
Citation: Tevera-Ruiz, A.;

Garcia-Rodriguez, R.; Parra-Vega, V.;

Ramos-Velasco, L.E. Q-Learning with

the Variable Box Method: A Case

Study to Land a Solid Rocket.

Machines 2023, 11, 214. https://

doi.org/10.3390/machines11020214

Academic Editor: Tao Li

Received: 2 December 2022

Revised: 22 January 2023

Accepted: 30 January 2023

Published: 2 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

Q-Learning with the Variable Box Method: A Case Study to
Land a Solid Rocket
Alejandro Tevera-Ruiz 1 , Rodolfo Garcia-Rodriguez 2,* , Vicente Parra-Vega 1

and Luis Enrique Ramos-Velasco 2

1 Robotics and Advanced Manufacturing Department, Research Center for Advanced Studies (CINVESTAV),
Ramos Arizpe 25900, Mexico

2 Aeronautical Engineering Program and Postgraduate Program in Aerospace Engineering, Univ. Politécnica
Metropolitana de Hidalgo, Tolcayuca 43860, Mexico

* Correspondence: rogarcia@upmh.edu.mx

Abstract: Some critical tasks require refined actions near the target, for instance, steering a car
in a crowded parking lot or landing a rocket. These tasks are critical because failure to comply
with the constraints near the target may lead to a fatal (unrecoverable) condition. Thus, a higher
resolution action is required near the target to increase maneuvering precision. Moreover, completing
the task becomes more challenging if the environment changes or is uncertain. Therefore, novel
approaches have been proposed for these problems. In particular, reinforcement learning schemes
such as Q-learning have been suggested to learn from scratch, subject to exploring action–state causal
relationships aimed at action decisions that lead to an increase in the reward. Q-learning refines
iterative action inputs by exploring state spaces that maximize the reward. However, reducing the
(constant) resolution box needed for critical tasks increases the computational load, which may lead
to the tantamount curse of the dimensionality problem. This paper proposes a variable box method
to maintain a low number of boxes but reduce its resolution only near the target to increase action
resolution as needed. The proposal is applied to a critical task such as landing a solid rocket, whose
dynamics are highly nonlinear, underactuated, non-affine, and subject to environmental disturbances.
Simulations show successful landing without leading to a curse of dimensionality, typical of the
classical (constant box) Q-learning scheme.

Keywords: variable box method; Q-learning; rocket landing; thrust vector control; underactuated
systems

1. Introduction

Space launches have improved autonomous landing technology for reusable spacecraft
in the last few years. These aim to recover the rocket’s main booster for analysis and to
retrofit, saving about 60% of total mission costs [1]. Why does it take 60 years of rocket
technology development to achieve landing technology? We need to revise this briefly.
First, the physics involved in a rocket landing is difficult to command; this stems from
the fact that descending a vertical longitudinal rocket’s dynamics are highly nonlinear,
underactuated, non-affine, and subject to environmental disturbances. This critical task
requires extreme maneuverability when using thrust vector control (TVC). Furthermore,
unlike the fixed nozzle configuration that commands two controllers (variable thrust and
surface control), non-affine underactuation arises when using TVC because it implements
one control (constant thrust with a variable nozzle placed at the rocket’s bottom end,
controlling it within a small angle range). Second, TVC is used because the low approaching
velocities make the surface control input irrelevant, exacerbating maneuvering toward the
landing spot [2,3]. Over the years, model-based optimization schemes subject to constraints
have been addressed. However, due to changing environmental conditions, the lack of
exact knowledge jeopardizes the implementation of conservative model-based approaches.

Machines 2023, 11, 214. https://doi.org/10.3390/machines11020214 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines11020214
https://doi.org/10.3390/machines11020214
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0002-3991-1691
https://orcid.org/0000-0002-4402-6072
https://orcid.org/0000-0002-1813-0394
https://orcid.org/0000-0002-8715-9641
https://doi.org/10.3390/machines11020214
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines11020214?type=check_update&version=1

Machines 2023, 11, 214 2 of 14

In these circumstances, Machine Learning (ML) tools, such as Reinforcement Learning
(RL), have materialized as an alternative to learning the actions required to produce the
desired trajectories.

RL algorithms exploit the reward evaluation to optimize a value function through
the Bellman Equation that governs the learning process under an optimal policy. RL has
solved many problems, such as automatic translation, image recognition, medical diagnosis,
and text and speech recognition, to name a few. However, further algorithmic improvement
is needed for physical systems due to RL iterates. Thus, critical tasks such as landing a
rocket may lead to fatal failure (where the system cannot recover operation) for certain
iterations. For example, RL has been used for image classification to identify landing spots
for aerospace missions [4–6], including deep RL [7]; however, there are no studies for
landing dynamical rockets.

Q-learning is a salient scheme of RL algorithms that has proven successful in uncertain
dynamical systems (see Appendix A). It associates a discrete state with a discrete box
corresponding to a discrete action that eventually leads to the optimal outcome after
exploring the whole state space; such discretizations handle advantageous uncertainties.
Classical Q-learning relies on the box method, which assigns boxes of a constant resolution
(CR) corresponding to a discretized state. When a better input resolution is required,
the conventional solution is to increase the number of boxes, which may lead to the
curse of dimensionality [8]. Moreover, for goal-oriented tasks, the Q-algorithm’s learning
architecture allows for the modification of the resolution of the boxes as the system state
approaches the goal state. Thus, we aim to use a low number of boxes to maintain the low
state-space dimension and reduce only the box size near the goal, avoiding the curse of
dimensionality.

This paper proposes a box method with a variable resolution (VR) to increase the learn-
ing resolution where needed without increasing the computational costs or the resolution
for each state variable. The VR method is applied to the Q-learning algorithm to maneuver
the landing of a rocket. Representative dynamic simulations using the complex solid rocket
dynamics using the real parameters of a NASA rocket are presented. It is shown that the
learned policy (controls) produces admissible trajectories that comply with this critical task,
even when the rocket is subject to disturbances.

This paper is organized as follows. The problem statement is presented in Section 2,
followed by the proposed variable box method. Then, a brief revision of RL algorithms
is given in Section 3. Section 4 introduces the TVC rocket dynamics and the simulation
results are shown. Finally, the conclusions are given in Section 5.

2. Problem Statement

We consider the following nonlinear, non-affine, underactuated, disturbed, and state-
constrained system in the continuous state-space form given by

ẋ = f(x, t) + g(x, u, t) + η(t) (1)

y = h(x) = x (2)

where x, y ∈ <n are the vector state and system output, respectively, f(x, t) is the flow of
the nonlinear ODE (1), g(x, u, t) is the input matrix, and η(t) is a Liptchitz disturbance. Let
the Euler method be used to obtain the following difference equation of (1) and (2),

xt+1 = xt + h [f(xt) + g(xt, ut) + ηt] (3)

yt = xt ⇒ yt+1 = xt+1 (4)

where h > 0 is the step size and yt corresponds to the output at the t time step. Note that
Systems (1) and (2), or (3) and (4), are:

1. nonlinear (superposition theorem does not apply);
2. underactuated (there exist more degrees of freedom than control inputs);

Machines 2023, 11, 214 3 of 14

3. non-affine in the control input u (since g cannot be written as g = ḡu for a given ḡ
input matrix).

Since 1–3 account for a complex system and assuming that the task is complex for
traditional control techniques, a Q-algorithm is a feasible solution using a variable reso-
lution box method to refine the state space that allows learning from scratch, avoiding
increasing the computational load. Then, assuming full access to the output vector yt of
system (3) and (4), the problem statement is how to apply the Q-Algorithm using a variable
box method to produce a set of admissible trajectories with a feasible (without incurring
the curse of dimensionality) iterative learning policy ut that eventually converges to its
optimal u∗t = π∗ that maximizes a reward policy.

3. Box Methods in RL algorithms
3.1. Brief Background of Reinforcement Learning

Unlike supervised or unsupervised learning, reinforcement learning is characterized
as the learning process carried out from scratch, taking into account environmental in-
formation and reward assignment, typically using a Markov Decision Process (MDP) [9].
As a result, undesirable actions and states are allowed throughout the learning process.
Moreover, RL avoids them in subsequent trials to improve learning. The RL idea is that the
agent applies action ut to the environment, consequently producing a measurable state st
at time t, which is evaluated by a reward policy, see Figure 1. The agent’s goal is to learn
the set of actions that optimizes a value cost function V(st) throughout a long-term reward
process rt+1, which at t + 1, leads to complying with the reward policy until st+1 reaches
the (desired) goal state sd

t+1. The optimization process minimizes V(st) by assigning a value
to each state, followed by a policy π(st) that defines the agent’s behavior. Thus, the agent
learns the behavior that leads to an optimal policy π∗(st), and, therefore, to optimal states
of an optimal value function V∗(st). The optimization problem is solved using Dynamic
Programming (DP) to satisfy the fundamental Bellman Equation.

◔◔

𝑠𝑡+1
𝑟𝑡+1

𝑠𝑡
𝑟𝑡

𝑢𝑡
EnvironmentAgent

Figure 1. Conceptual reinforcement learning scheme.

3.2. Classical Box Method

Q-learning encloses continuous state and action values into finite sets by indexing
intervals into so-called boxes [10]. The classical boxing method, called the box method, uses
two user parameters, the set of finite fence limits and the constant resolution ε = bup − blw,
which determine the size of each box based on its upper bup and lower blw limits. Then,
the i-th element of the output vector yt is divided into ni boxes of a constant resolution ε,
where t is the time step and it ∈ NN is the index vector. There arise N-elements of yt as
components of a new set B(·), where B(·) maps the state space to index the vector space
yt 7→ it. In this way, one has the following two spaces:

- Finite State-Number Space. Let it be the index vector of the finite state-number space
S for dim(S) = ∏N

i=1(ni + 1), whose elements are the state numbers st codified by
it’s elements. Then, S models a vector of the integer numbers’ range [0, dim(S)− 1]
as elements of a tensor T of N-axes, coding the state number st into T to finally relate
the indexed output vector yt to it and then to st = T(it) : it = B(yt).

- Finite Action Space. Aiming at obtaining a finite action space A = {u1, u2, . . . , uk, . . . ,
um} for the bounded action (control) variable u ∈ [ulw, uup] represented by m-boxes

Machines 2023, 11, 214 4 of 14

of ε > 0 width each, then dim(A) = m. Each element uk is indexed by the m-th action
agent from an arbitrary policy. Note that a high number of u values is suggested
to enable more state-number explorations. However, this may lead to an unfeasible
explosion of dimensions, or the curse of dimensionality.

In recent years, research has focused on improving learning algorithms such as deep
Q-learning or actor–critic, rather than the box method, which is fundamental for many of
these algorithms.

Limitations of the Classical Box Method. Methods have been proposed to deal with
one of the main drawbacks of the classical box method: tuning ε without leading to an
unfeasible explosion of dimensions. Several variable boxing methods have been proposed.
Ref. [11] proposes an interpolation approach using a coarse grid for the learning process
and then increases the accuracy with Kuhn Triangulation around the interested regions.
In [12], feudal reinforcement learning is proposed by dividing the state space into regions,
where each is iterative-divided to reduce state-space searching using the manager concept,
similar to the demons in neuron-like adaptive elements [13]. Ref. [14] introduced an adap-
tive resolution boxes approach by approximating the value function using interpolation
and tree structures to refine the grid, similar to [15], using kd-trees to identify attractive
state-space regions. Recently, a fuzzy action assignment method has been proposed to
generate continuous control based on an optimal trained Q-table [16]. In these approaches,
the resolution is adaptive online because the goal box is unknown, as in a chess game.
However, there are applications where the goal is known a priori, allowing an offline
variable box resolution.

3.3. The Proposed Variable Box Method

Let the ib box be variable with a resolution εi given by

εi =

εib−1 +

1
2 εgb M(|∆ib|) if ∆ib > 0

εib+1 +
1
2 εgb M(|∆ib|) if ∆ib < 0

εgb otherwise

(5)

where |∆ib| = |ib − igb|, with ib the current box index and igb the goal-box index. The
scalar function M(|∆ib|) ∈ C2 is monotonous away from the origin M(0) = 0 such that
it increases (decreases) the accuracy in the vicinity of larger (smaller) distances to the
goal-box resolution εgb. As an example of function M(|∆ib|), the discrete Fibonacci Serie
{1, 1, 2, 3, 5, . . .} can be considered. The proposed algorithm for the variable box method is
shown in Algorithm 1. The box resolution εi yields:

a. a faster reaction for larger errors;
b. a constant box dimension; the remaining boxes are enlarged (shrank) when εib−1 is

reduced (expanded), like an accordion of a fixed length;
c. continuous action-taken history and influence [14], with smooth transitions between

state numbers.

Note that for each i-th element of the output vector, yi ∈ yt, there exists a goal box
with an index box igb and a resolution εgb defined by prior knowledge of the desired
state-variable value yd

i ∈ [yi,lw, yi,up]; each box resolution can be increased (or decreased)
according to the proximity of the goal box. Additionally, εib should be truncated to εs for
safety resolution to ensure sufficient accuracy in edged boxes; otherwise, many state vectors
would be assigned the same state number. Finally, note that the classical box method is
a particular case of our proposed variable box method since it is included in the third
condition in (5).

Machines 2023, 11, 214 5 of 14

Algorithm 1 The proposed variable box method enables higher resolution near
the goal but lower resolution away from it to avoid exploiting dimensionality.

Input: yd
i ∈ <; εgb > 0; (yi,lw, yi,up) and εs >> 0;

Result: A set B with ni-boxes.
Initialize;
B ← empty list;
Calculate initial lower limit as bi ← yd

i −
1
2 εgb ;

while bi > yi,lw do
Add bi value to B set;
bi ← bi − εib ;
if εi < εs then update εib by (5) else εib = εs;

end
Calculate initial upper limit as bi ← yd

i +
1
2 εgb ;

while bi < yi,up do
Add bi value to B set;
bi ← bi + εib ;
if εi < εs then update εib by (5) else εib = εs;

end
Add yi,lw and yi,up values to B set;
return Shorted B.

3.4. How to Deal with the Curse of Dimensionality

A comparative grid example of the classical box and variable box methods is shown
in Figure 2, considering two state variables with yi,lw = −1 and yi,up = 1. Figure 2a
uses a constant resolution εi = 1 × 10−2, whereas the variable box method considers
εgb = 1× 10−2 and εs = 0.1. Note that both methods have the same box resolution and
accuracy around the goal box. This way, finer action is taken with a greater reward when it
is near the goal.

x1

1.000.750.500.250.000.250.500.751.00

x 2

1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00

R(
e t

)

8.2
8.4
8.6
8.8
9.0
9.2
9.4
9.6
9.8

a)

x1

1.000.750.500.250.000.250.500.751.00

x 2

1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00

R(
e t

)

8.2
8.4
8.6
8.8
9.0
9.2
9.4
9.6
9.8

b)

Figure 2. Level sets for vertical rocket landing were obtained with (a) the variable box method using
576 boxes, and (b) the classical box method using 40,000 boxes, both tuned to obtain similar final
results. The dramatic reduction in the number of boxes achieved using our proposed variable method
results from the symmetrical higher resolution around the goal box, which yields a higher reward in
areas with zero errors.

Otherwise, the variable box method reduces the curse of dimensionality in a Q-learning
implementation using only 14.4% of boxes to render similar results to the classical box
method without changing their attributes around the interested region.

Machines 2023, 11, 214 6 of 14

3.5. Reward Assignment

A critical element of RL algorithms is the design of the reward policy because it
codifies the policy that leads to the learning goal [17]. In this work, the reward is defined as
an evaluation function Rt(et) that evaluates the error of the goal of the current agent. Thus,
instead of increasing the reward, which may lead to an aggressive action, we propose to
increase the box resolution when needed by using the variable box method for the same
reward policy to guarantee the learning goal.

The following section describes a case study showing how the proposed variable box
method with Q-learning can successfully land a complex plant, as depicted in Figure 3.

Q-Learning Algorithm

Expert Agent
Switch

 = {𝑢1, 𝑢2,… , 𝑢𝑘,… , 𝑢𝑚}

Finite Action Space

𝐱𝑡+1 = 𝐱𝑡 + ℎ
[
𝐟 (𝐱𝑡) + 𝐠(𝐱𝑡, 𝑢𝑡) + 𝜼𝑡

]
𝐲𝑡+1 = 𝐱𝑡+1

Euler Method

𝑅𝑡(𝐞𝑡)

Reward Assignment

(𝐲𝑡)
Variable-Box Method

𝔗(𝐢𝑡)

Finite State-Number Space

Learned Trajectories

+−

𝑢𝑡

𝜼𝑡

𝑢𝑘𝑠𝑡

𝐢𝑡

𝑟𝑡

𝐲𝑡+1

𝐲𝑡

𝐲𝑡

𝐲𝑡

𝐲𝑑𝑡 𝐞𝑡

Figure 3. Schematic diagram of the proposed variable box method with Q-learning. Two feedback
loops reinforce the intertwined closed-loop dynamic interplay of the expert agent to guarantee
yt → yd

t , whereas the cumulative reward rt is maximized

4. A Case Study: Rocket Landing

The proposed variable box method is synthesized to learn the descent trajectories of
a solid rocket driven by TVC using the Q-learning algorithm. First, a brief description of
rocket dynamics is given, followed by the concise Lagrangian model. Then, the comparative
simulation results of the classical box and variable box methods are presented.

4.1. Dynamical Model
4.1.1. Translational Dynamics

Applying the second law of Newton, the forces acting on the rocket are defined as

a =
1

mr
F =

1
mr

[TB
ECI(Faer + Fthrust) + Fg] (6)

where mr is the rocket mass, Faer are the aerodynamic forces, Fthrust is the thrust force, and
Fg is the gravity force, with TB

R = R(x, φ)R(y, θ)R(z, ψ)the rotation matrix between the
reference frames B and R, see Figure 4a. Note that the thrust and aerodynamic forces are
defined with respect to the body reference frame B. In contrast, the gravity force is defined
with respect to the inertial reference frame R.

Machines 2023, 11, 214 7 of 14

Σ

X
R

Fthrust, x

x

V

gim

Gimbal
Joint

y

x

x

Az

z
Vp.a.θ

νa.e.θ

δθ

θ

ϕ

α
θ θ

γ
ωθα

δψ

ψ

Fthrust, z

Fthrust, y

Fthrust T=

a)

B

xcp

Center of Gravity

Center of Pressure

N = Nαsin(α))

V

y

A

z
Vp.a.θ

νa.e.ψ

β
ψ ψ

γ
ωψα

xcp

S = Sβ β

b) c)

sin(

Figure 4. (a) Rocket with an integrated TVC, with a bounded angle nozzle, and the aerodynamics
forces shown in (b) the xz-plane, and (c) the yz-plane. Notice that CoG and CoP are at different
locations, which yields a rather highly nonlinear coupled non-affine underactuated system.

Aerodynamic Forces. Two components of aerodynamic forces arise, the lift force acting
in the normal direction and the dissipative drag forces, both acting throughout the center of
pressure. The normal force is longitudinal to the principal axis of the rocket, N = Nαsinα,
whereas the axial force resulting from drag force is given by A = 1

2 CaρV2
air$. The lateral

slip force is defined as S = Sβsinβ, where Nα is the normal force depending on the angle of
attack α = θ + γθ + αwθ , where Ca is the aerodynamic axial force coefficient, ρ is the density
of the air, Vair is the airspeed, $ is the coincidence surface of air, and Sβ is the lateral slip
force dependent on the angle of slip β = ψ + γψ + αwψ, with θ and ψ as the rocket angles,
γ the drift angle, and αw the wind disturbance, see Figure 4b,c. Finally, the normal and
lateral slip forces are affected by the angle of attack, thus defined as Nα = 1

2 CNρV2
air$ and

Sβ = 1
2 CSρV2

air$, where CN and Cs represent the aerodynamic coefficients from the normal
force (N) and lateral slip force (S), respectively. Because the center of pressure and the
center of gravity are not generally located at the same point on the rocket, the aerodynamic
forces can cause the rocket to rotate in flight. In this way, the aerodynamic forces Faer are
defined as

Faer =

 Faer,x
Faer,y
Faer,z

 =

 −A
S
−N

 =

 −A
Sβsβ

−Nαsα

 (7)

where sa = sin(a), ca = cos(a).
Thrust Forces. Thrust is produced by the engine acting in the opposite direction to the

exhaust combustion gases and is given by Fthrust = T = ṁVe + (Pe − P0)Ae, where ṁVe is
the combustion of the propellant that burns and escapes at a constant rate and (Pe − P0)
is the difference in pressure between the inside and outside of the nozzle at an exhaust
surface Ae. Assuming that the thrust is constant (T), the components of the TVC, as shown
in Figure 4a, are given as

Fthrust =

 Fthrust,x
Fthrust,y
Fthrust,z

 =

 Tcδψ
cδθ

Tsδψ

Tsδθ

 (8)

Gravity Force. Consider the Earth’s geometry as a WGS84 ellipsoid called Geoid and
the gravity force vector is defined as [8,18]

Fg = mr

gx
gy
gz

 = mr

− µ

r2
e

(
1 + 3

2 J2(
R0
re
)2(1− 5(z

re
)2)
)

x
re

− µ

r2
e

(
1 + 3

2 J2(
R0
re
)2(1− 5(z

re
)2)
)

y
re

− µ

r2
e

(
1 + 3

2 J2(
R0
re
)2(3− 5(z

re
)2)
)

z
re

 (9)

Machines 2023, 11, 214 8 of 14

where µ represents the universal gravitational constant, R0 is the distance between the
surface location from the Earth to its center, J2 is the oblateness term, and re is the distance
between the rocket and the Earth’s center.

4.1.2. Rotational Dynamics

Let the angular acceleration ω̇ be given by:

ω̇ = [ṗ, q̇, ṙ]T = Ĵ−1[M−ω× (Ĵ ·ω)] (10)

where M are the moments acting on the rocket that are produced by the thrust force and the
aerodynamic force and M = Maer + Mthrust = rc.p. × Faer + rgim × Fthrust. Note that Maer
represents the moment of the aerodynamic force acting on the center of pressure (c.p.),
whereas Mthrust is the moment from the center of gravity (c.g.) to the gimbal of the engine.
Given that the gravity force acts uniformly on the rocket, it does not create momentum.
Now, assuming that the axis of reference frame B is aligned to reference frame R, the inertia
tensor is given as Ĵ = diag[Jxx, Jyy, Jzz]. Substituting the rocket moments M and Ĵ in (10),
there arises the rotational dynamics, which are defined as

 ṗ
q̇
ṙ

 =

−qr(Jzz−Jyy)

Jαx
[−Xcp ·Nαsα+XgimTsδθ−pr(Jxx−Jzx)]

Jyy

[−Xcp ·Sβsβ−XgimTsδψ−pq(Jyy−Jzx)]
Jzz

 (11)

4.1.3. Rotational Kinematics

The rotational kinematics of the rocket with respect to the R frame are defined as a
function of the angular velocity as follows: φ̇

θ̇
ψ̇

 =
1
cθ

 cθ sφsθ cφsθ

0 cφcθ −sφcθ

0 sφ cφ

 p
q
r

 (12)

where φ, θ, and ψ are the Euler angles, the roll, pitch, and yaw, respectively. Thus, the TVC
rocket model is given in (6), (11) and (12).

4.2. Two-Dimensional Aerodynamic Rocket Model

Consider that the rocket landing is performed on the vertical plane xz; thus, the angles
φ and ψ and their derivatives are omitted. Additionally, the slip S in this direction is zero
so let the nozzle control δψ be zero. In this way, the rocket model becomes

mr z̈− Asθ + Nαsαcθ + mrgz = −T(cu + cθsu) + η1(t) (13)

Jyy θ̈ + XcpNαsα = −TXgimsu + η2(t) (14)

where z and θ stand for the rocket altitude and the pitch angle, respectively, with u = δθ
the nozzle angle (control input), Xgim the distance between the nozzle gimbal joint and the
center of gravity (CoG) in the rocket body frame, Jyy the principal moment of inertia on the
y-axis, Xcp the distance between the center of pressure and the gravity center, and α the
angle of attack. In addition, A and Nα stand for the axial and normal forces, respectively,
with α = θ + γθ + αwθ

, where γθ is the drift angle and αwψ corresponds to an unknown
wind disturbance. Finally, η1(t) and η2(t) represent the exogenous forces as Lipchitz
disturbances applied to each dynamic component, respectively.

Equations (13) and (14) can be written in a state-space form as in (1) and (2) or (3) and
(4), where x = [x1, x2, x3, x4]

T = [z, ż, θ, θ̇]T ∈ <4 is the vector state, y = x is the system
output, and f(x, t) = [f1, f2]

T is the flow of the nonlinear ODE in (13) and (14), where

Machines 2023, 11, 214 9 of 14

f1 = 1
mr
(−mrgx1 − Nαsαcx3 + Asx3) and f2 = −J−1

yy XcpNαsα; g = g(x, u, t) = [g1, g2]
T is

the input matrix, where g1 = − T
mr
(cu + cx3 su) and g2 = J−1

yy XgimTsu; and η(t) = [η1, η2]
T .

Remark 1. Note that the angle |x3| < x3M must remain bounded to avoid a stall. In addition,
the height x1 > 0 to avoid crashing against the landing pad. Thus, it is no surprise that it is so
difficult to maneuver a landing rocket, even when accounting for a plethora of resources in large
enterprises such as SpaceX, Blue Origin, or NASA.

4.3. Simulation Study

Three conditions are simulated for comparative purposes to show the performance of
the Q-learning algorithm in learning the rocket landing. The simulation:

1. shows the comparative performance of the classical and variable box methods for the
same output limits, action space, and number states but with different resolutions.

2. shows the comparative performance considering the same goal-box resolution and
state-space dimension for the variable box method.

3. shows the rocket landing trajectories when the rocket is subject to a Gaussian disturbance.

The simulator was written in Python, with a step size of h = 0.01 [s]. The principal
modules were numpy to compute the math operations, matplotlib to depict the results,
and our Q-learning algorithm, which was embedded in the “temporal difference” module.

The task was to learn the vertical rocket landing from an arbitrary initial condition y0
to yd

t = [0.1, 0, 0, 0], see Figure 5. Note that offset was set due to the landing train and the
command was implemented using only the nozzle angle.

The reward assignment was designed as follows:

Rt(et) =

{
10− ||et|| if yt is within limits (it awards)
−1000 otherwise (it penalizes)

(15)

where et = yd
t − yt is the error vector and || · || is the Euclidean norm. Function Rt(et)

increases as ||et|| → 0, maximizing the reward, i.e., yt → yd
t .

◔◔

Desired condition as 𝐲𝑑𝑡

◔◔

𝑥𝐵

𝑧𝐵𝑧𝑅

Initial condition as 𝐱0

𝜃

Σ𝑅 𝑥𝑅

𝑧𝑅

Figure 5. Schematic showing the task goal: learn the optimal admissible rocket trajectories for landing
from an arbitrary initial condition x0 to a (constant) desired landing spot yt

d.

4.4. Rocket and Learning Parameters

The rocket parameters used were those of the Saturn V rocket from NASA [19], where
Nα = 4.46477 [N], A = 6.09525 [N], mr = 570× 103 [kg], T = 7.605× 106 [N], Xgim = 21 [m],

Xcp = 10 [m], Jyy = 3.2× 107 [kg m2], J2 = 1.0826× 10−3, µ = 3.986× 1014 [m3

s2], R0 =

6.371× 106 [m], re = 6.372× 106 [m], αωθ
= 0 [rad], and γθ = ż/V, with V = 400 [m

s]. The

Machines 2023, 11, 214 10 of 14

learning parameters were γ = 0.7 and αQ = 0.01 for 5× 106 episodes. The first and second
simulations were disturbed with ηt = [0, 0]T .

4.5. Simulation A: Comparative Performance

Consider the output limits [y1, y2] ∈ [−1, 1] [m, m/s] and [y3, y4] ∈ [−0.5, 0.5]
[rad, rad/s], the action space ut ∈ [−0.2, 0.2] [rad], and 9 number states for both the
classical and variable box methods. For the classical box method CBM1, the constant
resolutions were εy1 = εy2 = 3× 10−2 and εy3 = εy4 = 8× 10−2. The first and last box
indexes were considered open range (±∞) as in membership functions in classical fuzzy
logic. Then, there arose 28,224 number states. On the other hand, two sets of variable box
parameters were tuned for the variable box method: (a) VBM1: The goal-box resolution
was εy1 = εy2 = εy3 = εy4 = 1× 10−2, with 28,224 number states as in CBM1. The action
space used 21 action boxes. (b) VBM2: The goal-box resolution was the same as VBM1 but
the output limits were set at [y1, y2] ∈ [−10, 10] [m, m/s] and [y3, y4] ∈ [−0.5, 0.5] [rad,
rad/s], producing 51,984 number states. The action space also used 21 action boxes.

Figure 6 shows the results using CBM1, VBM1, and VBM2. The initial conditions for all
cases were x0 = [0.99 m, 0 m/s, 0.02 rad, 0 rad/s]T , for εgb = 1× 10−2. Simulations CBM1
and VBM1 needed dim(S) = 28,224 and VBM2 requires dim(S) = 51,988 to converge
faster (tland = 3.7 [s]); however, the highest reward (rmax = 9.8618) with the lower error
norm (||et||min = 0.1381) is obtained with VBM1, showing that in any case, the proposed
variable method performs better than the constant method, see Table 1.

0 2
Time [s]

0.5

1.0

x 1
[m

]

a)

0 2
Time [s]

0.50

0.25

0.00

x 2
[m

/s
]

b)

0 2
Time [s]

0.5

1.0

||e
t||

c)

0 2
Time [s]

0.0

0.1

x 3
[ra

d]

d)

0 2
Time [s]

0.0

0.2

x 4
[ra

d/
s]

e)

0 2
Time [s]

0.2

0.0

0.2

u t
[ra

d]

f)

0.0 0.5 1.0
x1 [m]

0.5

0.0

x 2
[m

/s
]

g)

0.0 0.1
x3 [rad]

0.0

0.2

x 4
[ra

d/
s]

h)

0 2
Time [s]

9.0

9.5r t

i)

Figure 6. Comparative results for landing a rocket: classical box method CBM1 (blue), variable
box method VBM1 (red), and VBM2 (purple), where the purple and black dots represent the initial
and desired conditions, respectively. Subfigures depict the following: (a,b,d,e) show the rocket
descending phase, for height velocity x2, angle x3, and angle velocity x4 remain bounded while
tracking errors remain near zero; (a) shows the better performance of our proposal, (c) shows how
the error norm decreases while the reward increases (i), the control signal performance ut is show in
(f), and phase portraits are show in (g,h).

In Figure 6a,b,d,e, it can be seen that while the rocket is descending, the height velocity
x2, angle x3, and angle velocity x4 remain bounded. In addition, it can be seen that the

Machines 2023, 11, 214 11 of 14

state-variable errors are near zero, which is typical of reinforcement learning algorithms.
Additionally, Figure 6a shows that the set of simulations using the variable box method had
better landing performance than the classical box method. Furthermore, Figure 6f shows
that the control signal ut of the classical box method had a limited correlation between
actions, states, and rewards, which limited the adequate exploration of the state space.
Overall, the second set of simulation parameters with VBM2 performed better (as indicated
in purple in Figure 6) at the expense of a significant increase in the number states. Finally,
Figure 6g,h presents the portrait phase for each set of simulations, showing the convergence
for the three cases; however, in the variable box method, the rocket approached smoothly
due to the mesh’s density.

4.6. Simulation B: Comparative Performance

We aimed to compare the landing performance using the classical and variable box
methods based on three parameters: the minimum norm error ||et||min; maximum reward
obtained rmax; and time taken to land tland. The parameters were the goal-box resolution
εgb and state-space dimension dim(S) tuned by safety resolution εs, see Table 1. The initial
conditions were x0 = [0.99 m, 0 m/s, 0.02 rad, 0 rad/s]T .

Table 1. Comparative study results between CBM and VBM under different conditions of the goal-box
resolution and state-space dimension. The best metrics (εgb, ||et||min, rmax, tland [s]) were obtained
with VBM4 at the expense of a higher computational load (dim(S) = 51,984).

Box Method Code εgb dim(S) ||et||min rmax tland [s]

Classical CBM1 1× 10−2 28,224 0.6304 9.3787 4.88

Variable VBM1 1× 10−2 28,224 0.1381 9.8618 4.82

Variable

VBM3 5× 10−2 18,225 0.1519 9.8480 4.93

VBM2 1× 10−2 51,984 0.1458 9.8541 3.7

VBM4 1× 10−3 51,984 0.0867 9.9132 3.22

The first two rows in Table 1 correspond to the results presented in Figure 6, where
VBM1 achieved better performance than CBM1 using the same state-space dimension
(28,224) and box resolution. VBM3 showed acceptable performance with only 18,225
(in bold) number states, which caused increasing errors and a poor reward; moreover,
the landing time was the worst. Additionally, in VBM2, the state-space dimension increased
to 51,984 due to the loose-fitting grid around the learning goal, the errors decreased slightly,
and the landing took place in 3.7 [s].

If the goal-box resolution was defined as 1× 10−3, it yielded 51,984 number states and
the best performance was achieved (in bold) in terms of the error, reward, and landing time,
see VBM4 in Table 1. Note that when applying the variable box method, it is suggested
to establish a compromise among the learning goal, goal-box resolution, and state-space
dimension on a trial-and-error basis.

4.7. Rocket Subject to Disturbances

Consider the rocket subject to a Gaussian disturbance NG(·) such that ηt,1 = ηt,2 =
κ NG(µG, σ2) for µG = 0, σ = 1, and κ = 8× 10−2 [N]. Figure 7 shows the performance
of the rocket landing with and without perturbations using the policy of the VBM1 case
defined in Section 4.5. The initial conditions were x0 = [0.99 m, 0 m/s, 0.02 rad, 0 rad/s]T .
Figure 7a,b show the rocket’s portrait phase reaching the goal. Figure 7c shows the conver-
gence under the previous learning process conditions, which were sufficient to compensate
for disturbances that were unknown a priori.

Machines 2023, 11, 214 12 of 14

0.00 0.25 0.50 0.75 1.00
x1 [m]

0.6

0.4

0.2

0.0

0.2

x 2
[m

/s
]

a)

0.10 0.05 0.00 0.05 0.10
x3 [rad]

0.1

0.0

0.1

0.2

x 4
[ra

d/
s]

b)

0 1 2 3 4
Time [s]

0.2

0.4

0.6

0.8

1.0

||e
t||

c)

Figure 7. Rocket landing trajectories shown in phase portraits ((a) height position versus its velocity,
and (b) angular position versus its velocity) using the proposed variable box method without
disturbances (red) and subject to a disturbance ηt (olive). The purple and black dots represent the
initial and desired conditions, respectively. Remarkably, L2 norm of errors (c) yields similar plots,
showing trajectories are learned for both cases, despite the strong disturbance (olive) at the expense of
a slight (admissible) final deviation.

5. Conclusions

The classical Q-learning scheme guarantees iteratively reaching the goal states with a
quasi-optimal policy. This powerful scheme seems promising for complex dynamical tasks
such as landing a massive rocket but requires improved maneuverability. The variable
box method is proposed for the Q-learning algorithm to yield higher resolution near the
target region, where higher accuracy is required, such as the landing pad. In addition,
this method suggests that asymmetric refinement may be introduced at different state
regions in terms of the error threshold depending on the available computational power.
This way, the learning process emerges with the refinement of boxes to actions without
significantly increasing the computational costs. Simulations show how convenient it is
to explore such refinements of box-sizing instead of increasing the number of boxes. In
addition, the proposed variable box method can be introduced into other RL algorithms
since the Q-learning architecture is maintained.

Due to the Q-learning algorithm being an offline learning scheme, a sample of the
whole system behavior throughout the finite state-number space, which an expert user
should tune on a trial-and-error basis, is needed to asymptotically compute the quasi-
optimal policy rewarded by rt. Once that quasi-optimal policy is learned offline, it is
necessary to switch to an expert agent who already knows a local quasi-optimal policy
π∗(st). Moreover, caution is advised since, in practice, slight changes in states and actions
lead to a slightly different policy, i.e., π(st) 6= π∗(st). Thus, it is customary to run many
simulation tests beforehand to “average” the policy π̂(st) tested in real systems, where
π̂(st) ≈ π∗(st). In our case, the proposed variable box method may assist in practice since
it produces smoother but finer actions for larger errors.

Machines 2023, 11, 214 13 of 14

Author Contributions: Methodology, A.T.-R.; Investigation, R.G.-R., V.P.-V. and L.E.R.-V.; Writing—
original draft, A.T.-R.; Writing—review and editing, R.G.-R., V.P.-V. and L.E.R.-V. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: This study did not require ethical approval.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created.

Acknowledgments: The authors acknowledge the scholarship support granted to the first author
from the National Council of Science and Technology (CONACyT) of Mexico.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. The Standard Q-Learning Algorithm

The algorithm presented below merges the value iteration of the classical Dynamic Pro-
gramming approach with a random sampling of the Monte Carlo method to approximate
the value function asymptotically. In the algorithm, the temporal difference error δt = rt +
γ maxuk Q(st+1, ·)−Q(st, uk), where γ ∈ [0, 1) is the discount factor, which is fundamental.
Subsequently, the current state value is updated as follows: Q(st, uk)← Q(st, uk) + αQ δt,
where the learning rates αQ ∈ (0, 1] and Q(st, uk) stand for the value function that is up-
dated iteratively throughout δt. The optimal policy is given by π∗(st) = arg maxuk Q(st, uk),
which converges to the desired state vector yd

t = xd
t by maximizing the reward rt as the

number of episodes Ke → ∞. Note that Q(st, uk)→ Q∗(st, uk) as the exploration improves.
Particularly, all state numbers st = T(B(yd

t)) are elements of the terminal-state-number
subspace S+ ⊂ S . When Q-learning is applied to dynamic systems, their state spaces and
actions are mapped to a finite state-number space S and a finite action spaceA, respectively;
then, the box method that is applied to the instantaneous reward evaluates the new action,
which yields a new state.

Algorithm A1 The classical Q-learning
Input: αQ ∈ (0, 1]; γ ∈ [0, 1); and Ke.
Result: π∗(st) ≈ π(st).
Initialize;
Q(st, uk)← 0 ∀ st ∈ S , uk ∈ A;
Episode counter, ke ← 1;
repeat for each episode

Initialize randomly st;
Select any action uk according to state st;
repeat for each step in current episode

Apply action uk and observe system response rt, st+1;
if st 6∈ S+ then

Compute TD error, δt ← rt + γ maxuk Q(st+1, ·)−Q(st, uk);
Update value function Q(st, uk)← Q(st, uk) + αQ δt

end
st ← st+1;

until st ∈ S+;
ke ← ke + 1

until ke < Ke;
π(st)← arg maxuK Q(st, uk);
return π∗(st) ≈ π(st)

Machines 2023, 11, 214 14 of 14

References
1. Nebylov, A.; Nebylov, V. Reusable Space Planes Challenges and Control Problems. IFAC-PapersOnLine 2016, 49, 480–485.

[CrossRef]
2. Ünal, A.; Yaman, K.; Okur, E.; Adli, M.A. Design and Implementation of a Thrust Vector Control (TVC) Test System. J. Polytech.

Politek. Derg. 2018, 21, 497–505. [CrossRef]
3. Oates, G.C. Aerothermodynamics of Gas Turbine and Rocket Propulsion, 3rd ed.; American Institute of Aeronautics and Astronautics:

Washington, DC, USA, 1997; ISBN 978-1-56347-241-1.
4. Chen, Y.; Ma, L. Rocket Powered Landing Guidance Using Proximal Policy Optimization. In Proceedings of the 4th International

Conference on Automation, Control and Robotics Engineering, Shenzhen, China, 19–21 July 2019; pp. 1–6. [CrossRef]
5. Yuan, H.; Zhao, Y.; Mou, Y.; Wang, X. Leveraging Curriculum Reinforcement Learning for Rocket Powered Landing Guidance

and Control. In Proceedings of the China Automation Congress, Beijing, China, 22–24 October 2021; pp. 5765–5770. [CrossRef]
6. Sánchez-Sánchez, C.; Izzo, D. Real-Time Optimal Control via Deep Neural Networks: Study on Landing Problems. J. Guid.

Control Dyn. 2018, 41, 1122–1135. [CrossRef]
7. Zhang, L.; Chen, Z.; Wang, J.; Huang, Z. Rocket Image Classification Based on Deep Convolutional Neural Network. In

Proceedings of the 10th International Conference on Communications, Circuits and Systems, Chengdu, China, 22–24 December
2018; pp. 383–386. [CrossRef]

8. Stengel, R.F. Flight Dynamics; Princeton University Press: Princeton, NJ, USA, 2004; ISBN 978-1-40086-681-6.
9. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction, 2nd ed.; A Bradford Book: Cambridge, MA, USA, 2018;

ISBN 978-0-262-03924-6.
10. Michie, D.; Chambers, R.A. Boxes: An Experiment in Adaptive Control. Mach. Intell. 1968, 2, 137–152.
11. Davies, S. Multidimensional Triangulation and Interpolation for Reinforcement Learning. In Proceedings of the 9th International

Conference on Neural Information Processing Systems, Denver, CO, USA, 3–5 December 1996; pp. 1005–1011. [CrossRef]
12. Dayan, P.; Hinton, G.E. Feudal Reinforcement Learning. In Proceedings of the Advances in Neural Information Processing

Systems 5, Denver, CO, USA, 30 November–3 December 1992; pp. 271–278. [CrossRef]
13. Barto, A.G.; Sutton, R.S.; Anderson, C.W. Neuronlike Adaptive Elements that Can Solve Difficult Learning Control Problems.

IEEE Trans. Syst. Man Cybern. 1983, SMC-13, 834–846. [CrossRef]
14. Munos, R.; Moore, A. Variable Resolution Discretization in Optimal Control. Mach. Learn. 2002, 49, 291–323. [CrossRef]
15. Moore, A.W. Variable Resolution Dynamic Programming: Efficiently Learning Action Maps in Multivariate Real-valued State-

spaces. In Proceedings of the 8th International Conference of Machine Learning, Evanston, IL, USA, 1 June 1991; pp. 333–337.
[CrossRef]

16. Zahmatkesh, M.; Emami, S.A.; Banazadeh, A.; Castaldi, P. Robust Attitude Control of an Agile Aircraft Using Improved
Q-Learning. Actuators 2022, 11, 374. [CrossRef]

17. Sutton, R.S. First Results with Dyna, an Integrated Architecture for Learning, Planning and Reacting. In Neural Networks for
Control; Miller, W.T., Sutton, R.S., Werbos, P.J., Eds.; The MIT Press: Cambridge, MA, USA, 1991. [CrossRef]

18. Tewari, A. Atmospheric and Space Flight Dynamics; Modeling and Simulation in Science, Engineering and Technology; Birkhäuser
Boston: Boston, MA, USA, 2007; ISBN 978-0-81764-437-6. [CrossRef]

19. Martínez-Perez, I.; Garcia-Rodriguez, R.; Vega-Navarrete, M.A.; Ramos-Velasco, L.E. Sliding-mode based Thrust Vector Control
for Aircrafts. In Proceedings of the 12th International Micro Air Vehicle Conference, Puebla, Mexico, 16–20 November 2021;
pp. 137–143.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.ifacol.2016.09.082
http://dx.doi.org/10.2339/politeknik.404009
http://dx.doi.org/10.1145/3351917.3351935
http://dx.doi.org/10.1109/CAC53003.2021.9728178
http://dx.doi.org/10.2514/1.G002357
http://dx.doi.org/10.1109/ICCCAS.2018.8769176
http://dx.doi.org/10.5555/2998981.2999122
http://dx.doi.org/10.5555/645753
http://dx.doi.org/10.1109/TSMC.1983.6313077
http://dx.doi.org/10.1023/A:1017992615625
http://dx.doi.org/10.1016/B978-1-55860-200-7.50069-6
http://dx.doi.org/10.3390/act11120374
http://dx.doi.org/10.7551/mitpress/4939. 003.0012
http://dx.doi.org/10.1007/978-0-8176-4438-3

	Introduction
	Problem Statement
	Box Methods in RL algorithms
	Brief Background of Reinforcement Learning
	Classical Box Method
	The Proposed Variable Box Method
	How to Deal with the Curse of Dimensionality
	Reward Assignment

	A Case Study: Rocket Landing
	Dynamical Model
	Translational Dynamics
	Rotational Dynamics
	Rotational Kinematics

	Two-Dimensional Aerodynamic Rocket Model
	Simulation Study
	Rocket and Learning Parameters
	Simulation A: Comparative Performance
	Simulation B: Comparative Performance
	Rocket Subject to Disturbances

	Conclusions
	The Standard Q-Learning Algorithm
	References

