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Abstract: In this paper, a spatial parallel mechanism with five degrees of freedom is studied in order
to provide a promising dynamic model for the control design. According to the inverse kinematics of
the mechanism, the dynamic model is derived by using the Lagrangian method, and the co-simulation
using MSC ADAMS and MATLAB/Simulink is adopted to verify the established dynamic model.
Then the pre-trained deep neural network (DNN) is introduced to predict the real-time state of the
end-effector of the mechanism. Compared to the traditional Newton’s method, the DNN method
reduces the cost of the forward kinematics calculation while ensuring prediction accuracy, which
enables the dynamic compensation based on feedback signals. Furthermore, the computed torque
control with DNN-based feedback compensation is implemented for the trajectory tracking of the
mechanism. The simulations show that, in the most complicated case that involves friction and
external disturbance, the proposed controller has better tracking performance. The results indicate
the necessity of dynamic modeling in the design of control with high precision.

Keywords: dynamic modeling; parallel mechanism; forward kinematics; neural network; feedback
compensation

1. Introduction

As a powerful supplement to the traditional serial open-loop mechanisms, the closed-
loop parallel mechanisms have many advantages in accuracy, speed, and payload ability.
However, the parallel mechanisms also suffer from limb interferences and a large number
of singularities inside their workspaces, which seriously impedes the extensive application
of parallel mechanisms [1]. Therefore, spatial movement capability is crucial to evaluate
the performance of spatial parallel mechanisms (PMs) [2,3]. The general spatial PMs have
many successful configurations with three degrees of freedom (DoF), such as the classical
spatial DELTA mechanism [4], the 3-PSP spatial PMs [5], the 1-UP&2-UPS spatial PMs [6],
and the 2R1T parallel end-effector head mechanism [7], etc. One disadvantage of 3-DoF
spatial PMs is that they do not adapt well to complex working conditions. Nowadays,
PMs are developing towards more DoF and more actuations. More actuations tend to
generate kinematic redundancy in PMs, which is an effective way to improve the dynamic
performance of the mechanism [8] and avoid singular configurations [9]. which provides
more possibilities for the design of PMs. More DoF enables the PMs to adapt to complex
working conditions. Therefore the spatial PMs with more degrees of freedom are attracting
more attention [10]. For example, the spatial PM with 5-DoF has been successfully applied
in tasks such as the machining of large aircraft structural components and the assembly of
parts with high precision and etc. [11]. Obviously, one crucial issue of such a task is the
design of a control scheme that bounds the tracking error and consequently guarantees the
positioning accuracy [12].
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In recent years, the high-precision motion control for spatial PMs have been widely
investigated by scholars [13,14]. For the control of a novel reconfigurable parallel mecha-
nism, Huang [15] designed a fuzzy-proportion integration differentiation (PID) controller
to track the trajectory of the end-effector. However, the proposed fuzzy-PID controller
did not include dynamic compensation terms, and consequently, the tracking accuracy
of the mechanism might be limited. The model-based control, which improves control
performance and eliminates steady-state errors of the mechanism by compensating the
dynamic interference, has been widely used in controlling spatial PMs, and the results have
revealed the superiority of model-based control [16,17].

Dynamic modeling, as the basis of dynamic performance analysis of mechanisms, is
the core of the structural parameters design and model-based control of parallel mecha-
nisms. Compared with serial open-loop mechanisms, the kinematics analysis, which plays
the fundamental role of dynamic modeling, is not an easy task for the spatial PMs due
to their multi-closed-loop configuration, especially for spatial PMs with multiple DoF. In
previous research, the dynamic model of spatial PMs are usually established by means of
the Newton–Euler approach, Lagrangian method, the principle of virtual work, and Kane
approach, etc. The Newton–Euler approach is the most commonly used dynamic modeling
method for spatial PMs [18,19]. Since the Newton–Euler approach is a recursive derivation
method based on vector mechanics, it has a clear physical meaning and geometric explana-
tion. However, as the complexity of the mechanism increases, the Newton–Euler approach
requires more differential-algebraic equations to formulate the model [20]. Compared with
Newton–Euler approach, the Lagrangian method is based on the calculation of kinetic
energy and potential energy of the system and consequently avoids the calculation of
constraint forces, but the symbolic derivation of the matrix form of the Lagrange equation
is quite complicated. Similar to the Lagrangian method, the principle of virtual work can
also avoid the calculation of constraint forces of the mechanism. However, the modeling
process of this method is featured by the velocity transform between joint and task spaces,
which brings much inconvenience in forward dynamics analysis for some spatial PMs [11].
Another classic approach to multi-body system dynamics modeling is the Kane method,
which has the advantages of both vector mechanics and analytical mechanics, especially in
the modeling of nonholonomic systems. Using the Kane approach, Yang [21] investigated
the full dynamic model of an spatial PM system and derived the simplified dynamic model
through the rigid body decomposition method. The main challenge of applying the Kane
method is the lack of a uniform framework, which results in a decrease in computational
efficiency, especially for complex spatial PMs.

Based on the dynamic model of spatial PMs, the model-based control has been suc-
cessfully applied in many types of research, most of which are model-based feedforward
control [22,23]. Since the feedforward control is categorized as open-loop control, it is
difficult to realize full compensation when there are many disturbance factors in the sys-
tem. Therefore, it is necessary to introduce feedback dynamic compensation into real-time
control. However, the feedback compensation control for spatial PMs requires the state of
motion of the end-effector, which can only be obtained by means of the forward kinematics
calculation when lacking real-time measurements with high precision. In other words,
given the feedback of the state of motion of driving elements, one needs to calculate the
state of the end-effector so as to compare with its desired state within the control loop.

Contrary to the serial mechanism, the inverse kinematics of a parallel mechanism is
usually simple and straightforward [24,25]. However, the forward kinematics of parallel
mechanism involves highly coupled nonlinear equations, which makes it difficult to find
analytical solutions. To tackle this problem, Asier [26] added extra sensors to the passive
joints of the parallel robot. At the same time, the cost of the experiment and the complexity
of data transmission will increase greatly. Some analytical methods are used to establish
the forward kinematics model of parallel mechanisms with certain configurations [27,28].
While most of the theoretical methods are limited to parallel mechanisms with a special
configuration, numerical approaches are employed to solve forward kinematics of par-
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allel mechanisms of arbitrary type. However, the convergence of the Newton–Raphson
based algorithm, the most widely used numerical scheme for solving forward kinematics,
depends on the selection of the initial value. When the initial value is not close to the
exact solution, the algorithm will take a long time to converge or even diverge. In recent
years, artificial intelligence approaches have been widely applied for their promising global
performance. Nouri Rahmat Abadi, B. and Carretero, J.A. [29] successfully perform the
real-time motion planning of a class of kinematically redundant PMs using the multilayer
perceptron-based neural network (MLP). Zhang [30] compares the performance of different
artificial intelligence approaches to solve the forward kinematics of an actuation redundant
parallel manipulator, which provides guidance for the application of artificial intelligence
approaches to the forward kinematics problem of parallel robots. Given sufficient training
data, the mapping from states of driving components to states of end-effector can be accu-
rately established with the aid of the strong capability of function approximation of the
neural network [31].

In this paper, the dynamic model of a machining robot, abstracted as a spatial PM with
5-DoF, is studied to provide the foundation of the model-based control. Given appropriately
selected generalized coordinates of the spatial PM, the Lagrangian method is adopted to
formulate the model of the spatial PM of concern. Note that the main challenge of the
feedback control with dynamic compensation for the spatial PM under consideration
is the real-time calculation of the forward kinematics, we propose to predict the real-
time state of the end-effector by a deep neural network (DNN) to speed up the forward
kinematics analysis. Afterward, the feedback control with dynamic compensation can be
designed based on the dynamic model implemented by the end-effector state predictor
based on DNN.

The rest of the paper is organized as follows. In Section 2, we briefly introduce the
structure of the mechanism and analyze its inverse kinematics. In Section 3, based on
the kinematic analysis, we use the Lagrangian method to establish the dynamic model
of the proposed spatial PM, and then we run the co-simulation by using MSC ADAMS
and MATLAB/Simulink to verify the dynamic model. In Section 4, we use the inverse
kinematics of the mechanism to generate a training data set, and then train an artificial
neural network to represent the solution of the forward kinematics. On this basis, we design
a computed force control law with dynamic feedback compensation. Then the numerical
simulations of the computed force control, the feedforward control, and the PD control of
the spatial PM are provided. The simulation results show that the proposed control law
has better performance of dynamic tracking.

2. Structure Description and Kinematics Analysis
2.1. Structure Description

Figure 1 depicts the configuration of the SPM under consideration, appearing as
the prototype of a portable machining robot. The spatial PM is composed of a base, an
end-effector, and five limbs. As shown in Figure 1b, Bi (i = 1, 2, · · · , 5) are spherical
joints in the structure. In accordance with descriptions of previous works where the 5-DoF
mechanism was already introduced, the universal joint on each sleeve and the spinning
motion of each ball screw are collectively equivalent to a spherical joint. The first limb is
an SPR kinematic chain (S-spherical joint; P- active prismatic joint; R-revolute joint), and
the remaining four limbs are SPU kinematic chains (U- universal joint), thus the spatial
PM can be represented as SPR-4(SPU). The SPR kinematic chain imposes a constraint force
to the end-effector, and the SPU kinematic chains have no constraint on the end-effector.
Actuated by five prismatic inputs, the end-effector of the spatial PM is endowed with five
DoF, including three translational DoF and two rotational DoF, and the detailed analysis
can be found in Ref. [32].
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Figure 1. Geometric model of the proposed spatial PM with 5-DoF: (a) CAD model and (b) kine-
matic scheme.

2.2. Inverse Position Analysis

In order to express the dynamics of the mechanism in terms of the task-space coor-
dinates, one needs to figure out how the limb’s state changes with the end-effector state.
As shown in Figure 1b, the kinematics of the 5-DoF spatial PM can be described by two
coordinate systems: the global coordinate system < : o − xyz which is mounted on the
center of the base, and the co-rotational coordinate system <′ : o′− x′y′z′ which is mounted
on the bottom center of the end-effector. Denote by T = oo′ = [x, y, z]T the position of the
bottom center of the end-effector in the global coordinate system. The base is coplanar
with the o − xy plane, where o is the center of the circle consisting of points B1, B2, B3,
B4 and B5. The y− axis in the global coordinates is collinear with oB1, and the y′ − axis
in the co-rotational coordinate system is collinear with o′P1. The vectors P2P4, P3P5 are
parallel to o′P′, i.e., the central axis of the end-effector. Denote the length of ball screw
by ltotal and let |oBi| = R1, (i = 1, 2, 3, 4, 5), |o′Pi| = R2, (i = 1, 2, 3), |o′P′| = H,
∠B1oB2 = ∠B1oB3 = ∠B2oB3 = 2π/3, ∠B1oB4 = ∠B1oB5 = π/4. The detailed expres-
sions for the position of Bi (i = 1, 2, · · · , 5) in < : o − xyz and Pi (i = 1, 2, · · · , 5) in
<′ : o′ − x′y′z′ are given in Appendix A.

In Ref. [32], the orientation of the end-effector is represented by tilt-and-torsion (T&T)
angles, which may result in the singularity of Jacobian matrix in some common orientation
of the end-effector, i.e., vertical state. Differently from previous work, the RPY angles are
used to represent the orientation of the end-effector to avoid such phenomenon. We define
β as the roll angle, γ as the pitch angle, and α as the yaw angle. Under the description of
RPY angles, the rotation matrix of the end-effector with respect to the fixed base platform
can be expressed as

R(α, β, γ) = Rz(β) Ry(γ) Rx(α)

=

 cos β cos γ sin α cos β sin γ− cos α sin β cos α cos β sin γ + sin α sin β
sin β cos γ sin α sin β sin γ + cos α cos β cos α sin β sin γ− sin α cos β
− sin γ sin α cos γ cos α cos γ

.
(1)

Due to the constraint of the first limb, B1, P1, o′, p′ will be restricted in the same plane. This
condition can be expressed as follows [33]:

(o′p′ × o′p1) · o′B1 = 0, (2)

where 
o′p′ = R(α, β, γ)[0, 0, H]T,
o′B1 = [x, y− R1, z]T,
o′P1 = R(α, β, γ)[0, R2, H]T.

(3)
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It can be obtained from Equation (3) that

z sin γ + R1 cos γ sin β− x cos γ cos β− y cos γ sin β = 0, (4)

which yields

γ= arctan
(

x cos β + y sin β− R1 sin β

z

)
± π

2
, (5)

indicating that the DoF of the proposed spatial PM is five. From Equations (1) and (5),
R can be calculated for certain coordinates of task space, i.e., (x, y, z, α, β). Then the
coordinates of Pi (i = 1, 2, · · · , 5) in the global frame can be expressed as

Pi−< = R(α, β, γ)Pi−<′ + T. (6)

The coordinates of the joint space can be expressed as L =
[

l1 l2 l3 l4 l5
]T. Let

li = |BiPi|, i = 1, · · · , 5,, i.e., li represents the screw length of each linear drive. Together
with the position of Bi (i = 1, 2, · · · , 5) and Equation (6), we have completed the inverse
kinematics analysis by formulating the mapping from (x, y, z, α, β) to li, i = 1, · · · , 5.

2.3. Velocity Analysis and Jacobian Matrix

In this part, we use the Jacobian matrix to analyze the velocity relationship between
the end-effector and the input limb. The structure of input limb BiPi (i = 1, 2, · · · , 5) is
shown in Figure 2, where li represents the unit vector in the corresponding direction of the
ith limb, and ei1, ei2 represent, respectively, the centroid position of the sleeve and the limb.
It is obvious that

oBi + BiPi = oo′ + o′Pi. (7)

Since oo′=T, Bio=−Bi−<, BiPi=lili, and o′Pi=R(α, β, γ)Pi−<′ , Equation (7) can be rewrit-
ten as

lili + Bi−< = T + R(α, β, γ)Pi−<′ . (8)

Figure 2. Structure and kinematic scheme of input ith limb.

Based on Equation (8), one can establish the relationship between the velocity in the joint
space and that of the task space. To this end, we first note that

RTṘ =

 0 −ωz ωy
ωz 0 ωx
−ωy ωx 0

, (9)

where
[

ωx ωy ωz
]T

=: ωp represents the angular velocity of the end-effector. Denot-
ing by ωi the angular velocity of the limb, and differentiating both sides of Equation (8)
with respect to time yield

l̇ili + li(ωi × li) = Ṫ + ωp × (R(α, β, γ)Pi−<′), (10)
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Based on Equation (10), a direct calculation shows that(
l̇ili + Li(ωi × li)

)
× li

=
(
Ṫ + ωp × (R(α, β, γ)Pi−<′)

)
× li,

ωi =

(
Ṫ + ωp × (R(α, β, γ)Pi−<′)

)
× li

li
. (11)

and
li ·
(
l̇ili + Li(ωi × li)

)
= li ·

(
Ṫ + ωp × (R(α, β, γ)Pi−<′)

)
,

l̇i = Ṫ · li + ωp × (R(α, β, γ)Pi−<′) · li. (12)

Compared with the coordinates in the joint space, the coordinates in the task space are
more convenient to demonstrate the dynamic performance of the spatial PM, as well as
the properties of forward kinematics of the proposed spatial PM when lacking the analytic
solution. Therefore we choose q =

[
x y z α β

]T as the generalized coordinates of
the mechanism, then Equation (12) can also be written as

l̇i=wiq̇, (13)

where wi =
[

∂l̇i
∂ẋ

∂l̇i
∂ẏ

∂l̇i
∂ż

∂l̇i
∂α̇

∂l̇i
∂β̇

]
and can be derived from Equation (12). Putting

Equation (13) in the vector form, we have

l̇ = Wq̇, (14)

where W =
[

w1
T w2

T w3
T w4

T w5
T ]T represents the Jacobian matrix of trans-

forming the task space to the joint space. In order to simplify the symbolic derivation of the
dynamic equation, we denote by qc the vector of the position and the orientation of the
end-effector, namely, qc =

[
x y z α β γ

]T. Restricted to Equation (5), γ can be
solved as γ = γ(q). Then the Jacobian matrix between qc and q is defined by

q̇c = Sq̇, (15)

where S =

[
I5×5
s6

]
and s6 =

[
∂γ
∂x

∂γ
∂y

∂γ
∂z

∂γ
∂α

∂γ
∂β

]
.

Equations (14) and (15) provide necessary preparations for formulating the dynamic
model by means of the Lagrangian method, as will be seen in the next section.

3. Dynamic Modeling

In this paper, we assume that all components are rigid bodies and that the deformation
of the driving components is negligible. As previously stated, the Lagrangian method
is employed in this section to develop a dynamic model for the 5-DoF spatial PM. To
this end, the kinetic energy and potential energy are to be formulated, as will be done in
the following.

3.1. Kinetic Energy

Ignoring the base, the 5-DoF spatial PM consists of three types of components: the
sleeves, the limbs, and the end-effector. Since the motion of the sleeves is fixed-axis rotation,
the kinetic energy of each sleeve can be written as

T1i =
1
2

(
Jc1 + m1e2

1

)
|ωi|2, (16)

where m1, Jc1, and e1 represent the mass of the sleeve, the moment of inertia around
the center of mass, and the distance between the center of mass to the axis of rotation,
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respectively. The motion of each screw can be decomposed as the translation along the
sleeve axis and the rotation around point B. According to the Koenig Theorem, the kinetic
energy of each limb can be written as

T2i =
1
2

m2 l̇2
i +

1
2

(
Jc2+m2(li − e2)

2
)
|ωi|2, (17)

where m2, Jc2, and e2 represent the mass of screw, the moment of inertia around the center
of mass, and the distance between the center of mass to its connector with the platform,
respectively. The motion of the end-effector includes the translation and spatial rotation
with velocity Ṫ and angular velocity ωp, respectively. Then, the kinetic energy of the
end-effector can be written as

T3 =
1
2

m3ṪTṪ +
1
2

ωT
pIcωp, (18)

where m3 represents the mass of the end-effector, Ic is given by

Ic = diag
(

Ixx, Iyy, Izz
)
, (19)

and Ixx, Iyy, Izz represent the principal moments of inertia of the end-effector. Combining
Equations (16)–(18), the total kinetic energy of the mechanism is given by

T =
5

∑
i=1

T1i +
5

∑
i=1

T2i + T3. (20)

3.2. Potential Energy

Only geopotential energy needs to be considered in calculating the potential energy of
the 5-DoF spatial PM. Choose the base plane o− xy as the zero potential energy surface,
then the centroid positions of the sleeve, the limb, and the end-effector in the global
coordinate system < : o− xyz are given by

Ci1−< = Bi−< − ei1li,
Ci2−< = Bi−< + (li − ei2)li,
C3−< = T + e3 o′p′,

(21)

for i = 1, 2, · · · , 5. Then potential energy is then calculated as
V1i = m1gTCi2−<,
V2i = m2gTCi1−<,
V3 = m3gTCi3−<,

(22)

where i = 1, 2, · · · , 5, and V1i, V2i, V3 represent the potential energy of each sleeve, limb,
and the end-effector, respectively. g is the gravitational acceleration and assumes 9.8 m/s2

throughout the paper. Finally, the total potential energy of the mechanism is expressed as

V =
5

∑
i=1

V1i +
5

∑
i=1

V2i + V3. (23)

3.3. Lagrange Equation

In order to simplify the symbolic derivation of the dynamic equation, all the de-
grees of freedom of the end-effector are used in formulating the Lagrange equation of
the proposed mechanism, which avoids the symbolic derivation of γ from q. In terms
of qc =

[
x y z α β γ

]T, the Lagrange equations of the 5-DoF spatial PM are
obtained as

d
dt

(
∂(T −V)

∂q̇ci

)
− ∂(T −V)

∂qci
= Qci, (24)
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where i = 1, 2, · · · , 6, and Qc=
[

Qc1 Qc2 Qc3 Qc4 Qc5 Qc6
]T representing the

external forces in terms of qc. Denote by Q=
[

Q1 Q2 Q3 Q4 Q5
]T the generalized

forces corresponding to q. The input of the system is the torque generated by the five
direct drive motors, which is converted into axial force through the lead screw. Denote
the driving force vector of the spatial PM by F=

[
F1 F2 F3 F4 F5

]T. According to
the principle of virtual displacement [28], Q, Qc, and F are related by (see Appendix B for
the details)

Q=STQc = WTF. (25)

The dynamic equation in terms of qc is given by

M(qc)q̈c + C(qc, q̇c)q̇c + G(qc) = Qc, (26)

where M(qc), C(qc, q̇c), G(qc) represent the inertial matrix, the Coriolis matrix, and the
gravity terms, respectively, (see Appendix C for the details). Substituting Equation (25) to
Equation (26), we have

ST(M(qc)q̈c + C(qc, q̇c)q̇c + G(qc)) = WTF. (27)

Differentiating both sides of Equation (15) with respect to time yields

q̈c = Ṡq̇+Sq̈. (28)

Substituting Equations (15), (28) into Equation (27), we obtain the dynamic equation of the
5-DoF spatial PM in terms of its generalized coordinates q as follows

M̄q̈ + C̄q̇ + Ḡ = WTF, (29)

where
M̄ = STMS,
C̄=STMṠ+STCS,
Ḡ=STG.

(30)

However, under actual working conditions, the mechanism is often subject to some distur-
bances that are difficult to model, such as external forces on the spatial PM and the friction
inside the driving limbs. Taking into account the influence of these factors, we can rewrite
Equation (29) as

M̄q̈ + C̄q̇ + Ḡ + N = WT
(

F− F f

)
, (31)

where N is the external force vector and F f is the friction force vector of the spatial PM.

4. Dynamic Model Validation

As shown in the last section, the symbolic derivation of the established dynamic model
of such 5-DoF spatial PM is complicated, implying the necessity of model validation. For
this purpose, we assume that the spatial PM is under ideal actuation and not disturbed
by external forces, and use the multi-body dynamics software MSC ADAMS to simulate
the dynamic behavior of the spatial PM. The geometrical and physical parameters of the
mechanism are given in Table 1.

The Runge–Kutta (RK) method with variable step size is employed to solve the forward
dynamics of the model that we established in Section 3, and this method is abbreviated
as the RK method. Meanwhile, we run the co-simulation by using MSC ADAMS and
MATLAB/Simulink for the 5-DoF spatial PM, as sketched in Figure 3, in which the forward
dynamics of the virtual prototype is obtained by ADAMS/Solve, and this method is
abbreviated as ADAMS. In both ways of simulating forward dynamics, we implement
the joint-based PD control with identical position gain and evaluate the performance of



Machines 2023, 11, 195 9 of 21

trajectory tracking of the end-effector. The joint-based PD control law with digital sampling
is given by

F(t) = Kp(Ld(τi)− L(τi)) + Kv
(
L̇d(τi)− L̇(τi)

)
, (32)

where Ld and L̇d represent the desired position and velocity of limbs, respectively, and
are generated by inverse kinematics of the spatial PM. The numerical solution based on
the RK method and the co-simulation result is compared in Figures 4 and 5, where the
control frequency is fixed as 1000 Hz, or equivalently ∆τ = 0.001s for Equation (32) and
t ∈ [τi, τi+1], Kp = 20,000, Kv= 400.

Table 1. The geometrical parameters and the physical parameters of the mechanism.

Geometrical
Parameter Value Physical Parameter Value

ltotal 1.500 (m) m1 34.443 (kg)
H 0.300 (m) m2 5.756 (kg)
R1 0.600 (m) m3 15.000 (kg)
R2 0.065 (m) Jc1 0.145 (kg ·m2)
e1 0.063 (m) Jc2 1.079 (kg ·m2)
e2 0.750 (m) Ixx 0.419 (kg ·m2)
/ / Iyy 0.088 (kg ·m2)
/ / Izz 0.419 (kg ·m2)

Figure 3. Diagram of co-simulation by using MSC ADAMS and MATLAB/Simulink. (a) virtual proto-
type of 5-DoF spatial PM in ADAMS. (b) 5-DoF spatial PM as an ADAMS plant in MATLAB/Simulink.
(c) Block diagram of co-simulation with PD control in Simulink, where ADAMS_sub represents the
ADAMS plant, and Kp, Kv represent the position gain and velocity gain, respectively.
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Figure 4. Comparison of the variations of L(l1, l2, l3, l4, l5) under RK method and ADAMS. (a) Time
history plot of the variations of L(l1, l2, l3, l4, l5) under the positioning motion, and the tracking
signal of the end-effector is given as x = 0, y = 0, z = −0.55, α = 0, and β = 0. (b) Time history
plot of the variations of L(l1, l2, l3, l4, l5) under the periodic motion, and the tracking signal of the
end-effector is given as x = 0, y = 0, z = −0.6 + 0.05 sin

(
π
2 t
)
, α = 0, and β = 0.

Figure 5. Comparison of the evolution of the axial forces obtained by RK method and ADAMS.
(a) Time history plot of five axial forces under the positioning motion and (b) Time history plot of
five axial forces under the periodic motion.

As shown in Figure 5, the solution of Equation (32) obtained by the RK method is in
agreement with that by the co-simulation, implying that the dynamic model represented
by Equation (29) is reliable and therefore provides a basis for designing the model-based
control, as will be discussed in next section.



Machines 2023, 11, 195 11 of 21

5. Control Design Based on Dynamic Model

The dynamic model provides a promising basis for designing feedback controllers with
dynamic compensation, which has been proven effective in robot control with high preci-
sion. Given the dynamic model, the design of feedback control with dynamic compensation
is routine for serial mechanisms. However, due to the difficulties in obtaining real-time
state of the end-effectors of spatial PMs, dynamic models in the form of Equation (29) are
incomplete to incorporate with a feedback controller with dynamic compensation, which
requires direct measurement of the state of end-effector or alternatively an immediate calcu-
lation based on the state of actuators. Since the direct measurement is apt to be limited by
the experimental devices as well as the working environment and the forward kinematics
calculation is time-consuming in its traditional manner, we propose to predict the state of
the end-effector of the 5-DoF spatial PM in terms of a neural network which is trained on
inverse kinematics data. Then the proposed controller with feedback dynamic compen-
sation is introduced and compared with the results of PD control as well as model-based
control with feedforward dynamic compensation.

5.1. End-Effector State Predictor of Spatial PM Based on DNN Method

For the spatial PM of concern, the task of forward kinematics is to determine the
position and orientation of end-effector, namely, q =

[
x y z α β

]T for measured
lengths of ball screws, i.e., li(i = 1, 2, 3, 4, 5). Noting the complexity of the forward kinemat-
ics of the 5-DoF spatial PM, the deep neural network is invoked to fit the map from states
of the end-effector to states of the actuators. To construct the training data for the DNN,
100,000 data points from the prescribed region in the task space of the end-effector (Table 2),
viewed as the output of the DNN, are randomly generated and the corresponding lengths
of ball screws, taken as the input of the DNN, are calculated through the inverse kinematics.
According to the standard operation of training a DNN, all the data is normalized while 80%
of it is treated as the training set, 10% as the test set, and the rest 10% as the validation set.

Table 2. Motion range of the end-effector in training data set.

Description Range

Range of x(mm) [−150, 150]
Range of y(mm) [−150, 150]
Range of z(mm) [−800, −500]
Range of α(rad) [−π/9, π/9]
Range of β(rad) [−π/9, π/9]

As shown in Figure 6, the DNN consists of three parts: the input layer, the hidden
layers, and the output layer. With the increase in the number of hidden layers, the fitting ca-
pability of DNN is enhanced. However, too many hidden layers with excessively numerous
parameters will lead to a complicated neural network which may suffer from overfitting
during the offline training and computationally inefficiency during the online deploy-
ment [34]. To balance the performance of the network and the computational efficiency,
we choose the number of hidden layers of DNN as 5, and the numbers of neurons in each
hidden layer as 30, 30, 20, 20 and 20, respectively. The DNN is trained by using MATLAB
Neural Network Toolbox, and Figure 7 shows the mean squared error (MSE) during the
training process for the normalized input data. In order to show the performance of the
DNN for the dimensional data, we construct another 10,000 sets of test data within the
same region by using the aforementioned method and compare the data with the output of
the DNN, as shown in Table 3.



Machines 2023, 11, 195 12 of 21

Table 3. The performances of the DNN after training on the dimensional test data set.

Symbol Maximum Error MSE

x(m) 3.04× 10−6 3.84× 10−13

y(m) 3.50× 10−6 3.32× 10−13

z(m) 4.82× 10−6 7.05× 10−13

α(rad) 1.32× 10−5 5.06× 10−12

β(rad) 2.62× 10−5 8.41× 10−12

‖L‖(m) 6.98× 10−6 3.33× 10−12

Figure 6. The structure of the Deep Neural Network.

Figure 7. Training performance of the DNN model.

To verify the effectiveness of the proposed DNN-based approximation of forward
kinematics, we employ Newton’s method to carry out numerical simulations. It should be
noted that the initial guess of each step of Newton’s method is chosen as the output of the
previous step and therefore the convergence of iterations is speeded up. Meanwhile, the
maximum permissible error is fixed as 1× 10−5 (m), which ensures that Newton’s method
has the same expected accuracy as the DNN (Table 3). Figure 8 shows the comparison of
time-consuming forward kinematics calculation for spatial motion signals with different
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velocities within 10 s at a sampling frequency of 1000 Hz. The calculations are implemented
on an Intel (R) Core (TM) i7-6700K CPU @ 4.00 GHz, with 16 GB RAM, and the average
calculation time of the DNN method is less than 3× 10−5 s. As shown in Figure 8, the
number of iterations of Newton’s method increases as the speed of the tracking signal rises,
while the computational efficiency of the DNN-based approximation of forward kinematics
is not varied with the speed of the tracking signal. The above results indicate that the DNN
method has superior performance in computational efficiency and therefore provides a
promising basis for real-time control.

Figure 8. Comparison of time-consuming between the DNN-based method and Newton’s method
of forward kinematics calculation for spatial motion signals with different velocities: (a) the spatial
motion signal: x = 0.14 sin(ωt), y = 0.14 cos(ωt), z = −0.65 + 0.12 cos(ωt), α = 0, β = 0, where ω is
2π, 6π, and 10π in cases of motion1, motion2, and motion3, respectively; (b) number of iterations of
Newton’s method in different motions; (c) time consuming of forward kinematics calculation.

5.2. Design of the Controller with DNN Based Feedback Compensation

With the aid of the DNN-based end-effector state predictor, we can obtain the state of
the end-effector in terms of the state of driving limbs in real-time, which makes it possible
to realize the feedback compensation control of the 5-DoF spatial PM. As shown in Figure 9,
the computed torque control with DNN-based feedback compensation can be expressed as

F =

(
_

W
T
)−1(

_

M
(
q̈d + Kpe + Kvė

)
+

_

C ˙̂q +
_

G

)
+ F f . (33)

In Equation (33), e = qd − q̂ and ė = q̇d − ˙̂q denote, respectively, the tracking errors of
position and velocity of the end-effector, where qd represents the leading signal (LS), and

q̂ the prediction of q obtained by the DNN-based forward kinematics.
_

M̄,
_

C̄,
_

Ḡ, and
_

W
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represent the predictes of M̄, C̄, Ḡ, and W, respectively, and are generated by replacing q
and q̇ by their predicte in M̄, C̄, Ḡ, and W.

As a comparison, the control method using the feedforward signal for dynamic
compensation in Ref. [22] is applied for the trajectory tracking control of the 5-DoF spatial
PM. This controller compensates the system dynamics by the desired signal rather than
the real-time state of the end-effector, therefore the dynamics compensation part of this
controller is open-loop. The dynamic feedforward control is formulated as

F =

(
^

W
T
)−1(

^

M̄q̈d +
^

C̄q̇d +
^

Ḡ
)
+ KpL̃ + Kv

˙̃L + F f . (34)

In Equation (34), L̃=Ld − L, ˙̃L=L̇d − L̇, and denote, respectively, the tracking errors of
position and velocity of the driving limbs, where Ld represents the desired position of the

driving limbs.
^

M̄,
^

C̄,
^

Ḡ, and
^

W are the predictes of M̄, C̄, Ḡ, and W, respectively, and are
generated by replacing q and q̇ by qd and q̇d in M̄, C̄, Ḡ, and W.

Figure 9. Block diagram of the proposed controller with DNN-based feedback compensation.

5.3. Numerical Results

Numerical simulations are carried out to verify the effectiveness of the proposed
controller with DNN-based feedback compensation, while the joint-based PD control and
the dynamic feedforward control in Ref. [22] are provided as comparisons. The tracking
trajectory in the task space of the 5-DoF SPM is given as x = 0.1 sin(ωt), y = 0.1 cos(ωt),
z = −0.65 + 0.1 cos(ωt), α = π

10 sin(ωt), β = π
10 sin(ωt), where ω is chosen as 2π. We

discuss two cases of the tracking control problem with respect to the above signal: (1) only
the friction in drive limbs is considered and the external disturbance is neglected and (2) the
friction and the disturbance are both taken into account. For both cases, the parameters
for three controllers are chosen as Kp = 20,000 and Kv = 400. For cases 1 and 2, the friction
model and parameters are consistent with the identification results of previous work [22].
In case 2, the external disturbance is mainly caused by the cutting forces on the mechanism
performing the cutting task and is assumed to have the following form

N=
[

rand(−500, 500) rand(−500, 500) rand(−500, 500) 0 0
]T. (35)

The external disturbance in the three directions is shown in Figure 10.
For case 1, the tracking performance of the generalized coordinates of the 5-DoF spatial

PM is presented in Figure 11. As shown in Figure 11a, two model-based controllers, i.e.,
the dynamic feedforward controller (Ref) and DNN-based feedback dynamic controller
(proposed), can better track the leading signal (LS) than the model-free controller, i.e., the
joint-based PD controller (PD). In Figure 11b, the tracking error of the proposed controller is
consistently much smaller than that of the dynamic feedforward controller. For case 2, the
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findings consistent with the above are presented in Figure 12. With the addition of random
external disturbances, the tracking performance of all three controllers decreases, while the
proposed controller is still the most superior. Control forces under different controllers for
case 2 are shown in Figure 13. The results show that the most severe jitter of control forces
under PD control and the control forces of the proposed controller are smoother than that
of the Ref controller as can be seen through the magnification window. Considering the
universal existence of friction and disturbance in real applications, the above results have
revealed the merit of the proposed controller with DNN-based feedback compensation as
well as the necessity of dynamic modeling.

Figure 10. The external disturbance signals during 0–1 s.

Figure 11. Tracking performance of the generalized coordinates of the 5-DoF spatial PM for case 1:
(a) comparison of trajectory tracking with different controllers and (b) comparison of tracking error
between the dynamic feedforward controller and proposed controller.
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Figure 12. Tracking performance of the generalized coordinates of the 5-DoF spatial PM for case 2:
(a) comparison of trajectory tracking with different controllers and (b) comparison of tracking error
between the dynamic feedforward controller and proposed controller.

Figure 13. Control forces under different controllers for case 2.
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In addition, the performance of two model-based controllers tracking signals with
different speeds is shown in Figure 14, where the speed improvement of the trajectory is
achieved increasing the value of ω. The results show that the mean position tracking error
of the proposed controller is much smaller than that of the dynamic feedforward controller
when tracking signals with different speeds, and the proposed controller also has a lower
error growth rate than the dynamic feedforward controller at high speed.

Figure 14. Mean position tracking error and error growth rate of two model-based controllers tracking
signals with different speeds: (a) the dynamic feedforward controller in case 1, (b) the proposed
controller in case 1, (c) the dynamic feedforward controller in case 2, and (d) the proposed controller
in case 2.

6. Conclusions

This paper aims at providing a promising dynamic model for the accurate control of
a particular prototype of a machining platform, namely, the 5-DoF spatial PM. Choosing
the position and orientation of the end-effector as the generalized coordinates, the kinetic
energy and potential energy are formulated based on the inverse kinematics, and conse-
quently, the dynamic model is established by using the Lagrangian method. The numerical
solution of the dynamic model agrees well with the output of co-simulation by using MSC
ADAMS and MATLAB/Simulink, verifying the modeling process.

In order to improve the control performance, we implement the model-based controller
with the feedback dynamic compensation, which is dependent on the forward kinematics of
the mechanism. Considering the complexity of the forward kinematics of the 5-DoF spatial
PM, the pre-trained DNN is introduced to predict the real-time state of the end-effector.
The test results show that the DNN method offers a faster response than Newton’s method
during the control in real-time, as well as ensuring prediction accuracy. On this basis,
we design the computed torque control with DNN-based feedback compensation. The
simulations show that, in the most complicated case that involves friction and external
disturbance, the proposed controller with DNN-based feedback compensation outperforms
the joint-based PD controller and the dynamic feedforward controller. In the cases of
tracking trajectories with different speeds, the proposed controller also shows promising
performance. These results indicate that the combination of the dynamic model and the
DNN-based end-effector state predictor can provide a solid basis for the control with
high precision.

It is worth noting that the deformation of driving limbs is ignored in this paper. Given
the slender configuration of the driving limbs, their deformation may not be negligible for
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some specific cases. Therefore, building a more refined dynamic model of the 5-DoF spatial
PM to address the flexible characteristic of the mechanism, and deploying the proposed
control algorithm to the experimental prototype will be the aim of our future work.
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Appendix A. The Detailed Expressions of Position of the Key Points

In < : o− xyz, the coordinates of Bi(i = 1, 2, 3, 4, 5) can be written as
Bj−< =

[
R1 cos a R1 sin a 0

]T,

B4−< =
[

R1 cos 3π
4 R1 sin 3π

4 0
]T,

B5−< =
[

R1 cos π
4 R1 sin π

4 0
]T,

(A1)

where a = 2π j
3 −

π
6 , and j = 1, 2, 3. In <′ : o′ − x′y′z′, the coordinates of points Pi (i =

1, 2, · · · , 5) can be written asPj−<′ =
[

R2 cos a R2 sin a 0
]T,

Pk−<′ =
[

R2 cos b R2 sin b H
]T,

(A2)

where b = sin
(

2π(k−2)
3 − π

6

)
, and k = 4, 5.

Appendix B. Proof of Equation (25)

The relationship between Qc and Q is as follows:

QT
c δqc = QTδq. (A3)

Together with δqc =
∂qc
∂q δq, we have(

QT
c

∂qc

∂q
−QT

)
δq = 0. (A4)

Since δq is free to vary, Equation (A4) can be rewritten as

QT
c

∂qc

∂q
−QT = QT

c S−QT = 0. (A5)

According to Equation (A5), we have

Q = STQc. (A6)

Similarly, the relationship between the axial force F =
[

F1 F2 F3 F4 F5
]T and the

generalized force is as follows:
FTδL = QTδq. (A7)
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From δL = ∂L
∂q δq, we obtain (

FT ∂L
∂q
−QT

)
δq = 0. (A8)

Since δq can be arbitrary, Equation (A8) can be rewritten as

FT ∂L
∂q
−QT = FTW−QT = 0. (A9)

According to Equation (A9), we have

Q = WTF. (A10)

Finally, it is apparent that combining Equation (A6) and Equation (A10) yields Equation (25).

Appendix C. Symbolic Derivation of the Dynamic Equation

In this appendix, the pseudocodes of the symbolic derivation are collected. The inertial
matrix (M(qc)6×6) is computed using Algorithm A1

Algorithm A1: The symbolic derivation of the inertial matrix

S1: Declare the types of all the variables and initialize them.

S2: Define the vectors of the end-effector: qc =
[

x y z α β γ
]T and

q̇c =
[

ẋ ẏ ż α̇ β̇ γ̇
]T.

S3: Input the geometric, inertial and other time independent parameters.

S4: Compute the rotation matrix R(α, β, γ) (Equation (1)), the vector L (Equation (6)),
and the Jacobian matrix W (Equation (13)).

S5: Compute the velocity vectors and matrices: ωp (Equation (9)), ωi (i = 1, 2, · · · , 5)
(Equation (11)), and L̇ (Equation (14)).

S6: Compute the total kinetic energy of the mechanism: T (Equations (16)–(20)).

for i = 1 to 6 do
for j = 1 to 6 do

S7: Compute Mi,j = ∂2T
∂qci∂qcj

end
end

According to the Lagrange equation, the Coriolis matrix (C(qc, q̇c)6×6) and the gravi-
tational terms (G(qc)6×1) are computed using the following Algorithm A2.

Algorithm A2: The symbolic derivation of the Coriolis matrix and gravitational
terms

S1: Define C(qc, q̇c)6×6 = 06×6.

S2: Compute the total potential energy (V) of the mechanism (Equations (21)–(23)).

for i = 1 to 6 do
for j = 1 to 6 do

for k = 1 to 6 do
S3: Compute Ci,j = Ci,j +

(
∂Mi,j
∂qck
− 1

2
∂Mj,k
∂qci

)
q̇ck.

end
end

S4: Compute Gi =
∂V
∂qci

.
end
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