interest:

• It works only if there are no constraints (no Cq Jacobian matrix);
• It requires the inversion of the M matrix: even if M is often diagonal-dominant and

easy to invert, this is not true in general, and it could destroy the sparsity of the
matrices in the case of large systems;

• We may be interested in just a small subset of eigenvalues, usually the lower modes,
so we need an iterative scheme that is able to do this.

We compute the modes of the constrained undamped multibody system with the follow-
ing generalized eigenvalue problem (GEP):

−
[

K CT
q

Cq 0

]
Φ̂i = λi

[
M 0
0 0

]
Φ̂i (20)

where we introduce the augmented eigenvector

Φ̂i = {ΦT
i , ξT

i }T .

and where we recover natural frequencies as:

ωi =
√
−λi, fi = ωi/2π (21)

We remark that one could change the sign in the left-hand side of (20); this would
obtain positive eigenvalues and then one would compute ωi =

√
λi instead.

The solution of the problem (20) generates n + m eigenvalues, where only n is of
interest, and m is spurious modes with λ ≈ ±∞ that can be discarded. The same filtering
must be performed for the corresponding eigenvectors. Moreover, the last m components
of the eigenvectors, namely ξi, can just be discarded or used to get insight about reaction
forces because they represent the amplitude of reactions in constraints during the periodical
motion of the system.

Alternatively, one can solve

−
[

K 0
0 0

]
Φ̂i = λi

[
M CT

q
Cq 0

]
Φ̂i (22)

but this would produce m spurious modes with λ ≈ 0 that can easily be confused with
those eigenvalues resulting from rigid body modes. These latter, also known as free-free
modes, result from bodies that retain some unconstrained degree of freedom, that turn out
to have λi ≈ 0 too.

In this formulation (22), the last m components of the eigenvectors, namely ξi, repre-
sent the second integration of reaction forces/moments of the constraints, which can be
discarded because no physical meaning exists.

The matrices that appear in the two forms of the GEP have different properties, and this
is relevant when we will choose the optimal solution scheme. In the GEP (20), the A matrix
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is nonsingular only if there are no rigid body modes, as it is z-times rank deficient in
the presence of z rigid body modes. Moreover, the B matrix is always singular and not
invertible. Hence, both matrices are not invertible in the most general case. On the other
hand, in the GEP (22), the A matrix is singular, but the B matrix is always nonsingular and
invertible, regardless of the presence of rigid body modes, because M is positive definite
and Cq is assumed to be full rank. This would make GEP (22) a better choice with respect
to GEP (20) because one could always transform it to an SEP via C = B−1 A. However,
as we will see later, solving the SEP in this form is not what we need in the case of large
systems, where we want a limited number of eigenpairs starting from the smallest ones.
If so, a shift-and-invert approach is needed, where the nonsingularity of B is irrelevant,
and we would rather need the inversion of A. In this case, neither GEP (20) nor GEP (22)
would fit this requirement. However, the shift-and-invert approach requires a regularized
form of the inverse matrix, by means of a σ shift parameter as in C = (A− σB)−1B, so both
approaches could work in this setting, except for σ = 0.

Finally, we note that, when the K matrix is symmetric, both A and B are symmetric;
therefore, optimized linear solvers for the inner loop of the Krylov–Schur solver could be
used for the sake of a higher speed (that is, the (A− σB)−1 problem can be approached via
LDLt decompositions rather than LU decompositions in the case of direct solvers, or via
the MINRES rather than the GMRES in the case of Krylov solvers).

3.2. Damped Case—Complex Valued

The conventional modal analysis of the damped system

Mq̈ + Rq̇ + Kq = 0 (23)

with solutions q = Φeλt formulated as a quadratic eigenvalue problem (QEP), either with
left or right eigenvectors:

(λ2M + λR + K)Φ = 0 (24)

Ψ∗(λ2M + λR + K) = 0 (25)

We recall some useful properties. Because coefficients of (24) are real, any complex
roots must appear as complex conjugate pairs. The QEP generates 2n eigenvalues that are
finite if M is nonsingular; if M, R, K are real, or Hermitian, then eigenvalues can be a mix
of real values or complex conjugate pairs (λ, λ); if M is Hermitian positive definite and R,
K are Hermitian positive semidefinite, then Re(λ) ≤ 0.

• Complex conjugate pairs (λ, λ) correspond to underdamped modes, oscillatory and
decaying for Re(λ) < 0;

• Purely imaginary conjugate pairs (λ, λ), Re(λ) = 0 correspond to undamped modes,
purely harmonic and not decaying;

• Real modes with Re(λ) ≤ 0 and no imaginary part correspond to overdamped modes,
not oscillatory, exponential decaying;

• In all cases, Re(λ) > 0 indicates an unstable system;
• For the class of damped systems, also eigenvectors Φi are complex, with elements:

Φi,j = ai,j + i bi,j = δi,je
iβi,j

where both the amplitude and the phase of the entire eigenvector can be arbitrary (but
the relative amplitude δi,j/δi,k of each component is unaltered by whatever normaliza-
tion, and the relative phase of each component is constant βi,j − βi,k = constjk);

• The two eigenvectors of a complex conjugate pair are also conjugate.

Oscillatory modes, corresponding to a complex conjugate pair (λ, λ), Re(λ) < 0, can be writ-
ten in a more engineering-oriented way as done in 1-dof systems, Ae(−ζω+iωd)t + Be(−ζω−iωd)t,
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where one has the following expressions for natural (undamped) frequencies ωi, damped
frequencies ωd,i and damping factors ζi:

ωi = ‖λi‖, fi = ωi/2π (26)

ωd,i = Im(λi), fd,i = ωd,i/2π (27)

ζi = −Re(λi)/ωi (28)

ωd,i = ωi

√
1− ζ2 (29)

Although there exist algorithms that can solve (24) directly, often the QEP is trans-
formed to an SEP or GEP so that a conventional solver like Arnoldi or Krylov–Schur can be
used. This can be performed by expressing the problem in state space: we introduce an
augmented eigenvector that contains both the eigenvector Φi ∈ Rn and the eigenvector
λiΦi ∈ Rn:

ΦT
i = {ΦT

i , λiΦ
T
i }

This can be used to transform the QEP (24) into the following GEP with double the original
size: [

0 I
−K −R

]
Φi = λi

[
I 0
0 M

]
Φi (30)

Additionally, one can consider the constraints by introducing Lagrange multipliers
ξi ∈ Rm that correspond to the m constraints enforced as CqΦi = 0, thus obtaining a
constrained QEP: {

λ2
i MΦi + λiRΦi + KΦi + CT

q ξi = 0

− CqΦi = 0

(31)

(32)

Finally, introducing the augmented eigenvector Φ̂i ∈ R2n+m as

ΦT
i = {ΦT

i , λiΦ
T
i , ξT

i }

and by making use of simple linear algebra, we can write the constrained QEP as a
constrained GEP:  0 I 0

−K −R −CT
q

−Cq 0 0

Φ̂i = λi

I 0 0
0 M 0
0 0 0

Φ̂i (33)

An alternative formulation is based on the solution of the following GEP, where the
spurious modes related to the constraint equations are zero instead of infinite: 0 I 0

−K −R 0
0 0 0

Φ̂i = λi

 I 0 0
0 M CT

q
Cq 0 0

Φ̂i (34)

that corresponds to {
λ2

i MΦi + λiRΦi + KΦi + CT
q λiξi = 0

CqλiΦi = 0

(35)

(36)

We experienced that, among the different formulations (Table 1), the most efficient
way to compute eigenpairs for the constrained damped system is the GEP approach (33).
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Table 1. Different options for the eigenpair computation.

GEP Notes

Undamped
A =

[
K
]

B =
[
M
] real eigenpairs, ωi =

√
λi

A singular if rigid body modes

A =
[
−K
]

B =
[
M
] real eigenpairs, ωi =

√
−λi

A singular if rigid body modes

Undamped
Constrained

A =

[
−K −CT

q
−Cq 0

]
B =

[
M 0
0 0

] real eigenpairs, ωi =
√
−λi

‖λi‖ = ∞ for each constraint
A singular if rigid body modes
B singular

A =

[
−K 0

0 0

]
B =

[
M CT

q
Cq 0

] real eigenpairs, ωi =
√
−λi

λi = 0 for each constraint
A singular
B nonsingular

Damped A =

[
0 I
−K −R

]
B =

[
I 0
0 M

] complex eigenpairs, ωi = ‖λi‖
A singular if rigid body modes
B singular

Damped
Constrained

A =

 0 I 0
−K −R −CT

q
−Cq 0 0

 B =

I 0 0
0 M 0
0 0 0

 complex eigenpairs, ωi = ‖λi‖
‖λi‖ = ∞ for each constraint
A singular if rigid body modes
B singular

A =

 0 I 0
−K −R 0

0 0 0

 B =

 I 0 0
0 M CT

q
Cq 0 0

 complex eigenpairs, ωi = ‖λi‖
λi = 0 for each constraint
A singular
B nonsingular

4. Computing Eigenpairs with Sparse Matrices

When the number of unknowns n grows, it is not possible to compute all the n
eigenvalues and eigenvectors, both for reasons of computational time and for the extreme
requirement of the memory needed for storing all the eigenvectors. In fact, many analyses
that require the computation of eigenmodes in practice require a small set of them.

There are iterative methods that preserve the sparsity of matrices and that can compute
a limited set of k eigenvectors: most notably, these are the IRAM (Implicitly Restarted
Arnoldi Method), the Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG)
and, lastly, the Krylov–Schur method.

The problem is that they compute the largest k, not the smallest ones, which is exactly
the opposite of our interest. This issue can be solved adopting a Moebius transform of the
eigenvalue problem. We proceed as follows.

For the undamped constrained case, first we formulate the generalized eigenvalue
problem (GEP):

AΦ̂i = λiBΦ̂i (37)

A =

[
−K −CT

q
−Cq 0

]
(38)

B =

[
M 0
0 0

]
(39)

then we adopt a Moebius transform of the eigenvalue problem, namely the shift-and-invert
strategy that computes eigenvalues µi in the following problem:

(C− µi I)Φ̂i = 0 (40)

C = (A− σB)−1B (41)

µ =
1

λ− σ
λ =

1
µ
+ σ (42)
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After the eigenvalue problem (40) is solved for k pairs of (µi, Φ̂i), one recovers the
original λi and hence the original ωi using (42).

For the damped constrained case, we formulate a GEP of the type

AΦ̂i = λiBΦ̂i (43)

A =

 0 I 0
−K −R −CT

q
−Cq 0 0

 (44)

B =

I 0 0
0 M 0
0 0 0

 (45)

then, similarly to the undamped case, we apply the shift–invert Moebius transformation
to solve (C − µi I)Φ̂i = 0 with C = (A − σB)−1B, obtaining pairs (µi, Φ̂i), and finally
recovering λ = 1

µ + σ.
Right eigenvectors Φi are not affected by the Moebius transform. Just in case one is

interested in the left eigenvectors as in Ψ∗i (C− λi I) = 0, then those are recovered solving
z∗i (C− µi I) = 0 and using the transform z = (A− σB)∗Ψi.

User-defined values of σ can be used to extract eigenvalues in specific frequency
ranges. In fact, the iterative solver will return the k eigenvalues that are closer, in absolute
value, to σ.

If the shift parameter σ is zero or close to it, as often happens, one can see that the
largest k eigenvalues µ computed by the Krylov–Schur solver will become the smallest k
eigenvalues λ, for the modes closer to zero frequency.

As a special case, for σ = 0, one has C = A−1B and λ = 1
µ , that for an uncon-

strained problem (no Cq Jacobian) it corresponds to solving the inverse eigenvalue problem(
K−1M− µi I

)
Φi = 0.

In general, one can adjust the σ shift value so that it provides the best numerical
performance; in detail, it provides a regularization of A and helps solve the linear problem
in (41) and also in the case where A or B are singular or close to singularity. This is
what happens in many cases when conducting a modal analysis of engineering structures,
especially if the structure has rigid body modes. In fact, our default method is to extract
all the lower modes, including rigid body modes, and at this end, we experienced that
a value of σ = 1× 10−3 works well also to retrieve the six λ ≈ 0 modes and to cure
ill-posed problems.

The Krylov–Schur and Arnoldi methods draw on a single computational primitive,
that is, the product of a sparse matrix C by a vector v for the solution of the problem
(C − µi I)Φi = 0. However, in our case, C = (A− σB)−1B; hence, pre-computing such
a C matrix is out of question because the exact inversion of (A− σB) would require too
much CPU time and would destroy the sparsity. Because only the product primitive Cv is
required for the iterative solver, an acceptable trade-off is to return the result of the product
r = Cv by performing these steps:

z = Bv (46a)

r = (A− σB)−1z (46b)

Here, we note that Equation (46b) in the second step requires a linear system solution.
This can be a computational bottleneck, but a substantial speedup can be achieved, ob-
serving that the coefficient matrix (A− σB) is constant; therefore, one can factorize it once
at the beginning of the Krylov–Schur iterations and perform only the back substitutions
in (46b).

An alternative that preserves the sparsity of the matrices and can fit better in scenarios
with millions of unknowns is that (46b) is solved iteratively via truncated MINRES or
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GMRES iterative methods. If the number of unknowns is in the range of tens of thousands,
however, we experienced that the factorization via a direct method performs faster.

5. Implementation of the Krylov–Schur Solver

The Krylov–Schur method was introduced in 2001 [14], leading to an improved perfor-
mance in respect to other Krylov subspace methods, such as Arnoldi and Lanczos, which
were used for decades in the field of eigenvalue computation. The notorious Implicitly
Restarted Arnoldi Method, implemented, for example, in the ARPACK library, or the Locally
Optimal Block Preconditioned Conjugate Gradient (LOBPCG), implemented, for exam-
ple, in the BLOPEX library, both fail to converge for those problems whose matrix is of
type (20), (22), (33) or (34) and for which wide mass ratios or strongly ill-conditioned blocks
are present.

On the contrary, the robustness of the Krylov–Schur method also guarantees satisfying
results for the most critical conditions, thus becoming the elected choice for the following
tests. Our implementation follows the guidelines in [19] as reported in Algorithm 1. It was
extended to the case of complex and sparse matrices and is included in the open-source
multibody library CHRONO [20].

On a parent level of the Krylov–Schur solver, specific routines construct an eigenvalue
problem in accordance with (33) or with (20) for the undamped case. This will push the
spurious constraint modes to infinity, being of less disturbance for the usual low-frequency
area of interest for engineering applications.

The code offers the possibility to specify different problem formulations, either direct
or in shift–invert, by providing different OP_CV(v) operators in Algorithm 2. For instance,
in Algorithm 3, we show the implementation for the shift–invert case, implementing (46a)
and (46b).

The solutions of the linear systems required by the method can be theoretically pro-
vided by any linear solver enabled for complex values; practically, given the relatively high
accuracy required by the solution and the ill-conditioning of some matrices, direct solvers
are almost mandatory for this application, relegating iterative solvers only for systems with
higher degrees of freedom. However, for smaller and simpler problems, the choice of the
solver is not critical (allowing the use of, e.g., SparseLU and SparseQR functions from the
popular C++ linear algebra library EIGEN [21]); for most of the real cases, more advanced
solvers are required, such as Pardiso MKL or MUMPS [22]. Given the importance of this
choice, our Krylov–Schur implementation was made solver agnostic: the user can indeed
provide one of its own choice.

For the undamped case, as in (20), the value of σ in the shift–invert procedure is
assigned as a small positive real value σ = ε (by default, we used σ = 10−3 in our tests) in
order to return the lowest eigenmodes, including those with zero eigenvalues in case there
are rigid body modes. A small negative real value would work as well, but the numerical
conditioning of the problem would be worse. If one needs specific eigenmodes clustered
about some specific frequency fc, we set it as σ = − f 2

c . For the damped case, we use a
complex shift σ = σR + iσI , with a small real value σR = ε and no imaginary part if we are
interested in the lowest eigenvalues, for instance, σ = 10−3 + i0, or with a finite imaginary
part if we need eigenmodes clustered about an fc frequency: σ = εR + i fc.

The Krylov–Schur decomposition is then solved by using the EIGEN linear algebra
library eigensolvers [21].

An important contribution to the stability of the method is given by a trivial and
inexpensive preconditioning of the Jacobian matrix Cq. While the stiffness and damping
matrices usually have terms in the order of at least 106, the Jacobian matrix is usually
in the order of 100. This change affects only the Lagrange multipliers γ and the relative
eigenvector counterpart ξi that should be re-scaled back for the same factor (if they are of
any interest to the user). This simple change in the matrices allows, in some corner case,
a significant reduction in the residuals, even just after the first iteration of the method.
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Algorithm 1 Krylov–Schur

1: procedure KRYLOV–SCHUR(OP_CV(),k, m)
2: Q(:, 1) := v1/norm(v1)
3: p := 1
4: isC := 0
5: [Q, H] := KRYLOVEXPANSION(OP_CV(),Q, H, 0, k)
6: while i < imax & p < k do
7: i ++
8: isC := 0
9: [Q, H] := KRYLOVEXPANSION(OP_CV(),Q, H, k + isC, m)

10: [U, T, isC] := SORTSCHUR(H(p : m, p : m), k− p + 1)
11: H(p : m, p : m) := T
12: H(1 : p− 1, p : m) := H(1 : p− 1, p : m)U
13: Q(:, p : m) := Q(:, p : m)U
14: H(m + 1, p : m) := H(m + 1, m)U(end, :)
15: Q := [Q(:, 1 : k), Q(:, m + 1)]
16: H := [H(1 : k, 1 : k); H(m + 1, 1 : k)]
17: CHECKCONVERGENCE(H, k + isC, p, tol)
18: end while
19: [µ, ΦH ] := EIG(H(1 : k + isC, 1 : k + isC))
20: Φ = Q(:, k + isC)ΦH
21: return µ, Φ
22: end procedure

Algorithm 2 Krylov Expansion

1: procedure KRYLOVEXPANSION(OP_CV(),Q, H, ks, ke)
2: for k = ks + 1 : ke do
3: v :=OP_CV(Q(:, k))
4: isC := 0
5: w := Q(:, 1 : k)′ v
6: v−= Q(:, 1 : k)w
7: w2 := Q(:, 1 : k)′ v
8: v−= Q(:, 1 : k)w2
9: w+= w2

10: nv := norm(v)
11: Q(:, k + 1) := v/nv
12: H(1 : k + 1, k) := [w; nv]
13: end for
14: end procedure

Algorithm 3 Op_Cv operator

1: procedure OP_CV(v)
2: z = Bv
3: r = (A− σB)−1z
4: return r
5: end procedure

6. Results

The Krylov–Schur method was tested on various scenarios, including real-case prob-
lems, in order to assess the accuracy and scalability of the method. The relevant test
conditions include flexible elements, rigid bodies, generic constraints and free–free modes
in various combinations.



Machines 2023, 11, 218 12 of 16

The tests are leveraging the newly implemented quadratic Krylov–Schur eigensolver
using the Pardiso MKL direct linear solver, and the results are compared to the eigs solver
of MATLAB (that turns out to be an implementation of the Krylov–Schur solver as well) as
well as against the state-of-the-art Arpack [23] routines, making sure that—even for this
latter library—the same Pardiso MKL linear solvers were used. The hardware includes an
Intel i7 6700HQ with 16 GB RAM.

For the purpose of this article, only Rayleigh damping is considered. Other damping
formulations can be used without expecting any drastic impact over the solver performance
given that the sparsity of the matrices are kept within reasonable limits. One example
that might negatively affect the solver is if modal damping is used: in this case, dense
damping matrices arise, thus easily leading to increased computational costs. However,
because the solver is mainly targeting sparse problems, the authors did not investigate
other damping modes.

6.1. Hybrid Flexible and Rigid Bodies with Constraints

Constraining the system results in an additional zero-valued block in the system
matrices, thus potentially compromising the stability for the inner linear solver. In the
following test case, a Euler beam with properties set according to Table 2 is fixed at the
base while its tip is constrained to a rigid body of a heavier mass (4000 kg) (Figure 1).
The method was tested with end masses up to 10× 108 in order to prove its robustness.
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(a) (b)

Figure 1. Cantilever Test. (a) Cantilever Models. (b) Cantilever Eigenvalues.

Table 2. Test beams properties.

Property Value

Young Modulus 100 MPa
Density 1000 kg m−3

Section 0.3 m× 0.05 m
Poisson Ratio 0.31
Rayleigh Damping α = 1× 10−3, β = 1× 10−5

6.2. Finite Elements

An additional test case with a crank–rod–piston assembly shows the use of tetrahedral
mesh (Figure 2). Without any specific preconditioner, the Arpack dndrv4 routine failed
to return consistent results in a reasonable time. The Krylov–Schur solver manifested a
superior performance, especially in denser and more computationally expensive problems.
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(a) (b)

Figure 2. Benchmark for multibody flexible systems with constraints: flexible crank, rod and piston
bodies with bearings. (a) Second Mode at 52 Hz. (b) Sixth Mode at 200 Hz.

6.3. Free–Free Modes

The presence of unconstrained bodies results in degenerated modes whose eigenvalues
are pushed toward infinity. The method also guarantees proper stability for this degenerate
case (Figure 3). It might be noticed how each degree of freedom contributes to the overall
residual: the first half represents the positional degrees of freedom while the second
represents the velocities (usually of less interest). The beam properties are the same as
in Table 2. In this case, a comparison with Arpack revealed that, even while asking for
better accuracy, the Arpack dndrv4 routine was not able to converge to more accurate
results. The Intel MKL Pardiso solver was used for both the Krylov–Schur and Arpack
solvers, thus restricting the potential cause of the reduced accuracy to the eigensolver itself.
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Figure 3. Benchmark with multiple rigid body modes. (a) Free–free models. (b) Free–free eigensolver
residuals.

6.4. Wind Turbine

This medium-scale real test case involves a modern large-size wind turbine, courtesy
of a commercial original equipment manufacturer in the wind industry. The test includes
constrained flexible as well as free rigid bodies. Given the wide ratio between smaller
and bigger eigenvalues (the A matrix results in a reversed conditioning number of 10−19),
the preconditioning of the Jacobian matrix of the constraints has proved to be essential for
the robustness and accuracy of the results. The problem is non-symmetric, especially due to
the linearization of the inertia (Ki) and constraint forces (Kc), as shown in Equation (9) and
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more broadly in Section 2; this does not pose any additional issue to the eigensolver nor to
the inner linear solver because they are both already operating on an asymmetric problem,
as shown in Equation (33). Given the sensitivity of the results, the eigenvalues are not
shown directly, but only the residuals, together with the stability assessment over different
working conditions, are offered (Figure 4). The problem size is in the order of thousands.
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Figure 4. Wind turbine benchmark in different operating conditions. (a) Constraint matrix scaling
effect. (b) Stability assessment.

6.5. Scalability

The scalability of the method was tested against a grid of Euler beams, whose size and
number of cells are parametrized in order to provide different scales to the same problem.
Each beam is fixed at every intersection with the grid. For each test, the lower 100 modes
were computed. The number of elements are three and two, respectively, along each cell
in the longitudinal and vertical direction. The ratio between the longitudinal and vertical
number of cells is kept constant across the different tests. The results basically show a linear
relation (R2 = 0.9996) between the number of degrees of freedom of the original problem
and the time cost of the Krylov–Schur solver, Figure 5, with a little additional overhead
for smaller-scale tests. The results do not include the time expense for the assembly of the
matrices. Again, the beam properties are set according to Table 2.

Moreover, in this case, the results for the Arpack solver returned high residuals,
especially with close-to-zero shifts. An example over a 20 × 14 beams grid structure is
shown in Figure 6.
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Figure 5. Scalability Test. (a) Beam Grid Model. (b) Beam Grid Time Cost.
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Figure 6. Residuals of 20 × 14 grid problem.

7. Conclusions

The proposed implementation of the Krylov–Schur solver successfully proves to
effectively handle a wide variety of test cases, including free–free modes, constraints, rigid
and flexible systems, resulting in either real or complex, symmetric or asymmetric matrices
of the associated eigenvalue problem. The ample availability of the software guarantees a
vast dissemination of the method, offering the best platform for further improvements.
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