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Abstract: The traditional method of relying on human hearing to detect foreign object debris (FOD)
events during rocket tank assembly processes has the limitation of strong reliance on humans and
difficulty in establishing objective detection records. This can lead to undetected FOD entering the
engine with the fuel and causing major launch accidents. In this study, we developed an automatic,
intelligent FOD detection system for rocket tanks based on sound signals to overcome the drawbacks
of manual detection, enabling us to take action to prevent accidents in advance. First, we used log-Mel
transformation to reduce the high sampling rate of the sound signal. Furthermore, we proposed a
multiscale convolution and temporal convolutional network (MS-CTCN) to overcome the challenges
of multi-scale temporal feature extraction to detect suspicious FOD events. Finally, we used the
proposed post-processing strategies of label smoothing and threshold discrimination to refine the
results of FOD event detection and ultimately determine the presence of FOD. The proposed method
was validated through FOD experiments. The results showed that the method had an accuracy
rate of 99.16% in detecting FOD and had a better potential to prevent accidents compared to the
baseline method.

Keywords: rocket tank; foreign object debris (FOD); sound detection; temporal convolution

1. Introduction

The tank is a crucial component of a rocket, serving as a storage unit for cryogenic
propellants and providing structural support and protection for the rocket [1]. It is typically
composed of multiple tanks that are joined together through a docking process, which
includes drilling, riveting, and bolting. However, this process may inadvertently result in
the presence of Foreign Object Debris (FOD) such as small bolts, nuts, screws, titanium
wire, and other metal remnants inside the tank. FOD is a major contributor to launch
accidents of space products, as they can enter the engine along with the propellant during
launch if not detected and removed in a timely manner, leading to serious accidents. Thus,
the development of FOD detection technology for rocket tanks is vital for ensuring the
reliability of aerospace engineering.

The commonly used Particle Impact Noise Detection (PIND) method [2–8] in the
field of FOD in the aerospace industry requires the manufacture of a large excitation
platform to be effective in detecting FOD in large rocket tanks, which is not practical. The
methods based on machine vision [9,10], on the other hand, require cameras to enter the
complex internal structures of the tanks and are susceptible to being affected by factors
such as occlusion and lighting, which can also cause secondary damage to the tanks.
Therefore, the most common method used for detecting FOD in rocket tanks is the rotation
listening method, which involves rotating the tank slowly while it is being inspected
and listening for the sound of metal FOD sliding against or colliding with the tank’s
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walls. The presence of FOD is determined by human experience, but this method has
some drawbacks, including low detection efficiency, high workload, and high dependence
on human judgment. Additionally, it is difficult to form data records of detection and
quantitative evaluation results. Because of these drawbacks, there is a need for a more
efficient, accurate, and automatic method for detecting FOD in rocket tanks.

Nowadays, acoustic-based condition monitoring methods using microphones have
gained popularity in special applications due to their non-destructive and non-contact
advantages [11], such as in trackside acoustic diagnostic systems [12], arc magnet internal
defect detection [13], and milling process monitoring [14]. These systems offer a new
approach for detecting FOD in rocket tanks by using microphone sensors to acquire acoustic
signals and applying suitable signal processing and FOD identification algorithms for
intelligent, quantitative assessment of FOD status. However, in the field of acoustic-based
diagnosis, it is common to intercept a small segment of the signal for processing, which
is suitable for high-speed rotating machinery such as gears [15,16], bearings [17,18] and
motors [19,20]. This approach may not be effective for FOD detection in tanks, as FOD can
cause random scratching or collision events with the slowly rotating (1-2 r/min) inner walls
of the tank, and the response time for FOD events can range from a few tens of milliseconds
to a few seconds. Therefore, sound-based FOD detection must be able to detect suspicious
FOD sound events of varying lengths within the entire input signal and determine the
presence of an FOD event through post-processing criteria.

For the task of long-signal sound event detection, there are two main types of methods:
traditional methods and intelligent methods. Traditional methods, such as those based on
Gaussian Mixture Models–Hidden Markov Models (GMM-HMM) [21] or Non-negative
Matrix Factorization (NMF) [22], rely on manual feature design and are dependent on
user expertise. In contrast, data-driven deep learning models, such as those based on
Convolutional Recurrent Neural Networks (CRNN) [23–25], are increasingly popular due to
their ability to perform automatic feature extraction. These models utilize recurrent neural
network structures, such as Long Short-Term Memory (LSTM) [26] and Gate Recurrent
Units (GRUs) [27], to model the time sequence characteristics of sound events. However,
some studies have demonstrated that recurrent neural network structures have limitations
in modeling long-term dependencies [28]. In contrast, Temporal Convolutional Networks
(TCNs) are able to extract features from both short-term and long-term time sequences
by expanding the receptive field through multiple layers of dilated convolutions with
different dilation rates and have been shown to be effective in tasks such as sound event
detection [29] and localization [30].

Unfortunately, TCN-based methods still have the following limitations for FOD detec-
tion tasks. First, locally, the frictional sound generated by the FOD in the tank consists of
many short-weak shocks with random intervals. The duration of these shocks and the time
interval between shocks can be long or short and need to be analyzed from different scales.
However, traditional TCNs use only one size of convolution kernel in dilated convolution,
and a single size of convolution kernel does not capture the local multi-scale features [15].
Secondly, the TCN-based event detection method only makes a simple threshold judgment
on the prediction result of each frame, and when the prediction probability is greater than
a set value, a specific event is considered to have occurred in that frame. This will lead to
unstable detection results for the FOD events consisting of intermittent short-weak shocks.

To solve the above problems, the MS-CTCN method is proposed in this paper for
sound-based FOD detection. The main contributions of this paper are as follows:

(1) A new method for detecting FOD in rocket tanks using sound signals and deep
neural networks is proposed, addressing the deficiencies of traditional methods.

(2) The Multi-Kernel Size (MKS) convolution is introduced in TCN-based tempo-
ral feature extraction for local feature fusion and solving FOD multi-scale short weak
shock extraction.

(3) A post-processing strategy with label smoothing and decision-making based on
FOD response frames is proposed for stable detection.
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(4) A simulation tank for FOD detection experiments is constructed to test the proposed
method’s effectiveness and performance using various FOD sound signals.

The remainder of this paper is organized as follows: in Section 2, we review relevant
previous research. The fundamental theories utilized in this study are outlined in Section 3. The
proposed method is described in detail in Section 4. The experimental setup is presented in
Section 5. The results and discussion are provided in Section 6. Finally, we provide our
conclusions in Section 7.

2. Literature Review
2.1. FOD Detection in Rocket Tanks

PIND [2–8] is considered the most well-established method in the field of FOD. This
method utilizes a specialized excitation platform to generate mechanical impacts that cause
FOD to collide with the inner walls of the object being inspected. The collision signals are
then captured using acceleration sensors or acoustic emission sensors and analyzed using
signal processing techniques to identify the presence of FOD [7,8]. Additionally, researchers
have developed FOD detection methods using machine vision technology [9,10], which
use specialized cameras to scan the interior of the object and compare images to determine
the presence of FOD. However, these methods are not suitable for detecting FOD in rocket
tanks due to their complex structures. The PIND method is limited in its application
to larger objects, and the excitation process can potentially cause damage to the tanks.
Machine-vision-based methods, on the other hand, have the risk of introducing additional
FOD and are affected by factors such as lighting and obstruction. As a result, the current
method for detecting FOD in rocket tanks during final assembly involves slowly rotating
the tank under the motor’s drive and listening for the acoustic signals produced by the
FOD colliding or slipping against the walls. However, this method is labor-intensive, relies
heavily on human experience, and produces limited data records and quantitative results.

As hardware and software technologies have advanced, microphone-based acoustic
state detection technology for machinery has been widely studied [12–14,31]. It has the
advantage of non-destructive and non-contact [11]. Therefore, conducting research on FOD
detection in rocket tanks based on sound signals has promising potentials. However, these
methods for rotating machinery deal with periodic signals with fast rotational speeds and
are not applicable to rocket storage tank sound signals with slow rotational speeds and
random non-stationary FOD events.

2.2. Sound Event Detection

Sound event detection refers to the process of detecting and identifying specific sound
events within a given recording or live audio stream. Currently, deep learning-based [32,33]
sound event detection techniques have the advantage of automatically extracting features
and stronger fitting capabilities compared to traditional machine learning methods based
on GMM-HMM [21] or NMF [22], which makes them widely used. Convolutional neu-
ral networks (CNNs) are particularly effective in extracting local features due to their
local connections and weight sharing, which is important for many sound event detection
tasks [34,35]. However, CNNs are not suitable for capturing long-term temporal depen-
dencies in signals, which leads to poor performance when detecting events with long time
spans. To address this limitation, some methods combine CNN with other types of models,
such as RNN [26,27] or Transformers [36], to capture both local and long-term temporal
features. CRNNs [23–25,37] use CNNs as the feature extractors and feed the extracted
features into RNNs, which are able to model temporal dependencies in the input signal.
The CNN–Transformer uses a self-attention mechanism to model the temporal relationship
among features[38]. The performance of the CNN–Transformer is comparable with CRNN,
and it has the advantage of being more computationally efficient due to its parallel com-
putation nature [39]. However, Transformer models have been shown to have a weaker
inductive bias when compared to some other models such as CNNs [40]. This means that
they may perform poorly when there is are a limited number of data. Another variant of
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CNN, known as TCN [41], is another option for capturing short- and long-term temporal
dependencies in the input signals while maintaining a relatively lower computational
complexity. TCN uses multiple layers of convolutional layers, each with a different dilation
factor, to expand the receptive field of the network. By using dilated convolutions, TCN
can capture long-term dependencies in the input signal without the need for recurrent con-
nections or self-attention mechanisms, which makes it computationally more efficient than
RNNs or Transformers while still able to effectively extract temporal features in the input
signal. It is considered to be a simple yet powerful alternative to complex architectures, and
its performance on sound event detection [29,42] and localization [30] has been proven.

However, the utilization of TCN for FOD detection is associated with certain limita-
tions. The FOD response is composed of a series of brief and weak shocks with unpre-
dictable intervals and duration events, which can vary in length. As a result, utilizing
a single kernel-sized TCN may not effectively capture the multi-scale properties [15] in
the temporal sequence. Furthermore, the current event detection methods rely solely on
simple thresholding to make final decisions, which may not be suitable for detecting weaker
FOD events.

3. Theoretical Background
3.1. Logarithmic Mel Transform

The sound signal of the rotating tank is characterized by (a) time-varying non-stationary
and (b) high sampling rate. To address these characteristics, this study incorporates the
logarithmic Mel transform[30,43], which is a method that is based on the Short-Time Fourier
Transform (STFT) [44] and can capture the time-frequency information of time-varying
signals. The Mel transform also reduces the dimensionality of the STFT features of high
sampling rate signals while preserving useful information [45]. Additionally, the Mel
transform simulates the varying sensitivity of the human ear [45] to different frequencies
of sound, thereby introducing further a priori knowledge. The process of logarithmic Mel
time-frequency transformation is as follows.

STFT operation. A window function of static length is used to intercept a very short
part (frame) of the total time-varying signal, and the discrete Fourier transform is used to
obtain the local spectrum of each frame, as expressed in Equation (1).

S(t, k) =
Nf

∑
n=1

xt[n] ·w[n] · e−j 2πkn
Nf (1)

where S(t, k) ∈ RT×Nf represents the k-th discrete frequency component of the short-time
spectrum at time t; t = 1, 2, · · · , T and k = 1, 2, · · · , Nf denote the frame number and
discrete frequency number, respectively; and xt[n] and w[n] refer to the t-th framed signal
and window function, respectively.

Mel frequency filter banks construction. The main parameters for constructing Mel
filter banks include (a) number of Mel filters, F, (b) minimum frequency in Hz, fHzmin , and
(c) maximum frequency in Hz, fHzmax . For the most general case, fHzmin is equal to zero and
fHzmax is equal to half the sampling frequency. Then, Mel-scale minimum frequency and
maximum frequency fMelmax and fMelmin can be computed using Equation (2). After that,
Mel frequency filters can be constructed as expressed in Equations (3)–(5).

fMel = 2595 · log10(1 + fHz/700) (2)

H(k, m) =


0 , fHz(k) < fHzc(m− 1)
fHz(k)− fHzc (m−1)

fHzc (m)− fHzc (m−1) , fHzc(m− 1) ≤ fHz(k) ≤ fHzc(m)
fHz(k)− fHzc (m+1)

fHzc (m)− fHzc (m+1) , fHzc(m) ≤ fHz(k) ≤ fHzc(m + 1)

0 , fHz(k) ≥ fHzc(m + 1)

(3)



Machines 2023, 11, 187 5 of 20

fHzc(m) = 700(10 fMelc (m)/2595 − 1) (4)

fMelc(m) = m · ( fMelmax − fMelmin)/F (5)

where H(k, m) ∈ RNf×F denotes the gain at the k-th Hz-scale frequency fHz(k) in the m-th
Mel filter; fMelc and fHzc denotes the center frequency of the filter in the Hz-scale and
Mel-scale, respectively; and m = 1, 2, · · · , F denotes the Mel filter number.

Mel filter bank features extraction. The constructed Mel filter banks H are used to
extract features from the original short-time spectrum S. Eventually, the two-dimensional
MFB features X(t, m) are obtained according to Equation (6), which includes the subsequent
absolute and logarithmic operations.

X(t, m) = 20× log10(|S(t, k)| · H(k, m)) ∈ RT×F (6)

3.2. Convolutional Neural Network (CNN)

CNNs are particularly adept at extracting features from two-dimensional (2D) data,
such as images. Compared to traditional Artificial Neural Networks (ANNs), CNNs
have a smaller number of trainable parameters and have been widely and successfully
applied in various fields [46,47], including the field of sound-based intelligent equipment
maintenance [48,49], where it has demonstrated impressive results in various studies. The
fundamental operations in a convolutional layer include convolution, activation, batch
normalization, and max pooling.

The convolution operation with the most used Rectified Linear Unit (ReLU) activation
function is described in Equations (7) and (8).

ya = Re LU(Wcn ⊗ xcn + bcn) (7)

ReLU(x) = max{x, 0} (8)

where Wcn, bcn, and ⊗ denote weight, bias, and convolution operation, respectively;
xcn ∈ RW×H refers to input feature map; and ya denotes feature map after convolution
and activation.

Batch Normalizing (BN) transform is described in Equations (9) and (10). The purpose
of using BN is to reduce internal covariate shift to better train the network [50].

ŷa =
ya − µ√

σ2 + ε
(9)

ybn = γŷa + β (10)

where µ and σ are the expectation and the variance, ybn represents the output features over
a mini-batch, γ and β are two parameters to be learned, and ε is a constant close to zero.

Maximum pooling is a sample-based discretization process. The objective is to down-
sample an input representation (image, hidden-layer output matrix, etc.), reducing its
dimensionality and enabling features that are more robust after convolution [51]. The
mathematical description is given as follows:

ymp(i) = max{ybn(i : i + r− 1)} (11)

where ymp(i) denotes the maximum value in the i-th corresponding pooling region and r
is the pool size.
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3.3. Temporal Convolutional Network (TCN)

Unlike 2D-CNN, the processing object of TCN is 1D time sequences. The basic TCN
consists of 1D dilated convolutions with different dilation rates. As the dilation rate
increases, the receptive field of the convolution kernel increases accordingly [25]. By
concatenating multiple layers of dilated convolutions with gradually increasing dilated
rates, the network can learn the time sequence correlation of sound signals that expand
from local to global. As illustrated in Figure 1, a three-layer structure with a kernel size of 3
and a dilated convolution with dilation rates of 1, 2, and 4 is given, and the receptive field
changes from an initial 3 to 9. The output in the i-th layer at moment t with an odd kernel
size is described in Equation (12).

xi+1(t) =
ξ

∑
u=−ξ

wi(u) · xi(t + u · di) + bi(u) (12)

where ξ = int(ki/2), wi(u) and bi(u) are the u-th element’s weight and bias of convolution
kernel in the i-th layer.

dilated 

rate = 1

dilated 

rate = 2

dilated 

rate = 4

1( )ix t+

( )ix t( 1 4)ix t −  ( 1 4)ix t + 

-1( )ix t
-1( 1 2)ix t −  -1( 1 2)ix t + 

receptive field = 3

receptive field = 5

receptive field = 9

Figure 1. 1D dilated convolution with convolution kernel size 3.

For the i-th layer of dilated convolution, the output length Ti+1 is shown in
Equation (13).

Ti+1 =
Ti + 2pi − di(ki − 1)− 1

si
+ 1 (13)

where pi, di, ki, and si denote padding size, dilated rate, kernel size, and stride of di-
lated convolution. To make the input and output sequence equal in length, specifically,
Ti+1 = Ti = T, the boundary padding pi = 1/2[si(T − 1)− T + di(ki − 1) + 1].

4. Proposed Method

During FOD detection process of rocket tanks, the tank is rotated by a motor, causing
any FOD inside the tank to be lifted along the inner wall. When it reaches a certain height,
the FOD falls off the wall due to gravity and generates an abnormal sound from impacts
and friction. These mechanical sound waves are transmitted to the outside of the tank and
captured by microphones placed externally. The subsequent detection system processes
the sound signals acquired by the microphones and automatically determines the presence
of FOD. By gradually moving the position of the microphone along the axial direction of
the rocket tank, the FOD detection operation can be completed for the entire tank. The
proposed method, the MS-CTCN-based FOD detection system, is the core of this process.
As illustrated in Figure 2, it includes five sequential steps: (1) preprocessing, (2) CNN block,
(3) MS-TCN block, (4) classification block, and (5) post-processing.
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Figure 2. The MS-CTCN-based FOD detection system.

4.1. Preprocessing

The utilization of high sampling rate sound signals as input directly necessitates deep
and extensive network models, which incurs significant computational costs. Therefore, a
signal-processing method with a preliminary feature extraction function and dimensionality
reduction capability is required. Additionally, the time-varying characteristics of the FOD
signal must be considered. As outlined in Section 3.1, the problem of time-varying feature
conversion of FOD signals is addressed by first applying the STFT to the raw time-domain
high sampling rate signals, followed by extracting the MFB features, which effectively
reduces the dimensionality while preserving relevant information.

For convenience, the continuous sound signal is divided into time frames with a
duration of 2048 sampling points at a 48k sampling rate (42.7 ms), and the frame over-
lap rate is 50%. The log-Mel transform with the feature dimension F = 128 is ap-
plied to each frame to extract the MFB features xF0

t , which leads to the input sequence
X1 = [xF1

1 , xF1
2 , · · · , xF1

T
] ∈ RT×F1 for the subsequent network, where T and F1 present the

length of the time sequence and the dimension of the MFB features, respectively.

4.2. CNN Block

The MFB feature is actually a 2D image with the location of each pixel point in the
length and height directions in time and frequency, respectively. The lack of a feature
extractor to further generalize the MFB into a feature form that the network can appreciate
will make it difficult to develop prediction results. In image recognition, 2D CNNs, with
less parameters and better feature extraction capability than fully connected networks, are
frequently used to automatically comprehend 2D image information and further abstract
the local translation-invariant [52] features in images. The 2D convolution operation
described in Section 3.2 is also introduced before the TCN in the detection system. The
purpose of the CNN block is to extract frequency invariant features from the time sequence
X1 obtained in the previous step.

However, in pooling operation, unlike the traditional 2D max-pooling, which has the
same pooling size in both dimensional directions, the max-pooling is only applied in the
frequency direction [53], specifically, the height direction of the feature map. Its purpose is
to ensure that the time resolution remains unchanged when using TCN to extract temporal
features.

After a series of convolution blocks, the obtained multi-channel feature maps are
stacked in the frequency direction. One can thereby obtain the single-channel feature map
X2 = [xF2

1 , xF2
2 , ... , xF2

T
] ∈ RT×F2 with unchanged sequence length T, where F2 represents

the feature dimension after stacking. If the number of channels of the last layer of convolu-
tion operation is Ccn, the height of the output feature map is Hcn, and F2 = Ccn · Hcn.
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4.3. MS-TCN Block

The signal of FOD slipping from the tank is characterized by short and weak shocks,
and the interval between these short and weak shocks can be long or short. The duration
of the FOD event consisting of a series of short and weak shocks can also be long or short.
To prevent missed detection, the local response of the FOD signal should be extracted
and the long temporal features of the FOD need to be concerned. Therefore, a TCN with
dilated convolution is developed to increase the receptive field by increasing the cavity rate
layer-by-layer for obtaining a wider range of long-time features. Meanwhile, MKS is joined
to the dilated convolution operation to accommodate the short and weak shock features
with different time intervals. Finally, the features extracted from different layers are fused
to achieve the expected multi-scale feature fusion and enhance the feature expression level.

In the proposed multi-scale temporal convolution block as shown in Figure 3, three
dilated convolution layers with different dilation rates are used to obtain global receptive
fields at different scales. In each layer, an MKS dilation convolution operation is used for
considering local features at different scales, and multi-scale feature fusion is performed on
this basis.

MKS-DilatedConv

Conv1D

tanh 

Residual

Conv1D

tanh 

Residual

Conv1D

tanh dilated 

rate = 1

dilated

rate = 2

dilated 

rate = 4

f

+

+

k=3 k=5 k=7

+

MKS-DilatedConvLayer 1

Layer 2

Layer 3MKS-DilatedConv

MKS-DilatedConv

+

f

Element-wise summation

Element-wise multiplication

Feature fusion function

2X

i1X

i2X

i3X

o1X

o2X

o3X

3X

Figure 3. Multi-scale temporal convolution block.

The MKS dilated convolution operation in layer performs convolution and feature
fusion as described in Equations (14) and (15).

xout(t) =
3

∑
j=1

ξ j

∑
u=−ξ j

wij(u) · xin(t + u · di) + bij(u) (14)

ξ j = int(kij/2) (15)

where kij, wij(u), and bij(u) denote the kernel size the u-th weight, and the bias of j-th
kernel in MKS dilated convolution, respectively, and xin(t) and xout(t) denote input and
output feature at the time, respectively. In the proposed method, we set ki1 = 3, ki2 = 5
and ki3 = 7 in the MKS-dilated convolution, as presented in Figure 3.

The activation function fa(x) after dilated convolution and feature fusion is combined
with the tanh function and the sigmoid function, as expressed in Equations (16)–(18). This
activation mode is better than the ReLU function in the time sequence processing of the
sound signal [54].

tanh(x) =
ex − e−x

ex + e−x (16)

σ(x) =
1

1 + e−x (17)
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fa(x) = tanh(x)� σ(x) (18)

where � denotes element-wise multiplication.
The data flow for the multi-scale temporal convolution block can be expressed as

follows. The input sequence X i1 = X2 enters Layer 1, and MKS dilated convolution,
activation, and a 1D convolution are performed. The output of Layer 1, Xo1, flows in two
directions. One is be added to X i1 to form the residual input of Layer 2 to enhance the
model’s trainable ability [55], and another one is fused with the output features Xo2 and Xo3
of Layer 2 and Layer 3. This multi-scale fusion is completed by feature stacking. Similarly,
the same operation is performed on Layer 2 and Layer 3; the difference, however, is that the
input to layers 2 and 3 are different from layer 1, the input to Layer 2 is X i2 = X i1 + Xo1,
and the input to Layer 3 is X i3 = X i2 + Xo2. Then, the optimal output of the multi-scale
temporal convolution block is obtained as described in Equation (19).

X3 =

Xo1
Xo2
Xo3

 = [xF3
1 , xF3

2 , ... , xF3
T
] ∈ RT×(3×F̄) (19)

where F̄ denotes the size in the frequency direction of the output feature maps of each layer,
and F3 = 3× F̄.

4.4. Classification Block

We expect fine detection of each frame of the signal to improve the interpretability
and persuasiveness of the detection. Therefore, the state of each frame needs to be output.
This can be regarded as an FOD state classification for each frame.

The classification block includes several fully connected layers and the sigmoid ac-
tivation function of the last layer, which outputs the probability of each frame belonging
to each sound event. If the number of sound event categories is C, then Py ∈ RT×C, and
0 ≤ Py(t, c) ≤ 1. In this article, the sound event category only includes two types, with FOD
(abnormal) and without FOD (normal), i.e., C = 2. In other words, we do not distinguish
between the types of FOD. Thus, the network’s final output is shown in Equation (20).

Y = [y1, · · · , yT ] = arg max(Py) ∈ RT×1 (20)

where yi ∈ {0, 1}(i = 1, · · · , T) represents the detection result of each frame and 0 and 1
represent normal and abnormal, respectively.

4.5. Post-Processing

The output of the above network represents only the state of each frame of the signal,
while the final output required by the detection system is whether this segment of the
signal contains FOD. In addition, the predicted state of each frame is not guaranteed to be
100% correct. Therefore, a post-processing strategy is needed to improve the robustness
of the final decision. It includes (1) predicted label smoothing and (2) final discriminant
criteria as described in Figure 4.

(1) Predicted label smoothing: From experimental results, it was found that the FOD
sound events always last for some time (more than the length of each frame) in each long
signal segment. Since the duration of each frame is chosen to be small when the sound
signal is split, this makes the FOD sound events, once they occur, often last for several
frames. In addition, the continuous response of each FOD event is locally composed of short
and weak shock and transition intervals. Most of these transition segments are the same
or close to the normal waveform, which may cause the system to output incorrect results.
Therefore, it is necessary to adopt a smoothing strategy to correct these unstable prediction
results. As shown in Figure 4a, the method proposed in this paper ignores frames predicted
to be labeled "FOD" if the number of consecutive frames for which FOD is detected is less
than the consecutive threshold α1. Only when the number of consecutive abnormal frames
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is greater than or equal to α1, are the segments of these frames considered to be an FOD
event. In addition, two FOD events with the frame interval less than the interval threshold
α2 are considered as the same event. By the above strategies, the elimination of instability
of event detection results is achieved.

(2) Final discriminatory criteria: the continuous sound signal of the rocket tank is
processed by pre-processing, network model prediction, and a frame smoothing strategy to
obtain all suspected FOD events within the detection period of the rocket tank. As shown
in Figure 4b, if the sum of the frames of all suspected FOD events exceeds the allowed
threshold α3, the FOD is believed to be presented in this part of the tank.

1 0 1 01 1100 0100 0 1 01 1 0

False prediction frame

After label smoothing

After step (1)~(4)

FOD event

1 1 1 01 1100 0000 0 1 01 1 0

FOD event 1 FOD event 2

1 2

1 1 11 11 11 1

FOD event 1: 6 frames FOD event 1: 3 frames

6+3> 33

Without FOD With FOD

N Y

(a)

1 0 1 01 1100 0100 0 1 01 1 0

False prediction frame

After label smoothing

After step (1)~(4)

FOD event

1 1 1 01 1100 0000 0 1 01 1 0

FOD event 1 FOD event 2

1 2

1 1 11 11 11 1

FOD event 1: 6 frames FOD event 2: 3 frames

6+3> 33

Without FOD With FOD

N Y

(b)
Figure 4. Post-processing: (a) predicted label smoothing, (b) final discriminant criteria.

The specific algorithm pseudo-code for post-processing is shown in Algorithm 1.

Algorithm 1: Post-processing

Input : prediction result Y = [y1, · · · , yT ] ∈ RT×1, continuous threshold value α1,
interval threshold α2, allowable frame length threshold α3

Output : final detection result Res ∈ {0, 1}, where 0 and 1 denote normal and
abnormal respectively.

1 Initialize event counter n = 0
2 for i← 1 to T do
3 if there are m consecutive y values of 1 starting from i and m > α1 then
4 n = n + 1
5 n-th indicator of event start time sn = i
6 n-th indicator of evnet frame count cn = m
7 end
8 end
9 for i← 2 to n do

10 if si − (si−1 + ci−1) < α2 and si−1 6= 0 then
11 ci = (si − si−1) + ci
12 si−1 = 0
13 ci−1 = 0
14 end
15 if ∑ c > α3 then
16 Res = 1
17 else
18 Res = 0
19 end
20 end
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5. Experimental Setup
5.1. Signal and Data Description

In the experimental part of this research, the rocket tank with a complex internal
structure was simulated, and the rocket tank model and related detection devices as
shown in Figure 5. were manufactured. The rocket tank model has a three-stage structure,
including fuel tank Section 1, a connecting section, and fuel tank Section 2. Each section has
a diameter of 800 mm and a length of 600 mm. A motor drives the two rollers on the left
side to rotate the tank with a speed of 2 r/min. At the same time, 16 microphones arranged
on the carbon fiber bracket collect sound signals in different positions. The abnormal state
with FOD is simulated by adding metal FOD to the inner wall of the tank. The types of
FOD configured in the experiment are shown in the right of Figure 5, including titanium
alloy wires, nuts, bolts, and rivets.

2.06 g 3.93 g

0.33 g 0.45 g

2.76 g

Nut Titanium alloy wire (large)

Titanium alloy wire (small) Rivet

Bolt

Motor

Computer

Wheel DAQ

Simulation tank

Fuel tank section 1 Connection section Fuel tank section 2

M1 M2 M3 M4 M5 M6 M7 M8

M9 M10 M11 M12 M13 M14 M15 M16

16 channel 

microphone array

Figure 5. The test bench of sound-based detection for FOD.

The signals of different FOD types are presented in Figure 6. The amplitude of the
original time domain signals is close and dominated by the background noise of the drive
motor. Thus, it is difficult to distinguish them from each other. From the view of the short
time spectrum, the high-frequency portion is dark, so the energy of the signal is mainly
concentrated in the low frequency. This indicates that if STFT is used as the input, it will
bring many meaningless high-frequency features and increase the computational effort
in vain. In contrast, in the Mel spectrum, the central frequency distribution of the Mel
filter is densely decayed from low to high frequencies. Therefore, the Mel spectrum of the
FOD signal increases the resolution of the low-frequency band compared to the short-time
spectrum, and the useful information is further amplified.

In the process of the production of the data set as shown in Figure 7, each 60 s signal is
divided into many small segments of 5.46 s (256 frames), and the overlap between segments
is 2.73 s (128 frames) for data augmentation. Then they are converted to MFB features
with the length of 256 and feature dimension of 128, and labels for each frame are added
manually. The final data set is shown in Table 1. Abnormal samples contain both normal
frames and abnormal frames, while normal samples have only normal frames. Thus, only
abnormal samples are used for model training, while both normal and abnormal samples
are used for testing to evaluate the performance of the method.
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Figure 6. Signals of different FOD: (a) Nut, (b) Ti-wire (3.93 g), (c) Ti-wire (0.33 g), (d) Rivet, (e) Bolt,
(f) Without FOD. In the spectrum and Mel spectrum, a brighter color means higher energy.
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Abnormal
Normal

Signal (60 s)

Data set extensionManual labeling

5.46 s

Samples (5.46 s)

Figure 7. Manual labeling and data set expansion.
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Table 1. Data set information.

Acoustic Condition of the Tank Number of the
Training Samples

Number of the
Testing Samples

With FOD
(abnormal)

Nut 960 240
Ti-wire (3.39 g) 960 240
Ti-wire (0.33 g) 960 240

Rivet 960 240
Bolt 960 240

Without FOD
(normal) - - 1200

Total - 4800 2400

5.2. Metrics

In this paper, the metrics [56] of precision P, recall R, and F-score F are used to evaluate
the effectiveness of the proposed sound-based FOD detection method, and the definition
of each indicator is shown in Equations (21)–(23). For the FOD detection task, precision
can reflect the level of missed detection and recall can reflect the level of false alarm, while
F-score is a comprehensive consideration of the above two factors.

P =
TP

TP + FP
(21)

R =
TP

TP + FN
(22)

F =
2PR

P + R
(23)

where TP, FP, and FN denote true positive, false positive, and false negative, respectively.
They are intermediate metrics from the confusion matrix.

In addition, the performance of the method is evaluated by calculating the overall
accuracy of the samples with and without FOD, as described in Equation (24).

Ptotal =
TP + TN

N
(24)

where TN denotes true negative and N denotes the total number of test samples.

5.3. Comparison Methods and Parameter Setting

The network model used in this paper consists of a three-layer 2D-CNN, a three-layer
TCN, and a two-layer fully connected layer. The detailed network structure parameters
are shown in Table 2. Since the process of FOD detection can be considered essentially as a
frame-by-frame multi-label detection task, the network uses a binary cross-entropy (BCE)
loss function. At the same time, a sigmoid function is used to output the probability of the
accuracy of the signal detection results for each frame.

To verify the effectiveness of the MS-CTCN-based method for FOD detection, the
method in this paper is compared with a CRNN that considers the sound signal’s time
sequence characteristics and a CNN that only contains convolution layers and fully con-
nected layers. In both CNN and CRNN, the same three-layer 2D-CNN structure and the
resulting post-processing method as the proposed method in this paper are adopted, while
the recurrent structure in CRNN adopts the bidirectional gated recurrent unit (Bi-GRU).

The factors that affect the model performance during the training of all models are
parameter initialization strategy, batch size, learning rate, and epoch number. For the sake
of fairness, the same settings are adopted in all model training processes. All models are
built based on Pytorch and use its default parameter initialization method. The batch size,
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learning rate, and number of epochs are 64, 0.001, and 80, respectively. In addition, the
most classical Adam optimizer is used to train the network parameters.

Table 2. The main parameters of the proposed method.

Operation Output Size Configuration

Preprocessing 256 × 128 -
Network input 1 × 256 × 128 -
CNN1(32, 5, 5) 32 × 256 × 128 Max-pooling (1, 4)
CNN2(32, 5, 5) 32 × 256 × 32 Max-pooling (1, 4)
CNN3(32, 3, 3) 32 × 256 × 4 Max-pooling (1, 2)

Reshape 256 × 128 -
TCN1 256 × 128 Dilation rate = 1
TCN2 256 × 128 Dilation rate = 2
TCN3 256 × 128 Dilation rate = 4

Connection 256 × 384 -
FC1 256 × 128 -
FC2 256 × 2 -

Sigmoid 256 × 2 -
Post-processing 1 α1 = 2, α2 = 1, α3 = 10

When post-processing the prediction results, three thresholds, α1, α2, and α3, should
be determined. α1 and α2 are determined to have the most appropriate values of 2 and 1
through a grid search; that is, the isolated abnormal frames are discarded and two abnormal
events with an interval of one frame are combined into the same event. As shown in
Figure 8, the total number of abnormal frames for most samples in the dataset is between
25 and 150, and there are almost no abnormal samples with fewer than 10 frames. The
same grid search method is used and α3 is set to 10.

Figure 8. The statistical distribution of the number of frames of the samples with FOD.

6. Results and Discussion
6.1. Overall Performance Analysis of MS-CTCN

The final detection performance of the proposed method is presented in Table 3. As
can be observed from the results, the CNN method, which does not take into account
temporal characteristics, incorrectly classifies all samples as normal states, rendering it
unsuitable for this system. In comparison, the MS-CTCN method, which incorporates
temporal characteristics, demonstrates an improvement in precision, recall, F-score, and
overall accuracy of 0.29%, 5.07%, 3.50%, and 2.70%, respectively, when compared to the
CRNN method. These results indicate that the performance of the MS-CTCN method
is superior.
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Table 3. Performance of different models.

Model P(%) R(%) F(%) Ptotal(%)

CNN 100 0.08 0.17 50.04
CRNN 99.12 93.75 96.36 96.46

MS-CTCN 99.41 98.82 99.17 99.16

Due to the extremely poor performance of the CNN frame-by-frame method, only
CRNN and MS-CTCN are further compared. The overall two-category confusion matrix is
shown in Figure 9. For the case of misreporting the normal condition as abnormal, there
are 10 cases of CRNN and 7 cases of MS-CTCN. The performance of the two methods
is very close in terms of false alarm rate. However, in terms of the miss detection rate,
MS-CTCN has only 13 cases, while CRNN has 75 cases. Thus, MS-CTCN performs better
for FOD detection.

(a) (b)
Figure 9. Confusion matrix: (a) Confusion matrix of CRNN, (b) Confusion matrix of MS-CTCN.

In addition, the detection performance of each kind of FOD is analyzed, as shown in
Table 4. For nuts, large titanium alloy wires, and bolts with large masses, the detection
accuracy can reach 100%. However, for rivets and small titanium alloy wires with a mass
of less than 0.5 g, the detection accuracy of the simple CRNN method is not as good as that
of the MS-CTCN method. Especially for small titanium alloy wires with a mass of only
0.33 g, the detection accuracy of the MS-CTCN method is 20.42% higher than that of the
CRNN. Therefore, the method proposed in this paper has superior detection performance
for smaller FOD.

Table 4. The accuracy of CRNN and MS-CTCN for different FOD.

Type of FOD CRNN(%) MS-CTCN(%)

Nut 100 100
Ti-wire (3.93) 100 100
Ti-wire (0.33) 77.50 97.92

Rivet 93.75 97.50
Bolt 100 100

6.2. Frame-Wise Event Detection Performance Analysis

To evaluate the performance of the proposed method for frame-wise event detection,
a segment of bolt signal was further analyzed by different methods, as shown in Figure 10.
The four red signal segments in Figure 10a are the four continuous bolt events marked
manually. Due to the subjective nature of the manual marking, it is not possible to mark
the exact start and end times of the events correctly, but an approximate range can be
determined. Figure 10b shows the results using CNN. The CNN has poor feature extraction
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ability for signals with faint FOD because the characteristics of the time sequences are not
considered. Only a few frames predict the FOD response, but they do not agree with the
true labels. In addition, FOD events occur less frequently than normal events. In most cases,
most of the data frames input to the system are normal frames without FOD, so the training
of CNN belongs to a typical CNN training problem under imbalanced sample conditions,
where the CNN tends to predict all frames as FOD-free events due to the influence of
majority class samples. The performance of CRNN is shown in Figure 10c, where it isolates
only two FOD events, one that has its start time grossly misestimated. In contrast, the
MS-CTCN method in Figure 10d successfully detects four FOD events, and the duration of
each event includes the range of manually labeled events. In addition, the post-processed
smoothed labels successfully eliminated the instability of the FOD event start and end
positions. Therefore, the method in this paper is more suitable for frame-wise detection of
FOD events.

1 2 3 4

(a) (b)

(c) (d)
Figure 10. Frame-by-frame prediction and smoothing results for different methods: (a) FOD signal
and true label, (b) CNN’s prediction results and smoothed results, (c) CRNN’s prediction results and
smoothed results, (d) MS-CTCN’s prediction results and smoothed results.

6.3. Performance of MS-TCN with Different Kernel Sizes

Experiments were conducted in MS-TCN blocks using convolution kernel sizes of 3,
5, and 7 to verify the excellent performance of convolution using MKS in this paper. The
results are shown in Table 5. It is inferred that the possible reason is that the global time
sequence features extracted at different scales are best suited for FOD sound event detection
after the convolution kernel of size 3 expands the receptive field with dilation rates of 1,
2, and 4. In MKS, the addition of the temporal convolution with kernel sizes 5 and 7
corresponds to the enrichment of local multiscale time sequence features that are beneficial
for FOD detection; i.e., local multiscale time sequence feature extraction is achieved.

Table 5. Model performance when using dilated convolution with different convolution kernel sizes.

Model P(%) R(%) F(%)

KS-3 99.82 99.67 98.22
KS-5 99.74 96.00 97.83
KS-7 99.82 96.08 97.91
MKS 99.40 98.92 99.16
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Compared to using a single-size convolutional kernel, the F-score with MKS increased
by at least 0.94% and the recall increased by at least 2.25%, but the precision decreased
slightly, though not more than 0.42%. Corresponding to Equations (21) and (22), the
decrease in precision reflects an increase in the system’s false reporting of normal samples
in the test set as abnormal, and the increase in recall indicates a decrease in the number of
missed detections by the system. Compared to misreporting, missed detections are more
important to avoid in the actual testing task, and the reduction in missed detections in MKS
is 5.36 times greater than the increase in misreporting. Therefore, MKS is more beneficial to
improve the overall performance of the system. On the other hand, it also shows that the
additional use of MKS with convolutional kernels of the size 5 and 7 is more beneficial for
the FOD detection task.

To explore the event detection performance of the models with different convolutional
kernel sizes, we performed frame-wise abnormal detection of the signal in Figure 10a with
the corresponding model, and the results are shown in Figure 11. Before smoothing, MKS
predicts the start and end positions of FOD events more stably compared to KS-3, KS-5, and
KS-7. Figure 11d shows the start and end positions of the four FOD events. The oscillations
of MKS are significantly smaller than Figure 11a–c. In addition, for the signals in the figure,
KS-5 performs the worst, a result that is also consistent with its worst F-score in Table 5. In
conclusion, the size of the convolution kernel has an important effect on the FOD detection
in the dilated convolution where TCN has been used. For convolution kernel sizes of 3, 5,
and 7, size 3 works best, followed by 7, and then 5, while the method using MKS is better
than that using the three aforementioned convolution kernels alone.

(a) (b)

(c) (d)
Figure 11. The frame-by-frame prediction results of the model when using different convolution
kernel sizes for dilated convolution for the signal in Figure 10: (a) KS-3’s prediction label, (b) KS-5’s
prediction label, (c) KS-7’s prediction label, (d) MKS’s prediction label.

7. Conclusions

In this paper, an intelligent FOD-detection model is proposed based on MS-CTCN.
The results show that the method has superior FOD detection accuracy to the traditional
CNN and CRNN models. The impacts of different sizes of convolution kernels on the FOD
detection performance in MS-CTCN are investigated, and the optimal network parameters
applicable to FOD detection are given.

The aim of this study is to identify the presence of FOD. In future work, the research
on sound-based FOD detection will be devoted to achieving the identification of FOD types
and the localization of FOD through multi-channel sound signals. As a starting point,
researchers can focus on developing methods for identifying different types of FOD based
on their unique sound signatures. This could involve using advanced signal-processing
techniques, such as frequency-domain analysis or machine learning algorithms [57], to
extract relevant features from the sound signals. Another area of focus can be on developing
methods for localizing FOD based on multi-channel sound signals. This could involve using
techniques such as beamforming [58], which uses information from multiple microphone
channels to pinpoint the location of a sound source, or using techniques from source
separation to separate the sounds from the FOD from the background noise. Incorporating
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these new techniques into the detection model could enable the model to identify not just
the presence of FOD but also the type of FOD and its location, providing more efficient and
reliable support for quality assurance in the rocket-production process.
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