
Citation: Grehan, J.; Ignatyev, D.;

Zolotas, A. Fault Detection in Aircraft

Flight Control Actuators Using

Support Vector Machines. Machines

2023, 11, 211. https://doi.org/

10.3390/machines11020211

Academic Editor: Davide Astolfi

Received: 30 December 2022

Revised: 25 January 2023

Accepted: 26 January 2023

Published: 02 Feburary 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

Fault Detection in Aircraft Flight Control Actuators Using
Support Vector Machines
Julianne Grehan *, Dmitry Ignatyev and Argyrios Zolotas

School of Aerospace Transport and Manufacturing, Cranfield University, Cranfield MK43 0AL, UK
* Correspondence: juliannegrehan@yahoo.com

Abstract: Future generations of flight control systems, such as those for unmanned autonomous
vehicles (UAVs), are likely to be more adaptive and intelligent to cope with the extra safety and
reliability requirements due to pilotless operations. An efficient fault detection and isolation (FDI)
system is paramount and should be capable of monitoring the health status of an aircraft. Historically,
hardware redundancy techniques have been used to detect faults. However, duplicating the actuators
in an UAV is not ideal due to the high cost and large mass of additional components. Fortunately,
aircraft actuator faults can also be detected using analytical redundancy techniques. In this study, a
data-driven algorithm using Support Vector Machine (SVM) is designed. The aircraft actuator fault
investigated is the loss-of-effectiveness (LOE) fault. The aim of the fault detection algorithm is to
classify the feature vector data into a nominal or faulty class based on the health of the actuator. The
results show that the SVM algorithm detects the LOE fault almost instantly, with an average accuracy
of 99%.

Keywords: fault-detection; data-driven; actuator; unmanned autonomous vehicle; health monitoring
system; support vector machines

1. Introduction

Flight reliability is paramount in aerial vehicle platforms, and the classic way to im-
prove flight reliability is through hardware redundancy techniques. However, duplicating
actuators in a system to achieve increased flight (control) fault tolerance poses substantial
challenge due to their large size and mass and high price. An alternative way to address
(and aim to improve) reliability is via analytical redundancy techniques. These techniques
can be used to create a health monitoring (HM) system for the aircraft. HM systems can be
used to predict failures of a flight control system on an aircraft by detecting faults, with the
two main methods for fault detection being data-driven and model-based methods. This
paper focuses on the use of data-driven methods to develop a fault detection algorithm
for detecting primary flight control actuator faults. Data-driven methods are selected over
model-based approaches as the latter normally requires a reasonably accurate mathematical
model of a system with a failure, which may not be available. Data-driven methods require
no detailed knowledge about the internal dynamics of a system.

The importance of flight reliability in aviation is highlighted by historic events. On
17 September 1908, the world’s first aviation fatality occurred when Orville Wright of
the Wright Brothers crashed his aircraft, killing his passenger Thomas Selfridge, during
a demonstration flight for the US army [1]. Since this first fatality, there have been monu-
mental improvements in aircraft safety and certification, which now make air travel the
safest mode of transport [2]. The main reason for these improvements in safety is due
to the continuous evolution of modern aircraft technologies, such as the introduction of
fly-by-wire (FBW) flight control systems. This arrangement replaces mechanical linkage
and means that pilot inputs do not directly move the flight control surfaces. Instead, the
inputs are read by a computer that, in turn, determines how to move the control surfaces to
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best achieve what the pilot wants, in accordance with which of the available flight control
laws is active [3]. In 1984, the Airbus A320 became the first airliner to fly with an all-digital
FBW control system [4]. FBW provides increased safety and efficiency, reduces workload
for pilots, and enhances weight reduction and flight envelope protection.

Currently, a manned aircraft has stringent reliability requirements, which allow for
less than a single catastrophic malfunction per 109 h of operations. For decades, aircraft
manufacturers have achieved this level of reliability via the use of hardware redundancy
(HR) throughout the flight control system design, encompassing multiple control surfaces,
actuation systems, sensors, and flight computers. Future generations of flight control
systems, such as those for UAVs, are likely to be more adaptive and intelligent to cope
with the additional safety and reliability requirements due to not having a pilot on board.
Improving flight reliability of UAVs is considered to be one of the main concerns in
integrating these aircraft into civil airspace [5]. According to a study conducted by the
US Office of the Secretary of Defense, about 80% of flight incidents with UAVs are due
to faults affecting sensors or flight control surfaces [5]. This need to improve reliability
necessitates the development of sophisticated techniques that deviate from traditional
methods. These techniques will need to provide fault diagnosis and fault tolerance in a
timely and accurate manner. To allow autonomous aerial vehicles to continue their missions,
there is an absolute necessity to identify unexpected changes (faults) in the system before
they lead to a complete breakdown (failure) [6].

Redundancy is the main method of improving flight reliability and detecting faults. As
mentioned, hardware redundancy techniques have been in use for decades. Traditionally,
voting algorithms are used to check for consistency of behaviour among HR flight control
subsystems and usually provide direct fault detection and identification. HR, however,
carries a cost, payload, and power consumption penalty. This method leads to additional
costs and increased weight, which are an impediment to autonomy. One of the main
selling points of UAVs is the cost reduction benefit, which could be up to 40% for regional
air mobility [7]. There is another type of redundancy called analytical redundancy that
improves flight reliability and can detect faults. Analytical redundancy (AR) is the use of
mathematical relations between real-time measured and estimated variables to detect and
predict possible faults. Analytical redundancy incurs less weight and cost when compared
to HR. The need for a faster, cleaner, and more energy-efficient aircraft has also made the
use of analytical redundancy methods essential as the number of redundant components is
reduced, and thus the aircraft mass is reduced, which increases the efficiency of an aircraft.
The research work in this paper focuses on the use of analytical redundancy techniques.

Through the use of AR or HR techniques, faults on an aircraft can be detected. As
defined in [8], a fault is an unpermitted deviation of at least one characteristic property or
parameter of the system from acceptable/usual/standard conditions. Fault detection is the
determination of the presence of faults in a system and of their times of occurrence. Fault
detection is important for flight safety [9–11]. It is generally followed by fault isolation
to determine the type and location of the faults. This complete process is called fault
detection and identification (FDI). An efficient FDI system should be capable of monitoring
the health status of actuators [12]. The three types of faults pertinent to aircraft are sensor
faults, actuator faults, and process faults. This study will focus on the fault detection of
an aircraft’s primary flight control actuators. Specifically, this research will focus on the
loss-of-effectiveness (LOE) fault.

Fault detection via analytical methods can be categorised into two methods: model-
based and data-driven methods. A model-based method is when the detection and isolation
of faults in a system come from a comparison of the system’s available measurements
with a priori information represented by the system’s dynamic model. In model-based
approaches, Kalman filters are quite popular [13]. Although such model-based techniques
have their advantages in terms of on-board and real-time implementation capabilities, their
reliability for health monitoring often decreases as the system nonlinearities, complexity,
and modelling uncertainties increase [14]. Data-driven approaches use information from
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previously collected data to identify the characteristics of faults. This information is then
used to predict the future trend without any particular physical model of the system [15].
The database consists of observations of the monitored values, such as the state variables.
The diagnosis can essentially be viewed as pattern recognition where new measurements
are classified in predetermined models [5]. The two main differences between model-based
approaches and data-driven approaches are the availability of a physical model and the use
of training data to identify the characteristics of a damage state [15]. For this research the
following two data-driven methods will be investigated: Support Vector Machines (SVMs)
and Neural Networks (NN).

Support Vector Machine (SVM) is a supervised machine-learning classification algo-
rithm. There are two main phases of training and prediction. Supervised learning requires
labelling the fault cases in the training data. In the training phase, the model learns to fit
the labelled data that are inputted into the SVM algorithm. The labelled dataset is first
divided into two, where 80% of the data are for training and 20% of the data are for testing.
The objective of SVMs is to find an optimal hyperplane with the maximum possible margin
support vectors in a given data set. SVMs avoid local minima, to which Neural Networks
are inherently prone. If the data are not linearly separable by the hyperplane, a kernel
trick is used to transform the input space to a higher dimensional space. In [16], a SVM
model is used to classify flight control actuator faults. The output of a SVM model is either
nominal or faulty. Most machine-learning and deep-learning algorithms have parameters
that can be adjusted that are called hyperparameters. Hyperparameters are important
in building robust and accurate models. Hyperparameters can be tuned using Bayesian
optimisation techniques to prevent the model from overfitting or underfitting. The results
obtained in [16], using simulated data from a non-linear aircraft model to investigate a loss
of actuator effectiveness, were promising with a classification accuracy of 10−5.

Neural Networks (NN) are considered the main class of traditional non-parametric
detection methods. A NN algorithm is a representative data-driven method in which a
network model learns a way to produce a desired output, such as the level of degradation,
by reacting to the given inputs, such as time and usage conditions. The neurons in the
network are nonlinear information-processing elements, and the interconnections between
these neurons are known as weights. These weights are learned through supervised training
algorithms, where the training data contain the inputs and their corresponding output
labels. Using a NN for fault detection is a difficult practice, which involves the selection
of the structure of the network, the number of neurons, the activation function, and the
learning rate. There is no universal procedure to establish a proper NN, and there is no
best structure for aircraft fault diagnosis [17]. For data-driven fault detection in an aircraft,
NNs have mainly been used for fault detection of aircraft engines and air sensors, rather
than actuation systems [14,18,19]. In [20], the application of NNs for the fault diagnosis
of rotor failure in a hexacopter is examined. To monitor the rotor faults in real time, a
time-series-assisted neural network was used, which showed promising results as the
classification accuracy was 98.8%. With regard to testing NNs with real aircraft data, there
have been few attempts as the uncertainty in the data caused by bias and noise impacts
the weight parameters. This issue has been noted, with current research being shifted
towards adaptive neural networks. In [21], the researchers demonstrated that by updating
the NN weights with extended Kalman filter algorithms, the accuracy and response time of
a NN-based fault detection system for aircraft actuator failures improved. However, the
downside of this approach is that a high-fidelity model of the aircraft is required as well as
a data-driven neural network.

Given the above overview of the two methods, SVM is the chosen approach in this
work. The rationale is that a SVM method avoids the local minima to which NNs are
inherently prone, and there is also a more structured method to tune the hyperparameters
of a SVM method.

The work in this paper strongly contributes to enabling flight reliability by proposing
a SVM data-driven fault diagnosis method to detect and identify faults in an aircraft flight
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control actuation system. The nonlinear model of the motion of a UAV is used to develop
and validate the approach. The performance of the SVM FDI algorithm is tested and
validated for failures (loss of effectiveness) of elevator and aileron actuators. The proposed
algorithm demonstrates fast detection and isolation time and high accuracy despite the
noisy data.

This paper is structured as follows. First, the nonlinear model of the aircraft, together
with the longitudinal flight controller, is presented in Section 2. Secondly, the design and
implementation of the SVM fault detection method is provided in Section 3. Lastly, the
method is validated and analysed in Section 4, while Section 5 presents a discussion of the
results and concludes the paper.

2. Modelling of the Nonlinear Aircraft Model and Longitudinal Flight Controller

The primary objective of this project is to develop a mathematical model of a vertical
take-off and landing (VTOL) aircraft with failure modes. A longitudinal flight controller is
also designed so that closed-loop fault diagnosis can be performed. The aircraft model is
not used as part of the fault detection algorithm. The purpose of the model is to provide a
platform to simulate flight data and faults. The aircraft chosen is a SWIFT VTOL aircraft,
and the aircraft is modelled in Simulink and MATLAB using the equations of motion.
The aircraft was originally designed by MFE Fighter VTOL and has been modified and
manufactured by TETRA DRONES. The SWIFT VTOL was designed for research purposes
at Cranfield University. It is a fixed-wing aircraft with a wingspan of 2.4 m. The aircraft can
take off and land vertically as there are four rotors attached to the aircraft in a quadcopter-
type setup; this can be seen in Figure 1. Table 1 below presents the important details of the
SWIFT geometry.
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Table 1. Details of SWIFT geometry.

Vertical Fin (NACA 0010) Tail Wing (NACA 0010)

Semi Span 0.34 m Semi Span 0.38 m
MAC 0.21 m MAC 0.20 m

Main Wing (NACA 6412) Entire Aircraft

Semi Span 1.21 m Length 1.44 m
MAC 0.31 m Mass 10 kg
Surface Area 0.36 m2 Cruise Speed 15 m/s

Ixx 1.25 kg/m3

Iyy 1.01 kg/m3

Izz 2.24 kg/m3

Ixz 0.084 kg/m3

2.1. Equations of Motion for the Nonlinear Aircraft Model

The equations of motion used in the modelling of the SWIFT aircraft are presented
here. First, the kinematic equations are presented, followed by the dynamic equations. The
position of the aircraft in a fixed-earth axis is given by xe = [xe, ye, ze]

T , and for the body
axis, it is given by xb = [xb, yb, zb]

T . The velocities are obtained by the derivation of the
positions. The fixed earth velocities are given by ve =

[
vex, vey, vez

]T , and the body axis

velocities are given by vb =
[
vbx, vby, vbz

]T . The change of coordinates from the fixed earth
axis to the body axis is governed by the Euler angles [ϕ, ϑ, ψ]T for roll, pitch, and yaw. To
obtain the velocity of the aircraft relative to the fixed-earth axis, the following kinematic
transformation is performed:vex

vey
vez

 =

cos ψcosθ −sinψcosφ + cosψsinθsinφ sinψsinφ + cosψsinθcosφ
sinψcosθ cosψcosφ + sinψsinθsinφ −cosψsinφ + sinψsinθcosφ
−sinθ cosθsinφ cos θ cos φ

u
v
w

 (1)

The angular rates in the body axis, ωb = [p, q, r]T , are also translated to the fixed-earth
axis and are expressed from the derivatives of the Euler angles. The Euler rates are obtained
from the inversion of this matrix, which gives Equation (2). Equations (1) and (2) represent
the kinematic equations of the aircraft.

.
φ
.
θ
.
ψ

 =

1 sinφtanθ cosφtanθ
0 cosφ −rsinφ
0 sinφsecθ cosφsecθ

p
q
r

 (2)

Force and momentum equations are required to complete the mathematical model of
the aircraft. This section starts by outlining each of the forces acting on the SWIFT aircraft
and then moves on to outline the moments. The sum of the external forces in the body-fixed
coordinate frame is equal to the rate of change of linear momentum of the system. In the
body frame, the force equation takes the following form: .

vbx.
vby.
vbz

 =
1
m
(FTotal)−

p
q
r

×
vbx

vby
vbz

 (3)

The total forces consist of gravity forces, aerodynamic forces, control surface forces,
quadrotor forces, and thrust forces. The total force acting on the model is presented in the
following equation:

FTotal = Fg + Faero + Fcontrol + Fthrust (4)
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Firstly, the gravitational force acting along the body axis is determined. The gravity
force is a body force and acts in the zEarth axis direction. The components of this force in
the perturbed x, y, and z directions are given by the following equations:

Fgx = −mg sinθ (5)

Fgy = mg sinϕ cosθ (6)

Fgz = mg cosϕ cosθ (7)

Whenever the aircraft is disturbed from its equilibrium, the aerodynamic balance of
the aircraft changes. The process of obtaining aerodynamic forces provides a considerable
challenge due to the subtle interactions present in the motion. The equation for aerodynamic
forces is given as follows:

Faero = qsre f

Cx(α, β, V)
Cy(α, β, V)
Cz(α, β, V)

 (8)

where q is the dynamic pressure; sre f is the aircraft reference area; α is the angle of attack;
β is the sideslip angle; and V is the true airspeed. The aerodynamic coefficients, Cx,y,z,
are non-linear functions. The values for the aerodynamic coefficients are calculated using
DATCOM, which is a computer program that calculates non-dimensional aerodynamic
coefficients and derivatives.

When control surfaces (such as the elevator or the aileron) are deflected, an additional
force is created, i.e., Fcontrol . The aerodynamic coefficients for the elevator and the aileron
are obtained using DATCOM. The value of the control surface force is obtained from a
function of the control input, the Mach number, the altitude, and the angles of attack
and sideslip. The quadrotor force, Fquad, is used to represent the additional force needed
during take-off and landing. This force acts in the z-axis and can be found by using a 1-D
lookup table, which finds the thrust value in Newtons equivalent to the RPM of each of
the four motors. The last force is the thrust force, Fthrust. An assumption is made that the
thrust is aligned with the centre of gravity, and the motors and motor supporting rods do
not produce extra drag during a longitudinal flight. The thrust force in forward flight in
Newtons is calculated by using a 1-D lookup table, where a curve relating the thrust in a
percentage to an overall RPM is calculated.

The external forces that act on the aircraft create moments. The moment equation is
given with the following equation:

.
ω = I−1(−ω× Iω + Mtotal), (9)

where ω = (p, q, r)T and I is the inertia matrix. The following equation represents the sum
of the total moments acting on the aircraft:

Mtotal = Maerototal + Mcs + Mthrust (10)

The aerodynamic moments, Maerototal , that act in the body axis are given by the
following equation:

Maerototal =

 Laero
Maero
Naero

 = qsre f

 b Cl(α, β, V, ω)
c Cm(α, β, V, ω)
b Cn(α, β, V, ω)

 (11)

where Cl , Cm, and Cn are the roll, pitch, and yawing moment coefficients, and b and c are
the semispan and the mean aerodynamic chord. Equation (11) is similar to Equation (8)
obtained for the aerodynamic forces. The aerodynamic coefficients for Maerototal are ob-
tained by using DATCOM. Mcs represents the additional moments created when the control
surfaces are deflected. Using the aerodynamic coefficients obtained from DATCOM, the



Machines 2023, 11, 211 7 of 24

moments due to the deflection of the elevator and aileron control surfaces can be ascer-
tained. The values of the control surface moments are obtained from a function of the
control input, the Mach number, the altitude, and the angles of attack and sideslip. Next,
the moment produced due to thrust is Mthrust. An assumption is made that the thrust is
aligned with the centre of gravity, and, therefore, Mthrust is equal to zero. For simplification
purposes, the propellor torque reaction from the four motors, which are used for a vertical
take-off and landing, is not considered.

2.2. Longitudinal Flight Controller

Fault detection and isolation (FDI) methods are normally applied to open-loop systems.
However, a FDI system might have significant interaction with the control system. To
study the effect of a control system on FDI, as well as to obtain a better overall system
performance and a lower overall complexity, the control system and fault detection system
are simultaneously designed in this study.

For the SWIFT VTOL model, a linear–quadratic regulator (LQR) flight controller is
proposed. An overview of the LQR design (schematic) is shown in Figure 2. The LQR
method provides the “best” (or optimal, subjected to the weighting matrices’ choice for
the states and the control effort) gain matrix K, without explicitly choosing to place the
closed-loop poles in particular locations. Once the longitudinal state-space (SS) model of
the SWIFT aircraft is generated, the SS model related to the elevator input is determined.
The feedback states are the chosen longitudinal states: xlon = [u w q θ]. The LQR method
involves solving a cost function, which takes the following form:

J =
∫ ∞

0
(xTQx + uT Ru) dt (12)
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The goal is to develop a control strategy, u = −Ku, to minimise Equation (12). The
variable x, contains the feedback states, which in this problem is xlon. The matrices Q and R
weight the cost of deviations of the state from a steady state and the cost of actuation. These
matrices are often diagonal, and the diagonal elements are tuned to change the relative
importance of the control objectives. Because of the well-defined quadratic cost function in
Equation (12), the optimal controller gain K can be solved. This type of control technique
optimally balances the system error and the control effort based on the cost.

2.3. Fault Scenarios and Tests

Several tests are performed using the SWIFT model in order to generate simulated
flight data for the SVM model. Figure 3 illustrates the actuator and control block from the
SWIFT Simulink model. The elevator and aileron control signals include a timed switch,
which applies a gain to the signal after a set time, allowing the loss-of-effectiveness (LOE)
fault to be simulated. Looking at the elevator blocks, a gain of 0.5 is applied to the signal to
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reflect a LOE fault of 50% after the nominal time. Various levels of LOE actuator faults are
modelled by modifying the gain blocks in the Simulink model.

Machines 2023, 11, x FOR PEER REVIEW 7 of 24 
 

 

For the SWIFT VTOL model, a linear–quadratic regulator (LQR) flight controller is 
proposed. An overview of the LQR design (schematic) is shown in Figure 2. The LQR 
method provides the “best” (or optimal, subjected to the weighting matrices’ choice for 
the states and the control effort) gain matrix 𝐾, without explicitly choosing to place the 
closed-loop poles in particular locations. Once the longitudinal state-space (SS) model of 
the SWIFT aircraft is generated, the SS model related to the elevator input is determined. 
The feedback states are the chosen longitudinal states: 𝑥 = 𝑢 𝑤 𝑞 𝜃]. The LQR method 
involves solving a cost function, which takes the following form:  𝐽 =  (𝑥 𝑄𝑥 + 𝑢 𝑅𝑢) 𝑑𝑡  (12)

The goal is to develop a control strategy, 𝑢 = −𝐾𝑢, to minimise Equation (12). The 
variable 𝑥, contains the feedback states, which in this problem is 𝑥 . The matrices 𝑄 
and 𝑅 weight the cost of deviations of the state from a steady state and the cost of actua-
tion. These matrices are often diagonal, and the diagonal elements are tuned to change the 
relative importance of the control objectives. Because of the well-defined quadratic cost 
function in Equation (12), the optimal controller gain 𝐾 can be solved. This type of control 
technique optimally balances the system error and the control effort based on the cost. 

 
Figure 2. Schematic diagram of the proposed LQR controller for the SWIFT VTOL model. 

2.3. Fault Scenarios and Tests 
Several tests are performed using the SWIFT model in order to generate simulated 

flight data for the SVM model. Figure 3 illustrates the actuator and control block from the 
SWIFT Simulink model. The elevator and aileron control signals include a timed switch, 
which applies a gain to the signal after a set time, allowing the loss-of-effectiveness (LOE) 
fault to be simulated. Looking at the elevator blocks, a gain of 0.5 is applied to the signal 
to reflect a LOE fault of 50% after the nominal time. Various levels of LOE actuator faults 
are modelled by modifying the gain blocks in the Simulink model. 

 
Figure 3. SWIFT VTOL model actuator and control surface block from Simulink.

Overall, by changing other parameters in the SWIFT VTOL model (such adding noise
and closing the loop), the following tests are performed:

1. Elevator actuator with a LOE fault.
2. Aileron actuator with a LOE fault.
3. Cross-correlation test between the elevator and aileron faut detection models.
4. Elevator actuator LOE fault with noisy measurements.
5. Elevator actuator LOE fault in a closed loop.

3. Design and Implementation of the SVM Fault Detection Method
3.1. Support Vector Machine (SVM) Preliminaries

Support Vector Machine is a relatively new supervised machine-learning approach
for classification. In binary classification, the inputs are divided into two classes, and the
learner must produce a model that assigns unseen inputs to one of these classes. SVM
has the potential of handling large feature spaces. This is because the training of a SVM
is carried out so that the dimension of the classified vectors does not have as much of
an influence on the performance of the SVM as it would have on the performance of
conventional classifier. This description of the model follows that outlined in [22]. The
training dataset is (xi, yi) for i = 1, 2, . . . , N, where N is the number of samples. The dataset
has two classes, which is the positive class and the negative class. The positive class obtains
the value of yi = 1, and the negative class obtains the value of yi = −1. The linear classifier
takes the following form:

f (x) = wTx + b (13)

where w is weight vector and b is the bias. Given this equation, there is a hyperplane
f (x) = 0 that classifies the given dataset. If the samples associated with the labels can be
separated linearly, two hyperplanes can be found that separate the samples, and there will
be no points between them. This is visualised in Figure 4 which is inspired by [16].
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The region between the two hyperplanes is called the margin. The principal aim of
SVM is to maximise this margin, as shown in Figure 4, in order to improve its generalisation
ability. This optimisation is given by the following equation:

min‖w‖2

subject to yi
(
wTxi + b

)
≥ 1 f or i = 1, 2, . . . N

(14)

This is known as the primal problem; it is the constrained optimisation problem. As
it is quadratic, there is one single global minimum, which avoids the problem associated
with neural networks. Another way to represent SVM mathematically is the dual problem.
The dual problem form is beneficial when using SVM to solve nonlinear classification tasks.
The classifier takes the form seen in Equation (15), where ai is the Lagrange multiplier.

f (x) =
N

∑
j=1

aiyi

(
xT

i x
)
+ b (15)

One way to deal with nonlinearly separable data is to use kernels. Kernels are the
core of efficient SVM classifiers and increase computational efficiency. By applying kernel
functions, the samples are mapped onto a higher dimensional feature space, in which
linear classification is possible. A kernel function is the inner product between samples,
where k

(
xj, xi

)
= Φ

(
xj
)TΦ(xI), and Φ(x) is a feature map. The process of calculating

the higher-dimensional relationships without transforming the data is called the kernel
trick. This trick is important as it reduces the amount of computation required for SVM as
the mathematics required to transform the data from low to high dimensions is avoided.
By applying the kernel function, Equation (15) becomes Equation (16), as the x vector is
mapped to the feature map:

f (x) = ∑N
j=1 aiyi

(
Φ(xi)

TΦ(x)
)
+ b (16)

In the dual problem, the SVM algorithm can be formulated to learn a linear classifier
by solving an optimisation problem over the parameter ai, the Lagrange multiplier. Instead
of minimising over w and b, which are subjected to constraints, we can maximise over a.
This can be expressed as follows:

max L(a) = ∑N
i=1 ai −

1
2 ∑N

j,k=1 aiajyiyjk
(
xi, xj

)
(17)
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subject to ai ≥ 0 and
N

∑
i=1

aiyi = 0 (18)

If we then take the derivate w.r.t a and set it equal to zero, we obtain the following
solution and can solve for ai:

N
∑

i=1
aiyi = 0 (19)

0 ≤ ai ≤ C (20)

where C is the regularisation parameter or the box constraint. When C is small, the
constraints are ignored, and there is a large (soft) margin between the classified data sets.
When C is large, there is a narrow margin, and when C = ∞, there is a hard margin. Once
ai is solved, the weights, w, for the maximal margin separating the hyperplane is found.
Therefore, after training and finding w, given an unknown point u measured on features xi,
we can classify the point by evaluating the sign of f (x) as defined by the following equation:

f (x) = sign
(

N
∑
i

aiyik(xi, u) + b
)

(21)

3.2. SVM Training

The aim of the SVM algorithm is to classify the feature vector data from the SWIFT
model into either a nominal or faulty class. The nominal data are the data when the actuator
does not have a fault, and the faulty data are the data when the actuator has a fault. The
method follows the workflow chart in Figure 5.
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3.2.1. Training and Cross-Validating the SVM Model

The MATLAB function fitcsvm uses the training set of the feature vector data to train
the model. Within the option for the fitcsvm, the Gaussian kernel function is chosen, and
the class names are set as nominal and faulty. The kernel scale and the box constraint are
both set to their default value, which is 1. The trained SVM model is then cross-validated
through the k-fold method. K-fold cross-validation is the process of creating a model that
is cross-validated using a set number of “k-folds”. The function crossval uses a 10-fold
cross-validation on the trained model. The function returns a cross-validated machine
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learning model. The cross-validated model is passed through kfoldLoss, which returns
the classification loss obtained by the model. This value of the classification loss is used
to investigate the performance of the SVM model. For each of the 10-folds, the function
computes the classification loss for the validation-fold observations using a classifier trained
on the training-fold observations. Cross-validation is essential as it estimates the out-of-
sample misclassification rate. Having a low cross-validation classification loss is essential
for a robust model.

3.2.2. Evaluating the Performance of the SVM Model

Once the model is trained and cross-validated, the performance of the model can be
evaluated. The performance of the SVM model is evaluated using an F1 score. An F1 score
is a measure of a model’s accuracy on a dataset. An F1 score is a way of combining the
precision and recall of the model. The highest F1 score is 1, and the lowest F1 score is 0.

Precision is a measure of the result relevancy, and recall is a measure of how many
truly relevant results are returned. Precision and recall are derived from the confusion

matrix. The confusion matrix takes the form: CM =

[
TP FP
FN TN

]
. This matrix can be

calculated in MATLAB by using the function confusionmat. This function compares the
predicted labels from the model to the known labels and returns a confusion matrix for the
classification problem. The matrix contains the number of true positives, true negatives,
false positives, and false negatives. The meaning behind these parameters for this study,
unless stated otherwise, is outlined in Table 2. The false positive row is highlighted in
red, as having a false positive result is the worst error for this case since the fault can go
unnoticed and develop into a failure.

Table 2. Description of the parameters in the confusion matrix.

TP—Model correctly identifies nominal data as nominal.
TN—Model correctly identifies faulty data as faulty.
FP—Model classifies a faulty situation as nominal.
FN—Model classifies a nominal situation as faulty.

Once the precision and recall are calculated, an F1 score is computed by using
Equation (22).

F1 Score = 2×recision×recall
precision+recall = 2× ( TP

TP+FP )×(
TP

TP+FN )
( TP

TP+FP )+(
TP

TP+FN )
(22)

Another way to evaluate the performance of a fault detection algorithm is to look at
the fault detection time. This can be obtained by looking at the posterior probability for
the SVM model. The method to obtain the posterior probability is based on [23]. Firstly,
the MATLAB function fitSVMPosterior is used. This function takes in the trained SVM
model and returns the ScoreSVMModel, which is a trained SVM classifier containing the
optimal score-to-posterior-probability transformation function for two-class learning [24].
In order to estimate the posterior probabilities, the ScoreSVMModel and the out-of-sample
data are passed through the function predict. The function predict returns the posterior
probabilities, which indicate the likelihood that a label comes from a particular class. The
posterior probabilities can be plotted against time to obtain an indication of the detection
time of the SVM model.

3.2.3. Tuning the SVM Model

If the results are poor, such as a low F1 score or a high cross-validation classification
error, the hyperparameters can be tuned. The parameters, including the box constraint, C,
and the kernel scale, σ, are tuned to avoid overfitting, which is the main issue in parametric
discrimination approaches, such as neural networks. The hyperparameters are tuned using
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the Bayesian optimisation function bayesopt. Optimisation, in its most general form, is
the process of locating a point that minimises a real-valued function called the objective
function. Bayesian optimisation is the name of one such process. Bayesian optimisation
internally maintains a Gaussian process model of the objective function and uses objective
function evaluations to train the model. The objective function in this case is the kfoldLoss
classification error. During the optimisation, the objective function is printed with respect
to the bayesopt function evaluations. The objective is to converge after 30 evaluations for
a variety of box constraint and kernel scale values. Once the model has converged, the
optimum results for the hyperparameters are fixed in the fitcsvm function. This tuned
model can then be re-evaluated using the test data.

4. Analysis and Validation of the Fault Detection Method
4.1. Processing the Dataset

The first step is obtaining the dataset from the SWIFT Simulink model in which a fault
has been injected into the actuator model. Different fault situations and tests to evaluate
the robustness of the model are performed. These tests are listed above and detailed in
this section. The simulation is run for ts = 180 s, and the fault is set to occur at tF = 120 s.
The data required for the SVM model are the signal output values of the body acceleration
in each axis, ax, ay, and az, and the body angular rates, p, q, and r. This combined dataset
is called the feature vector dataset, and these variables are chosen as they give a good
dynamic representation of the model. The simulation time array, ts, is also required. The
time array is not included in the feature vector as it is only used to assist in labelling the
dataset. The time array and the feature vector dataset have the same number of points.
By examining ts, the datapoint corresponding to 120 s is found. All the datapoints in the
feature vector < tF are labelled as nominal, and the datapoints ≥ tF are labelled as faulty.
After the data are labelled, they are normalised. The data are normalised to make the values
of the features change within the same order of magnitude. Next, the labelled dataset is
split into two portions, in which 80% of the data are used for training and 20% of the data
are used as the test set to evaluate the classifier.

4.2. SVM Model for Elevator Actuator LOE Fault

A fault is injected into the elevator actuator by using the signal switch block in
Simulink. The signal is switched after 120 s to a gained value of the signal, which is used
to simulate the loss-of-effectiveness fault. Three tests are performed, and the following
percentages of loss of effectiveness are simulated: 25%, 50%, and 75%. The actual elevator
control signal for each percentage can be seen in Figure 6, where after t = 120 s, there is a
decrease in the actual elevator signal from the trim value of 1.476 degrees.
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Figures 7 and 8 below show the feature vector dataset variables plotted against time
for the 50% LOE elevator actuator fault. Figure 9 shows the change in the SWIFT dynamics
due to the fault. When the 50% LOE elevator fault occurs, the model starts to oscillate with
a high frequency in the variables q, ax, and az. Similar results are seen for the 25% and 75%
LOE faults. These particular variables are more affected as they relate to the dynamics in
the longitudinal motion and, therefore, vary as the fault in the elevator occurs.
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The data from the feature vectors are labelled and split into the training and testing
data. The performance of the trained SVM models is evaluated using the test data. The F1
score (which is derived from the confusion matrix) and the classification accuracy results
are presented in Table 3. The confusion matrix contains the number of true positives, false
positives, true negatives, and false negatives and is arranged in a matrix as in [TP FP; FN
TN]. The true positives are the number of data points the model has correctly classified
as nominal, and the true negatives are the number of data points the model has correctly
classified as faulty. The F1 score is derived from the confusion matrix values as shown
in Equation (22). The SVM models trained for the 25% LOE fault, 50% LOE fault, and
75% LOE fault each scores a F1 score of one. This indicates that each model has perfectly
classified the datapoints of the test data into the correct class: ‘nominal’ or ‘faulty’. A reason
for this accuracy could be due to the change in the dynamic behaviour of the model for
certain feature vectors when moving from a nominal actuator state to a faulty actuator
state, as seen in Figures 7 and 8.

Table 3. Performance evaluation of the SVM models trained for the elevator actuator LOE fault.

25% LOE—Elevator
Actuator Fault

50% LOE—Elevator
Actuator Fault

75% LOE—Elevator
Actuator Fault

Confusion Matrix
[

501 0
0 265

] [
491 0

0 277

] [
507 0

0 258

]
F1 Score 1 1 1

Cross-Validation
Classification Error 3.14× 10−4 3.26× 10−4 3.23× 10−4

Another performance metric measured is the cross-validation classification error.
Cross-validation using the k-fold method is an important test as the results can be used
to predict whether or not a model would be accurate in a real-world environment with
new and dynamic data. The SVM models for the elevator LOE faults obtain a low cross-
validation classification error. These results show that the misclassification rate for future
out-of-sample data related to an elevator LOE fault is extremely low, giving an accuracy of
99.999%. This is a promising result.

Not only does the model have to be accurate but it also must have a quick detection
time so that corrective action could be applied. The posterior probability for the elevator
actuator 50% LOE fault is plotted in Figure 10. In this plot, one represents the likelihood
of the data being nominal and zero is the likelihood of the data being faulty. This plot
shows the model instantly detects the fault at 120 s as the plot drops to zero. Similar results
are seen for the other two percentages. In conclusion, the SVM models designed to detect
elevator actuator LOE faults can detect faults instantly, with an accuracy of 100%.

Machines 2023, 11, x FOR PEER REVIEW 14 of 24 
 

 

Table 3. Performance evaluation of the SVM models trained for the elevator actuator LOE fault. 

 25% LOE—Elevator 
Actuator Fault  

50% LOE—Elevator 
Actuator Fault 

75% LOE—Elevator 
Actuator Fault 

Confusion Matrix  501 00 265  491 00 277  507 00 258  

F1 Score  1 1 1 
Cross-Validation 
Classification Error  

3.14 × 10  3.26 × 10  3.23 × 10  

Another performance metric measured is the cross-validation classification error. 
Cross-validation using the k-fold method is an important test as the results can be used to 
predict whether or not a model would be accurate in a real-world environment with new 
and dynamic data. The SVM models for the elevator LOE faults obtain a low cross-vali-
dation classification error. These results show that the misclassification rate for future out-
of-sample data related to an elevator LOE fault is extremely low, giving an accuracy of 
99.999%. This is a promising result.  

Not only does the model have to be accurate but it also must have a quick detection 
time so that corrective action could be applied. The posterior probability for the elevator 
actuator 50% LOE fault is plotted in Figure 10. In this plot, one represents the likelihood 
of the data being nominal and zero is the likelihood of the data being faulty. This plot 
shows the model instantly detects the fault at 120 s as the plot drops to zero. Similar results 
are seen for the other two percentages. In conclusion, the SVM models designed to detect 
elevator actuator LOE faults can detect faults instantly, with an accuracy of 100%.  

 
Figure 10. Posterior probability plotted against time for the elevator SVM model with 50% LOE 
fault. 

4.3. SVM Model for Aileron Actuator LOE Fault  
In this test, the elevator actuator is kept at its trim position, and a fault is injected into 

the aileron actuator in the same manner as for the elevator actuator. The aileron trim po-
sition in steady level flight is 0 deg. Three different percentages of LOE are investigated: 
10%, 15%, and 20%.  

Figures 11 and 12 show the feature vector dataset for the aileron 15% LOE fault. After 
the fault occurs, the variables show a steep increase. Figure 13 shows the change in dy-
namics due to the fault. In Figure 13, after the fault, the roll angle massively increases. 
This large increase due to the fault causes the aircraft to descend with an increasing speed, 
which causes instability in the system.  

Figure 10. Posterior probability plotted against time for the elevator SVM model with 50% LOE fault.



Machines 2023, 11, 211 15 of 24

4.3. SVM Model for Aileron Actuator LOE Fault

In this test, the elevator actuator is kept at its trim position, and a fault is injected
into the aileron actuator in the same manner as for the elevator actuator. The aileron trim
position in steady level flight is 0 deg. Three different percentages of LOE are investigated:
10%, 15%, and 20%.

Figures 11 and 12 show the feature vector dataset for the aileron 15% LOE fault.
After the fault occurs, the variables show a steep increase. Figure 13 shows the change in
dynamics due to the fault. In Figure 13, after the fault, the roll angle massively increases.
This large increase due to the fault causes the aircraft to descend with an increasing speed,
which causes instability in the system.
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The SVM models are trained for each of the three percentages of LOE and evaluated,
with the results shown in Table 4. The aileron SVM model for each percentage performed is
worse than the corresponding elevator SVM model. On average, 5% of data are misclassified
across each of the three models. Each model also records a relatively high cross-validation
error, meaning these models are more likely to incorrectly classify out-of-sample data.

Table 4. Untuned SVM aileron results for LOE fault detection.

10% LOE Aileron
Actuator Fault

15% LOE Aileron
Actuator Fault

20% LOE Aileron
Actuator Fault

Confusion Matrix
[

506 58
1 245

] [
510 45

0 270

] [
496 45

0 296

]
F1 Score 0.9439 0.9572 0.9565

Cross-Validation
Error 0.0648 0.0539 0.04149

Hyperparameters: σ
and C

σ = 1
C = 1

σ = 1
C = 1

σ = 1
C = 1

Due to the slightly poorer performance of these aileron SVM models in comparison to
the elevator SVM models, a tuning of the hyperparameters is performed. The models are
tuned using Bayesian optimisation techniques, where the optimal values for the kernel scale,
σ, and the box constraint, C, are obtained. The objective function model is seen in Figure 14a.
In Figure 14b, it can be observed that the objective function model converges quickly after
around five function iterations to the minimum point. The tuned hyperparameters are
presented in the bottom row of Table 5. For each of the models, the box constraint parameter
increases, meaning that the margin of the hyperplane is smaller for the tuned models.
The kernel scale defines how far the influence of a single point reaches the hyperplane.
The kernel scale decreases, which implies that the region of influence for the support
vectors, which shape the hyperplane, has increased to include more of the training set. The
hyperparameters in the aileron LOE SVM models are fixed using the tuned parameters,
and the models are retested. The same three results are recorded, as shown in Table 5,
for the confusion matrix, the F1 score, and the cross-validation classification error. Due
to this tuning of the hyperparameters, the accuracy of the model for each test case has
increased by an average of 5%. The cross-validation classification error has also decreased
by an average of 98%. This is a brilliant result and means that the tuned aileron SVM
models are 98% more likely to classify out-of-sample data correctly and instantly than their
untuned counterparts.
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Table 5. Tuned SVM aileron results for LOE fault detection.

10% LOE Aileron
Actuator Fault

15% LOE Aileron
Actuator Fault

20% LOE Aileron
Actuator Fault

Confusion Matrix
[

506 0
1 303

] [
490 0

0 335

] [
496 0

0 341

]
F1 Score 0.9983 1 1

Cross-Validation Error 6.1690× 10−4 6.0533× 10−4 5.9701× 10−4

Hyperparameters—σ and C σ = 0.00049
C = 1399

σ = 0.0045
C = 1388

σ = 0.00045
C = 3894

4.4. SVM Model for Elevator and Aileron Actuator LOE Faults

In the previous two sub-sections, the accuracy of the SVM models is evaluated sepa-
rately for the elevator and aileron control surface LOE faults. In this section, an SVM model
trained for elevator faults is tested with the feature vector data from the aileron faults.
In a similar manner, the SVM model trained for aileron faults is tested with the feature
vector data from the elevator faults. This is visualised in Figure 15 along with the expected
results. The purpose of this test is to examine if there is any cross-correlation between the
elevator and aileron SVM models. The hypothesis is that a SVM model trained for a certain
actuator should not classify other actuator faulty data as faulty. If the elevator SVM model
recognises the aileron faulty data as faulty, and vice versa, there is cross-correlation, and
improvements to the models would be needed.
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Firstly, the elevator SVM model trained for 50% LOE is tested using the output aileron
data for 15% LOE. Secondly, the aileron model trained for 15% LOE is tested using the
output data for the 50% elevator LOE fault.

From Table 6, it is observed that the models perform well with high F1 scores. This
is an extremely useful result, meaning that the model trained to detect one type of failure
could detect another type of failure, which improves the detection capabilities of the
system. However, the goal is not only to detect but also to isolate a fault. By referring to
the definitions in the confusion matrix, it can be deduced that the FDI in the current form
can detect a failure but cannot classify it correctly. The elevator SVM model has incorrectly
classified aileron faults as elevators faults, and the aileron SVM model has incorrectly
classified elevator actuator faults as aileron faults. The models do manage to classify the
nominal data successfully, but further improvements are needed to classify elevator faults
from aileron faults.

Table 6. The results for the elevator SVM model trained for 50% LOE and tested with aileron data,
and the results for the aileron SVM model trained for 15% LOE and tested with elevator data.

Elevator SVM with Aileron Data Aileron SVM with Elevator Data

Confusion Matrix
[

497 0
0 328

] [
494 1

0 274

]
F1 Score 1 0.9989

To rectify this issue, another SVM model is trained, and this additional model is shown
in Figure 16. The purpose of this SVM model is to try to classify the “fault” data from
the SVM elevator and SVM aileron models into “elevator fault” or “aileron fault” as the
previous models could only detect “fault”. The additional model is shown by the red box.
The additional model is first trained using both the 60 s of the elevator faulty data and the
60 s of the aileron faulty data. The output of the SVM model trained for both types of faults
is now “Elevator Fault” or “Aileron Fault”.
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The results for the model tuned for both types of faults are recorded in Table 7. In this
confusion matrix for the SVM model trained for both types of faults, the definitions change
and are as follows:

1. True Positive: Model classifies an elevator fault as an elevator fault.
2. True Negative: Model classifies an aileron fault as an aileron fault.
3. False Positive: Model classifies an aileron fault as an elevator fault.
4. False Negative: Model classifies an elevator fault as an aileron fault.

Table 7. SVM results for model trained for both types of faults—tuned and untuned.

SVM Model for Both
Faults—Untuned

SVM Model for Both
Faults—Tuned

Confusion Matrix
[

266 47
0 272

] [
266 1

0 318

]
F1 Score 0.9188 0.9989

Cross-Validation Error 0.0781 0.0029

Hyperparameters—σ and C σ = 1
C = 1

σ = 0.02069
C = 95054

The untuned SVM model for both types of faults has 47 false positives (from the total
585), where the model classifies an aileron fault as an elevator fault. The untuned model
also has a poor cross-validation error in comparison to the previous models that are trained
for singular faults. To improve the accuracy of the model, the hyperparameters are tuned
using Bayesian optimisation techniques. The values for the hyperparameters are shown in
Table 7. Like the aileron SVM model tuning, the box constraint parameter increases, and the
kernel scale decreases. The tuning generates better results, with just one aileron fault being
classified as an elevator fault. This misclassification could be rectified by using a larger
training set with fault data greater than 60 s. However, overall, the F1 score improves 8% to
0.9989, which is a good result. The addition of another SVM model trained for both types
of faults has successfully fixed the issue of cross-correlation, and the health monitoring
system can detect and isolate aileron and elevator faults with 99.9% accuracy.

4.5. SVM Model for Elevator Actuator with Noisy Measurements

All real measurements are affected by noise. Mitigating the effects of noise in aircraft
fault diagnosis methods is important as noise can cause a model to misclassify data. To
investigate if the SVM model can handle noise, the following test is performed with the
dataset for the 50% LOE elevator actuator fault. Gaussian white noise blocks are introduced
to each output of the feature vector variables: ax, ay, az, p, q, and r in Simulink. The signal-
to-noise ratio (SNR) in the block is set to 20 dB.

Figure 17 represents the plot of the feature vector variable, q, with (a) no noise and
(b) noise. The results for the performance of the model are shown in Table 8. First, the
feature vector data with the added noise and no filtering are labelled and split into the
training and test data. The results of the model are poor and give the lowest F1 score
obtained in all tests so far, with a value of 0.45. This is a bad result, and the model is shown
to not be robust against noise. However, it is a common practice in machine-learning
models to filter noisy signal data before using the data to train a model. The moving mean
filter is a simple low-pass filter used for smoothing data. This filter is applied to each
variable in the feature vector dataset by using the MATLAB function movmean.
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Table 8. SVM elevator actuator model results for Gaussian white noise with SNR of 20 dB.

(a) Untuned + No
Signal Filtering

(b) Untuned + Signal
Filtering

(c) Tuned + Signal
Filtering

Confusion Matrix
[

75 3
177 513

] [
466 50
37 215

] [
501 0

2 265

]
F1 Score 0.4545 0.9146 0.9979

Cross-Validation
Classification Error 0.2415 0.1064 0.00423

The results improve significantly by using the moving mean filter. The smoothing
technique allows the important patterns in the dataset to become visible to the SVM model,
while leaving out the noise. The F1 score improves by just over 50%, and the classification
error drops by a sizable 55%. In order to further improve the accuracy and robustness of
this elevator SVM model, the hyperparameters of the model, σ and C, can be tuned. As in
previous tests, the Bayesian optimisation method is used. The accuracy of the model again
increases to an F1 score of 0.99, which is the best result for F1 score in Table 8. The accuracy
of the tuned model with feature vector signal filtering is a clear improvement from the
model that is untuned and employs no signal filtering. In conclusion, the robustness of the
model against noise is considerably increased thanks to the moving mean filter and tuning
of the hyperparameters.

4.6. SVM Model for Elevator Actuator in a Closed-Loop System

A basic longitudinal flight controller is designed for the SWIFT VTOL aircraft to see
how the SVM actuator health monitoring system performs in a closed-loop system and
to evaluate the interaction between FDI and the control system. The controller provides
optimally designed feedback gain, K, for the elevator control input to enable closed-loop
stability. In order to design the longitudinal controller, the SWIFT VTOL aircraft is trimmed
at a different trim point, and the model is linearised. This leads to a changed elevator input
angle of δele = −10.824◦. The longitudinal state-space model is then extracted from the
linearised model by selecting the states u, w, q, and θ. Values for Q and R are chosen,
and the function lqr is used. The controller gain K is then saved and imported into the
full model.
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The fault investigated for this section is the 50% LOE fault in the elevator actuator.
The simulation runs for the same time as other tests, for 180 s, and the LOE fault is injected
into the system at 120 s. By observing the actual elevator input signal in Figure 18, it can be
seen that the fault occurs and is controlled for about 20 s between 120 and 140 s. The fault
initially causes a high-frequency oscillatory response in the control signal. This response
is a result of the controller working to stabilise the system. After 140 s, the controller is
able to compensate for the actuator fault. In the basic LQR design, the controller does
not compare the output elevator actuator signal to the reference; it instead compares all
of the states multiplied by the control matrix to the reference. Therefore, it is not always
expected that the output equals the commanded reference with the design, and there will
be a steady-state error. However, the controller is still capable of compensating for the fault
and stabilising the system.
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The results for the elevator SVM model for a closed-loop system are presented in
Table 9. The tuning reduces the cross-validation error significantly by 96% and increases
the F1 score by an average of 16%. The tuned model has a low kernel scale of 0.000025
and a higher box constraint of 895, which follows the tuned hyperparameter trend seen in
open-loop systems.

Table 9. Closed-loop elevator SVM model results with tuned hyperparameters.

Elevator SVM Model for a Closed-Loop System

Confusion Matrix
[

360 1
0 178

]
F1 Score 0.9989

Cross-Validation Error 10.23× 10−3

Hyperparameters—σ and C σ = 0.000025
C = 895

In Figure 19, the posterior probability plotted against time for the tuned closed-loop
elevator SVM model can be seen. The probability of the data being classed as nominal is
one, and for being classified as faulty, it is zero. The model instantly detects the fault at
120 s. However, the spike in the faulty data at 145 s is result of the model misclassifying
the likelihood of the data as being faulty. This spike is observed in the confusion matrix at
the one point that is a false positive, meaning the model has classified a faulty situation
as nominal. Overall, the tuned SVM model for elevator within the closed-loop system
performs well and provides similar accuracy to that of the OL model with the tuned
parameters, giving 99% accuracy.
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In order to prove the importance of this closed-loop fault detection SVM model, the
following test is performed: classify closed-loop feature vector data using an open-loop
model for the elevator actuator 50% LOE fault. The results are shown in Table 10. The
model achieves a low F1 score of 0.86. The model records 118 false positives, which means
that the model has classified 118 faulty data points as nominal. A false positive result
is pointed out as the worst error that a SVM model could produce. This test validates
the importance of closed-loop fault detection. By using the elevator model trained for
closed-loop fault detection for real flight data, the accuracy should be better by 13%. This is
a significant result considering how important accurately classifying actuator faults is for
ensuring flight reliability.

Table 10. Elevator SVM model trained for an open-loop system and tested with closed-loop data.

OL Elevator SVM Model Tested with CL
Data—50% LOE Fault

Confusion Matrix
[

365 118
0 56

]
F1 Score 0.86

5. Discussion and Conclusions

In this paper, a data-driven fault diagnosis method to detect and identify faults in an
aircraft flight control actuation system is developed. To develop the data-driven algorithm,
a non-linear aircraft model is needed to provide simulated flight data. The aircraft chosen
was the SWIFT VTOL. A model of the SWIFT aircraft with actuator fault modes was created
in Simulink. The actuator fault investigated in this study was the loss-of-effectiveness (LOE)
fault, which was simulated by applying a gain to the control signal at the fault time. This
model was successful in providing flight data in an open-loop system. To study the effects
of the flight controller on the fault diagnosis algorithm, an LQR controller was designed
and implemented in the SWIFT VTOL Simulink to provide closed-loop flight data.

Once the model was completed, a fault diagnosis algorithm was developed. A Support
Vector Machine algorithm was the chosen method, as SVM had shown promising results in
classifying aircraft actuator failures. The algorithm was developed in MATLAB. The input
to the SVM model was the labelled feature vector data from the SWIFT VTOL model. This
data consisted of the signal output values of the body acceleration in each axis and the body
angular rates. Several tests were performed that included injecting faults into the aileron
and elevator actuators. The aim of the fault detection algorithm was to classify the feature
vector data into a nominal or a faulty class. The elevator SVM models classified the LOE
faults instantly, scoring an F1 score of one. The tuned aileron SVM models also showed
great accuracy, with the models scoring an average F1 score of 0.99. The models for each
control surface also showed a low cross-validation classification error for the out-of-sample
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data, with values of 10−4. This is a very promising result, with the models showing a
satisfactory performance.

This study manifested a tremendous effect of the sensor noise on the classification
precision. The baseline system was not robust against the sensor noise. However, by
adding a simple low-pass filter into the framework, this issue could be tackled, and the
performance was significantly improved. By using the filter and tuning the model, it kept a
high F1 score of 0.99.

During the test phase, the cross-correlation between the models was also investigated.
It was shown that the elevator SVM model detected aileron actuator faults. This by-product
result showed that the SVM model trained to detect one type of failure could detect another
type of failure, showing good generalisation capabilities. Nevertheless, the goal was not
only to detect but also to isolate a fault. To improve isolation capabilities, an additional
model was trained that could detect the difference between elevator and aileron actuator
faults. This model performed well when tuned and gave an accuracy of 99%. This method
could be improved by creating a multi-class SVM model. However, multi-class models
have been shown to be slower during the training phase than binary SVM models.

It was demonstrated that the interaction of the proposed SVM-based FDI with the
control system could mislead the classification. The open-loop elevator SVM model was
tested with the closed-loop data. The model scored a low F1 score of 0.86, and the accuracy
dropped 13% in comparison to the closed-loop model. However, the SVM model trained
with the faulty closed-loop system data scored an F1 score of 0.99, which was on par
with the open-loop results. Fault detection algorithms based on Support Vector Machines
were developed for the elevator and aileron actuators. These algorithms could detect the
LOE fault instantly, with an average of 99% accuracy. These results are in line with those
achieved in [25], in which an F1 score of 0.99 was also achieved when testing an optimised
SVM model on its ability to detect flight control actuation faults.

It is noted that the fault detection algorithm developed in this paper is limited to
detecting the loss-of effectiveness actuator fault. Future research could be centered around
developing a multi-class SVM model to detect multiple faults for each of the primary
aircraft control surface actuators. This is a complicated process due to the multiple different
faults that can occur, but with sufficient training, a multi-class model should be capable
of detecting different types of faults to a good accuracy. It is also noted that the work
presented here is limited by the use of simulated flight data from the SWIFT VTOL model.
Future work should test this fault detection algorithm on data captured from real drone
flight tests to increase the robustness of this FD algorithm. Such additional research would
test the algorithm and highlight any potential strong points (such as the ability to handle
noisy measurements) or areas that could require more model training (fault detection in a
closed-loop system).

To conclude, fault detection algorithms based on Support Vector Machine were de-
veloped for the elevator and aileron actuators. These algorithms can detect the LOE fault
instantly, with an average accuracy of 99%. Overall, the proposed SVM-based FDI frame-
work demonstrates promising fault classification capabilities, which might be utilised in
integrated FDI and reconfigurable flight control systems to advance pilot-based health-
monitoring to an autonomous health-management system and enable future pilotless
UAS systems.
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