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Abstract: This paper presents a robust quadratic convex model for the optimal scheduling of photo-
voltaic generators in unbalanced bipolar DC grids. The proposed model is based on Taylor’s series
expansion which relaxes the hyperbolic relation between constant power terminals and voltage pro-
files. Furthermore, the proposed model is solved in the recursive form to reduce the error generated
by relaxations assumed. Additionally, uncertainties in PV generators are considered to assess the
effectiveness of the proposed recursive convex. Several proposed scenarios for the numerical valida-
tions in a modified 21-bus test system were tested to validate the robust convex model’s performance.
All the simulations were carried out in the MATLAB programming environment using Yalmip and
Gurobi solver. Initially, a comparative analysis with three combinatorial optimization methods under
three PV generation scenarios was performed. These scenarios consider levels of 0, 50, and 100%
capacity of the PV systems. The results demonstrate the effectiveness of the proposed recursively
solved convex model, which always achieves the global optimum for three levels of capacity of the
PV generators, with solutions of 95.423 kW, 31.525 kW, and 22.985 kW for 0%, 50%, and 100% of
the capacity PV rating, respectively. In contrast, the combinatorial optimization methods do not
always reach these solutions. Furthermore, the power loss for the robust model is comparable to the
deterministic model, increasing by 1.65% compared to the deterministic model.

Keywords: renewable energy uncertainties; unbalanced bipolar DC systems; day-ahead operation
studies; exact optimization model; energy losses reduction

1. Introduction
1.1. General Context

Electrical distribution networks are extensions of wires along cities and countries
that provide electricity service to hundreds of thousands of end-users at medium- and
low-voltage levels [1,2]. These grids are typically constructed using AC technologies and
three-phase configurations. Nevertheless, the significant advances in power electronics,
renewable energy technologies, and energy storage technologies have transformed electrical
networks from passive systems to active distribution networks [3]. The active concept in
these networks is related to the possibility of self-management and bidirectional energy
flows [4,5]. In addition, a new paradigm for the operation of active distribution networks
based on DC technologies has seen rapid growth, because these DC networks have the
main advantage that they are easily controllable and do not require control for frequency or
reactive power [6]. DC distribution is attracting more attention in industries and academia
since they can easily integrate generation and energy storage (i.e., photovoltaics and
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batteries) that work directly using DC signals. This implies that some conversion stages
can be eliminated, making these networks more reliable and efficient [7].

The usage of DC technology for providing electricity service at medium and low
voltage levels can be implemented using two main configurations [8]. The first topology
corresponds to the monopolar DC network configuration, which uses two wires, one of the
sets with a +VDC voltage and the another one that works as the return cable and is solidly
grounded as the load point [9]. The second topology adds a new wire to the monopolar
configurations. It is referred to as the bipolar DC system, where there are two poles set
with voltages ±VDC as well as the return wire, with the same function. In the case of
bipolar DC distribution networks, the return wire can be solidly grounded or not [10,11].
The main advantage of bipolar systems is that with 33% additional investment, it is possible
to duplicate the number of users connected to these grids, with the possibility of connecting
multiple bipolar users that receive twice the voltage magnitude at their terminals [12].

1.2. Motivation

The analysis of bipolar DC networks requires the development of new control and
optimization methods to manage all the devices connected to them in order to maximize
efficiency, reliability, and security [7]. This research is motivated by studying unbalanced
monopolar DC networks, from an optimization point of view [11]. The optimization in
electrical distribution networks is a necessity for all systems that include distributed energy
resources and demand variations during the day, since it is necessary to determine the best
power injections for power plants and the best energy storage profiles for batteries by ensur-
ing that all the technical conditions of the distribution network are maintained, i.e., voltage
regulation, thermal capabilities in conductors, and generation bounds, among others [13].
In this study, considering the growing relevance of bipolar DC distribution networks we
have been motivated to propose a robust optimization methodology for efficiently dispatch-
ing photovoltaic (PV) plants in bipolar DC networks from the convex optimization point of
view [14]. This robust optimization approach includes uncertainties regarding the expected
power output in the generation profile.

1.3. Literature Review

In the specialized literature, multiple methods have been proposed to solve the optimal
power flow (OPF) in bipolar DC networks with asymmetric loads. An OPF model based
on measurements of voltages and currents of bipolar DC grids was proposed in [10].
This model employed a non-convex objective function with a bilinear form generating
a relationship between the objective function and constraints with a weak duality. This
weakness was solved using locational marginal prices to convert the proposed bilinear
model into a two-step linear problem. In [15], a model for solving the OPF problem in
asymmetric bipolar DC grids was described. The objective function of this model was to
reduce the congestion in the lines and unbalance of the bipolar grids to solve the issue
of involving the locational marginal prices under different scenarios. In [16], an OPF
model based on current injections to solve the OPF problem in bipolar DC grids was
initially employed to analyze the steady state of the grids. This proposed OPF enhanced
the voltage unbalance in the bipolar DC grid using a sensitivity matrix obtained from the
Jacobian matrix. In [8], three metaheuristic algorithms were implemented to determine
optimal pole-swapping in bipolar DC grids with multiple monopolar and bipolar loads.
The metaheuristic algorithms were executed in a master–slave structure, where the master
stage determined the configuration of the monopolar and bipolar loads in the bipolar
DC grid, while the slave stage calculated the power losses of the grid using a triangular
formulation. The authors of [15] used a multi-objective function to solve the OPF problem
in bipolar DC microgrids. The multi-objective function reduced the generation cost, power
losses, and unbalance in nodal voltages of the microgrid. Furthermore, the model proposed
in [15] integrated distributed generations into the bipolar DC microgrid to provide energy
to end-users. The authors of [17] proposed an OPF model to minimize the power losses
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in unbalanced hybrid (monopolar and bipolar) DC networks. Although these proposed
models can solve the OPF problem in bipolar DC grids adequately, none of them reach the
global optimum for the problem. Additionally, none of them is evaluated over a period of
24 h, and none considers uncertainty in power generated for the PV systems, making these
models not robust. In [18], a recursive convex model to solve the OPF in bipolar DC grids
was also proposed. Unlike this work, we add to the recursive convex model uncertainty in
power generated for the PV systems, transforming this model into a robust optimization
model. Furthermore, in [18] optimal scheduling of the PV systems was omitted.

1.4. Contribution and Scope

In light of the review of the state of the art, this study makes the following contributions:

i. A recursive convex approximation based on Taylor’s series expansion to relax the hy-
perbolic relation between constant power terminals and voltage profiles is performed.

ii. Uncertainties in power available for the PV generators are considered in the proposed
model to transform it into a robust model.

iii. Numerical validations and scenarios are performed to validate the robust convex
model’s performance in a modified 21-bus test system.

1.5. Document Organization

The structure of this contribution is the following: Section 2 presents the general
formulation of the OPF problem for bipolar DC networks with unbalanced loads using the
current injection method. This optimization model’s main characteristics are discussed,
specifically the fact that it is nonlinear and non-convex. Section 3 presents the proposed
convex approximation based on the linear approximation of the hyperbolic relation between
voltages and powers in the constant power consumptions. In addition, a linear relaxation
is applied for these relations in the PV generation sources. Section 4 describes the main
characteristics of the test feeder, which is a medium voltage network composed of 21 nodes
and 20 lines (radial configuration) operated with ±1 kV in terminals of the substation
bus. This section also reveals the main numerical results of the proposed recursive convex
approximation considering uncertainties in the generation output of the PV plants. Finally,
Section 5 describes the main concluding remarks derived from this study and some possible
future works.

2. Multiperiod OPF Formulation

The OPF model for bipolar DC networks considers multiple periods of analysis regard-
ing generation and demand, and can be formulated as a nonlinear programming model
from the family of non-convex optimization problems. The main idea in the multiperiod
OPF problem is to minimize the total grid energy losses for an operation period of analysis
(typically 24 h). This optimization is subject to the typical power flow constraints and
device capabilities.

2.1. Mathematical Formulation

The complete NLP formulation of the multiperiod OPF problem for bipolar DC
networks is described below.
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Objective function:

min Eloss = ∑
h∈H

∑
r∈P

∑
j∈N

Vr
jh

(
∑

s∈P
∑

k∈N
Gjk

rsVs
kh

)
∆h, (1)

Subject to:

Ip
g,kh + Ip

dg,kh − Ip
d,kh − Ip−n

d,kh = ∑
r∈P

∑
j∈N

Gpr
jk Vr

k , {∀k ∈ N , ∀h ∈ H} (2)

Io
g,kh + Io

dg,kh − Io
d,kh − Igr

d,kh = ∑
r∈P

∑
j∈N

Gor
jk Vr

k , {∀k ∈ N , ∀h ∈ H} (3)

In
g,kh + In

dg,kh − In
d,kh + Ip−n

d,kh = ∑
r∈P

∑
j∈N

Gnr
jk Vr

k , {∀k ∈ N , ∀h ∈ H} (4)

Ip
d,kh =

Pp
d,kh

Vp
kh −Vo

kh
, {∀k ∈ N , ∀h ∈ H} (5)

In
d,kh =

Pn
d,kh

Vn
kh −Vo

kh
, {∀k ∈ N , ∀h ∈ H} (6)

Io
d,kh =

Pp
d,kh

Vo
kh −Vp

kh
+

Pn
d,kh

Vo
k −Vn

k
, {∀k ∈ N , ∀h ∈ H} (7)

Ip−n
d,khh =

Pp−n
d,kh

Vp
kh −Vn

kh
, {∀k ∈ N , ∀h ∈ H} (8)

Ip
dg,kh =

Pp
dg,kh

Vp
kh −Vo

kh
, {∀k ∈ N , ∀h ∈ H} (9)

In
dg,kh =

Pn
dg,kh

Vn
kh −Vo

kh
, {∀k ∈ N , ∀h ∈ H} (10)

Io
dg,kh =

Pp
dg,kh

Vo
kh −Vp

kh
+

Pn
dg,kh

Vo
kh −Vn

kh
, {∀k ∈ N , ∀h ∈ H} (11)

Ip,min
g,kh ≤ Ip

g,kh ≤ Ip,max
g,kh , {∀k ∈ N , ∀h ∈ H} (12)

Io,min
g,kh ≤ Io

g,kh ≤ Io,max
g,kh , {∀k ∈ N , ∀h ∈ H} (13)

In,min
g,kh ≤ In

g,kh ≤ In,max
g,kh , {∀k ∈ N , ∀h ∈ H} (14)

Pp,min
dg,kh ≤ Pp

dg,kh ≤ Pp,max
dg,kh , {∀k ∈ N , ∀h ∈ H} (15)

Po,min
dg,kh ≤ Po

dg,kh ≤ Po,max
dg,kh , {∀k ∈ N , ∀h ∈ H} (16)

Pn,min
dg,kh ≤ Pn

dg,kh ≤ Pn,max
dg,kh , {∀k ∈ N , ∀h ∈ H} (17)

Vp,min ≤ Vp
kh ≤ Vp,max, {∀k ∈ N , ∀h ∈ H} (18)

Vn,min ≤ Vn
kh ≤ Vn,max, {∀k ∈ N , ∀h ∈ H} (19)Vp

jh
Vo

jh
Vn

jh

 =

 1
0
−1

Vnom, {j = slack, ∀h ∈ H.} (20)

where Eloss represents the objective function value associated with the expected energy
losses caused by the resistive effects in all the branches of the bipolar DC network for the
analysis period; Vr

jh is the voltage at node j contained in the set of nodes N at the period
h (defined in the set of periods H), for the pole r (contained at the set of poles P); Vs

kh
represents the voltage value at node k in the period h for the pole s; Gjk

rs means the conduc-
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tance value that associates nodes j and k and poles r and s. Ip
g,kh, Io

g,kh, and In
g,kh represents

the current injections in the slack source (node k) at each period for the positive, neutral,
and negative poles, respectively; Ip

dg,kh, Io
dg,kh, and In

dg,kh have the same interpretation in

case of the connection of dispersed generation source at node k. Ip
d,kh, Io

d,kh, and In
d,kh are

the monopolar demanded currents at node k at time h for each one of the poles, respec-
tively. Ip−n

d,kh represents the bipolar demanded current by a load interconnected between the
positive and negative poles. Igr

d,kh represents the current drained to the earth in the neutral
pole at node k at each time h when it is solidly grounded. Pp

d,kh and Pn
d,kh are the monopolar

constant power consumptions at node k in period h connected between the neutral pole
and the positive and negative ones, respectively. Vp

kh, Vo
kh, and Vn

kh correspond to the voltage
values at node k in the period h for the positive, neutral, and negative poles, respectively.
Pp

dg,kh and Pn
dg,kh are the power injections by dispersed sources connected in positive and

negative poles of node k in period h. Ip,min
g,kh , Io,min

g,kh , and In,min
g,kh are the minimum allowed

bounds for the current injection in the slack source in positive, neutral and negative poles
for node k in each period h; and Ip,max

g,kh , Io,max
g,kh , and In,max

g,kh are the upper current limits for

the current injection in the slack source at each pole and time, respectively. Po,min
dg,kh , Pp,min

dg,kh ,

and Pn,min
dg,kh represent the minimum power injection bounds allowed for the dispersed source

connected at node k for each pole in the period h, respectively. Po,max
dg,kh , Pp,max

dg,kh , and Pn,max
dg,kh

are the maximum power injections allowed for the dispersed sources at each node, pole,
and period, respectively. Vp,min and Vn,min are the minimum voltage regulation limits for
voltages at each node and time for the positive and negative poles. In contrast, Vp,max and
Vn,max are their corresponding upper regulation bounds, respectively. Vnom is the nominal
voltage magnitude applied to the positive and negative poles.

2.2. Model Interpretation and Complexity

The interpretation of the NLP model (1)–(20) that represents the multiperiod OPF prob-
lem for bipolar asymmetry distribution networks is the following: Equation (1) represents
the objective function of minimization which is associated with the energy losses of the
network. Equations (2)–(4) represent the current equilibrium at each node of the network,
which is obtained through the application of Kirchhoff’s first law at each one using the
nodal voltage method. Equations (5)–(8) define the hyperbolic relation between power and
voltages in all the demand nodes, and Equations (9)–(11) determine the hyperbolic relation
between voltage and currents in the dispersed generation sources. Box-type constraints
(12)–(14) define the solution space limits for the current injections in the slack source at each
pole for each period of analysis. Box-type constraints (15)–(17) determine the solution space
bounds for the dispersed generators integrated into the bipolar DC network. Box-type
constraints (18) and (19) are the lower and upper bounds admissible for the voltage at
each node and period, i.e., these are the classical voltage regulation constraints extended to
bipolar DC configurations. Finally, Equation (20) defines the voltage output assigned in the
terminals of the substation bus.

Even if the problem under investigation is part of the nonlinear programming models,
the solution can be addressed via derivative-based optimization methods. It presents
many variables that depend on the size of the test feeder under analysis. This number of
variables is directly related to the complexity of the solution. Table 1 presents the detailed
classification of the variables and equations that compose the optimization model. Note
that this classification considers that the number of nodes is n, the number of poles is p,
and the number of periods is t.
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Table 1. Classification of the number of variables and equations for the optimization model (1)–(20).

Model Variables

Variable Number Variable Number

Objective function 1 Voltages npt
Currents (3p + 2)nt Powers npt

Total variables (5p + 2)nt + 1

Model equalities and inequalities

Equalities (3p + 1)nt + pt + 1 Inequalities 2(p + 1)nt

Total eq. and ineq. (5p + 3)nt + pt + 1

The main characteristic of the optimization problem is that from the total number
of equalities and inequalities in the optimization model, only (2p + 1)nt are non-convex.
These are related to the hyperbolic constraints regarding voltages and powers in the
constant power terminals (demand and generation nodes), implying that these equations
are convexified. Hence, the NLP model that represents the multiperiod optimal power
flow problem for renewable generation can be optimally solved using the convex tool via
recursive programming.

3. Approximated Recursive Quadratic Convex Model Formulation and Its
Iterative Implementation

This section presents the proposed recursive quadratic approximation for solving the
multiperiod OPF problem for bipolar DC networks with renewable generation sources.
First, the model characterization is presented; second, the proposed convexification method-
ology and recursive solution approach are illustrated; and third, the robust optimization
procedure is presented.

3.1. Characterization and Properties of the Optimization Model

In the NLP model (1)–(20), the following features can be observed:

i. The objective function is a nonlinear quadratic function associated with multiple
products between voltages. However, this is a convex function since the conductance
matrix of the network is positive semidefinite [6]. Note that the objective function (1)
can be rewritten as presented below.

min Eloss = ∑
h∈H

(
Vpon

h

)>
GponVpon

h ∆h, (21)

which provides evidence that if Gpon � 0, then the objective function is a sum of
convex quadratic functions, i.e., a convex function. Note that Vpon

h is a vector that
contains all the nodal voltages ordered per pole and node, respectively.

ii. The set of equality constraints (2)–(4), and (20) is part of the affine constraints, i.e., con-
vex planes; in addition, box-type constraints (12)–(19) are linear inequality constraints
that make part of a convex solution space.

iii. The set of equality constraints (2)–(4), and (20) is part of the affine constraints, i.e., con-
vex planes; in addition, box-type constraints (12)–(19) are linear inequality constraints
that make part of a convex solution space.

iv The set of equality constraints (5)–(11) represents the nonlinear non-convex set of
equations for the problem under investigation, since these are hyperbolic constraints,
which implies that to reach a convex equivalent optimization model, these must be
convexified using linear or conic approximations.

In this study, we propose two linear approximations to obtain a convex approximated
model for the multiperiod OPF problem defined in (1)–(20). These approximations are
presented in the next section.
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3.2. Convexification of the Hyperbolic Constraints

The following relaxations are proposed to obtain equivalent convex relaxations regard-
ing the hyperbolic constraints that relate powers and voltages in constant power terminals
and dispersed generators.

3.2.1. Proposed Convex Relaxation for Constant Power Loads

To reach a linear approximation (convex) of the hyperbolic constraint that associates
voltages and power in constant load terminals, let us define an auxiliary function of the
variables x, y, and the constant parameter w, as presented below [18,19].

f (x, y) =
w

x− y
, (22)

This function can be approximated in its linear form using Taylor’s series expansion,
which corresponds to a linearization for a function of two continuous variables, which is
defined below [19]:

f (x, y) ≈ f (x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y− y0), (23)

where the point (x0, y0) corresponds to the linearization point.
Now, if the linear approximation (23) is applied to the nonlinear function (22), then

the linear approximation for this function is reached

f (w, y) =
2w

x0 − y0
− x− y

(x0 − y0)
2 w. (24)

Note that with the linear approximation (24), the demanded currents in the constant
power terminals defined in (5)–(8) can be approximated by selecting (x0, y0) as the initial
voltage values for each pair of poles. (Vp,0

k , Vo,0
k . Further, Vn,0

k are the initial values of the
voltage profiles at note k for the positive, neutral, and negative poles, which can be defined
initially equal to the voltage profile in the slack source as presented in Equation (20), and w
is defined as the constant power load which can be monopolar or bipolar.) These equations
are redefined linearly from (25) to (28).

Ip,0
d,kh = Pp

d,kh

 2

Vp,0
kh −Vo,0

kh

−

(
Vp

kh −Vo
kh

)
(

Vp,0
kh −Vo,0

kh

)2

 {∀k ∈ N , ∀h ∈ H} (25)

In,0
d,kh = Pn

d,kh

 2

Vn,0
kh −Vo,0

kh

−
Vn

kh −Vo
kh(

Vn,0
kh −Vo,0

kh

)2

, {∀k ∈ N , ∀h ∈ H} (26)

Io,0
d,kh =


Pp

d,kh

(
2

Vo,0
kh −Vp,0

kh

− Vo
kh−Vp

kh(
Vo,0

kh −Vp,0
kh

)2

)
+

Pn
d,kh

(
2

Vo,0
kh −Vn,0

kh
− Vo

kh−Vn
kh

(Vo,0
kh −Vn,0

kh )
2

)
, {∀k ∈ N , ∀h ∈ H} (27)

Ip−n,0
d,kh = Pp−n

d,kh

 2

Vp,0
kh −Vn,0

kh

−
Vp

kh −Vn
kh(

Vp,0
kh −Vn,0

kh

)2

. {∀k ∈ N , ∀h ∈ H} (28)

Note that Ip,0
d,kh, Io,0

d,kh, In,0
d,kh defines the linearized absorbed currents in the positive,

neutral and negative poles in monopolar loads. Ip−n,0
d,kh is the linearized absorbed current

produced by a bipolar constant power load between positive and negative poles.
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3.2.2. Proposed Convex Approximation for Nodes with Dispersed Generation Sources

To obtain a linear equivalent function of the hyperbolic relation between voltage and
powers in dispersed generation plants, we consider a linear approximation proposed by
the authors of [20], for monopolar DC networks with constant power loads.

g(x, y, z) =
z

x− y
, (29)

where we can consider that the numerator has strong variations in comparison with the
denominator; in other words, the values of the variables x and y are near the operative
point (x0, y0). This means that ∆xy ≈ 0, while the operative point of the power generator
can present high oscillations. With this consideration, Equation (29) can be linearized
as follows:

g(x, y, z) ≈ z
x0 − y0 + ∆xy

≈ z
x0 − y0

. (30)

Now, considering the approximation presented in (30), it is possible to obtain a linear
equivalent for the current injections with the dispersed sources in Equations (9)–(11), by defin-
ing the new variable z as the power injections of the dispersed sources, as presented below.

Ip
dg,kh =

Pp
dg,kh

Vp,0
kh −Vo,0

kh

, {∀k ∈ N , ∀h ∈ H} (31)

In
dg,kh =

Pn
dg,kh

Vn,0
kh −Vo,0

kh

, {∀k ∈ N , ∀h ∈ H} (32)

Io
dg,kh =

Pp
dg,kh

Vo,0
kh −Vp,0

kh

+
Pn

dg,kh

Vo,0
kh −Vn,0

kh

. {∀k ∈ N , ∀h ∈ H} (33)

Remark 1. Note that the linear approximation of the demanded load currents via Taylor’s series
expansion and the equivalent linear approximations for the dispersed generation sources allows trans-
forming the original multiperiod nonlinear non-convex OPF problem into a convex approximation
for bipolar DC networks with multiple constant power loads.

3.2.3. Recursive Quadratic Convex Approximation

If the linear approximations (25)–(28) for the constant power loads and the linear
approximations (31)–(33) are analyzed, then it can be observed that these depend on the
linearization point

(
Vp,0

kh , Vo,0
kh , Vn,0

kh

)
. This implies that an error between the exact model

and these approximations is expected. However, as recommended by the authors of [20],
this error can be minimized by introducing a recursive solution procedure, which is referred
to in this study as the recursive quadratic convex approximation (RQCA). To obtain the
RQCA, an iterative counter t is introduced to replace the initial value of the variables
marked with a superscript 0. The complete RQCA model is defined below.
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Obj. fun.:

min Eloss = ∑
h∈H

∑
r∈P

∑
j∈N

Vr,t+1
jh

(
∑

s∈P
∑

k∈N
Gjk

rsVs,t+1
kh

)
∆h, (34)

S.t:

Ip,t+1
g,kh + Ip,t

dg,kh − Ip,t+1
d,kh − Ip−n,t+1

d,kh = ∑
r∈P

∑
j∈N

Gpr
jk Vr,t+1

k , {∀k ∈ N , ∀h ∈ H} (35)

Io,t+1
g,kh + Io,t

dg,kh − Io,t+1
d,kh − Igr

d,kh = ∑
r∈P

∑
j∈N

Gor
jk Vr,t+1

k , {∀k ∈ N , ∀h ∈ H} (36)

In,t+1
g,kh + In,t

dg,kh − In,t+1
d,kh + Ip−n,t+1

d,kh = ∑
r∈P

∑
j∈N

Gnr
jk Vr,t+1

k , {∀k ∈ N , ∀h ∈ H} (37)

Ip,t+1
d,kh = Pp

d,kh

 2

Vp,t
kh −Vo,t

kh

−

(
Vp,t+1

kh −Vo,t+1
kh

)
(

Vp,t
kh −Vo,t

kh

)2

 {∀k ∈ N , ∀h ∈ H} (38)

In,t+1
d,kh = Pn

d,kh

 2
Vn,t

kh −Vo,t
kh

−
Vn,t+1

kh −Vo,t+1
kh(

Vn,t
kh −Vo,t

kh

)2

, {∀k ∈ N , ∀h ∈ H} (39)

Io,t+1
d,kh =


Pp

d,kh

(
2

Vo,t
kh −Vp,t

kh
− Vo,t+1

kh −Vp,t+1
kh(

Vo,t
kh −Vp,t

kh

)2

)
+

Pn
d,kh

(
2

Vo,t
kh −Vn,t

kh
− Vo,t+1

kh −Vn,t+1
kh

(Vo,t
kh −Vn,t

kh )
2

)
, {∀k ∈ N , ∀h ∈ H} (40)

Ip−n,t+1
d,kh = Pp−n

d,kh

 2

Vp,t
kh −Vn,t

kh

−
Vp,t+1

kh −Vn,t+1
kh(

Vp,t
kh −Vn,t

kh

)2

, {∀k ∈ N , ∀h ∈ H} (41)

Ip,t
dg,kh =

Pp
dg,kh

Vp,t
kh −Vo,t

kh

, {∀k ∈ N , ∀h ∈ H} (42)

In,t
dg,kh =

Pn
dg,kh

Vn,t
kh −Vo,t

kh

, {∀k ∈ N , ∀h ∈ H} (43)

Io,t
dg,kh =

Pp
dg,kh

Vo,t
kh −Vp,t

kh

+
Pn

dg,kh

Vo,t
kh −Vn,t

kh

. {∀k ∈ N , ∀h ∈ H} (44)

Ip,min
g,kh ≤ Ip,t+1

g,kh ≤ Ip,max
g,kh , {∀k ∈ N , ∀h ∈ H} (45)

Io,min
g,kh ≤ Io,t+1

g,kh ≤ Io,max
g,kh , {∀k ∈ N , ∀h ∈ H} (46)

In,min
g,kh ≤ In,t+1

g,kh ≤ In,max
g,kh , {∀k ∈ N , ∀h ∈ H} (47)

Pp,min
dg,kh ≤ Pp

dg,kh ≤ Pp,max
dg,kh , {∀k ∈ N , ∀h ∈ H} (48)

Po,min
dg,kh ≤ Po

dg,kh ≤ Po,max
dg,kh , {∀k ∈ N , ∀h ∈ H} (49)

Pn,min
dg,kh ≤ Pn

dg,kh ≤ Pn,max
dg,kh , {∀k ∈ N , ∀h ∈ H} (50)

Vp,min ≤ Vp,t+1
kh ≤ Vp,max, {∀k ∈ N , ∀h ∈ H} (51)

Vn,min ≤ Vn,t+1
kh ≤ Vn,max, {∀k ∈ N , ∀h ∈ H} (52)

Vp,t+1
jh

Vo,t+1
jh

Vn,t+1
jh

 =

 1
0
−1

Vnom, {j = slack, ∀h ∈ H.} (53)
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Remark 2. The optimization model (34)–(53) is a convex approximated model for the multiperiod
OPF problem in bipolar DC networks for each t + 1, assuming that the values in t are perfectly
known. In addition, it is recursively solved until the convergence criterion between two consecutive
iterations is met, as follows:

max
{k∈N , h∈H, r∈P}

∣∣∣∣∣∣Vp,t+1
kh

∣∣∣− ∣∣∣Vp,t
kh

∣∣∣∣∣∣ ≤ ε, (54)

where ε is defined as 1× 10−10.

3.3. Robust RQCA Model

The robust optimization determines the worst case for the problem to be optimized.
For this purpose, it is necessary to use two sets of variables. The former set denotes
decision variables (x) of the problem, and the latter set proposes uncertain variables (w).
The objective of robust optimization lies in finding a solution to the decision variables
in such a form that it minimizes the problem under worst-case cost, satisfying its set of
constraints and, at the same time, allows uncertainty variables to take arbitrary values. In a
general form, a problem of robust optimization can be written as follows [14]:

min
x

max
w

f (x, w),

subject to g1(x, w) = 0 ∀ w ∈ W ,

g2(x, w) ≤ 0 ∀ w ∈ W ,

(55)

where f (x, w) is the objective function that considers the uncertain variables, and g1(x, w)
and g2(x, w) are the equality and inequalities constraint sets, respectively.

In order to introduce the uncertain variables in the proposed model, it is necessary to
define the following variables

θ
p+
kh + θ

p−
kh ≤ 1, {∀k ∈ N , ∀h ∈ H} (56)

θn+
kh + θn−

kh ≤ 1, {∀k ∈ N , ∀h ∈ H} (57)

Pp
dg,kh = P̄p

dg,kh + P̂p
dg,khθ

p+
kh − P̂p

dg,khθ
p−
kh , {∀k ∈ N , ∀h ∈ H} (58)

Pn
dg,kh = P̄n

dg,kh + P̂n
dg,khθn+

kh − P̂n
dg,khθn−

kh , {∀k ∈ N , ∀h ∈ H} (59)

where θ is a binary variable used to denote the uncertainty set, P̄dg is the power injection
of the solar generator, and P̂dg is the power deviation of the solar generator from its
nominal value.

From (58) and (59), we can note that Pp
dg,kh and Pn

dg,kh take values within the following
interval

Pp
dg,kh ∈ [P̄p

dg,kh − P̂p
dg,kh, P̄p

dg,kh + P̂p
dg,kh] (60)

Pn
dg,kh ∈ [P̄n

dg,kh − P̂n
dg,kh, P̄n

dg,kh + P̂n
dg,kh] (61)

Finally, the proposed robust mode takes the following form

min
V

(
Eloss max

∥∥∥P̄p
dg

∥∥∥+ ∥∥∥P̄n
dg

∥∥∥) (62)

subject to (34)–(40), (44)–(52), (56)–(59).
Algorithm 1 provides the flowchart of the proposed robust recursive quadratic con-

vex model.
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Algorithm 1: Robust Recursive Quadratic Convex Algorithm
Data: Select the bipolar DC network to be analyzed

1 Find the per-unit equivalent representation of the network;
2 Set LB = −∞, UB = +∞, tolerance ε.
3 while (not satisfy (54)) do
4 for h = 1 : 24 do
5 while (UB− LB < ε) do
6 Solve (34)–(53). Get optimal solution and objective function,

x∗ = [V∗, P∗dg, I∗g ] and Eloss, respectively.

7 LB← max{LB, Eloss}.
8 Solve fs(x∗, w) = max

(∥∥∥P̄p
dg

∥∥∥+ ∥∥∥P̄n
dg

∥∥∥), subject to (34)–(40), (44)–(52),
(56)–(59), with x = x∗

9 Get worst-case uncertainty realization and objective function,

w∗ = [P̂p∗

dg,h, P̂n∗
dg,h] and fs, respectively.

10 UB← min{UB, fs}.
11 Pmax

dg,h ← Pmax
dg,h + w∗.

12 Pmin
dg,h ← Pmin

dg,h − w∗.

13 h← h + 1.

14 Vt = V∗.
15 t← t + 1.

Result: Return x∗ and Eloss

4. Test System and Results

This section presents the main characteristics of the bipolar DC distribution network
and all the numerical validations. Note that the deterministic and robust optimization
model will be evaluated for validation.

4.1. Bipolar DC 21-Bus System

The robust RQCA proposed is evaluated in the modified 21-bus bipolar DC system.
This system is a modification of the proposed test system presented in [21] for a monopolar
DC network. Figure 1 illustrates the modified 21-bus bipolar DC network with three PV
generators. The slack node operates with a rated voltage of ±1 kV in the positive and
negative poles with a neutral pole that is solidly grounded. This test system has a whole
power consumption in the positive pole of 554 kW, while the negative pole is at 445 kW.
Table 2 lists all the data information of the modified 21-bus bipolar DC system.

1

2

3

4

5 6

7

8 9

10

11

12 13

14

15

16

17 18

19

20 21

Slack

Figure 1. Single diagram of the modified 21-bus bipolar DC network.
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Table 2. Data information for the modified 21-bus bipolar DC system.

Node k Node m Rkm (Ω) Pp
d,2 (kW) Pn

d,2 (kW) Pp−n
d,2 (kW)

1 2 0.053 70 100 0
1 3 0.054 0 0 0
3 4 0.054 36 40 120
4 5 0.063 4 0 0
4 6 0.051 36 0 0
3 7 0.037 0 0 0
7 8 0.079 32 50 0
7 9 0.072 80 0 100
3 10 0.053 0 10 0
10 11 0.038 45 30 0
11 12 0.079 68 70 0
11 13 0.078 10 0 75
10 14 0.083 0 0 0
14 15 0.065 22 30 0
15 16 0.064 23 10 0
16 17 0.074 43 0 60
16 18 0.081 34 60 0
14 19 0.078 9 15 0
19 20 0.084 21 10 50
19 21 0.082 21 20 0

The PV systems of the modified 21-bus bipolar DC system are located at nodes 3, 11,
and 17. Their available powers are depicted in Figure 2, and this information was taken
from [22]. In addition, this figure shows the demand variation during 24 h. Table 3 shows
each PV system’s rated power in the positive and negative poles.

0 2 4 6 8 10 12 14 16 18 20 22 24
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (h)

po
w

er
(p

u)

PV 1
PV 2
PV 3

Demand

Figure 2. Available power curve of the three PV generators and demand variation.

Table 3. Location and capacity of the PV generators.

Label Node Pole Capacity (kW) Label Node Pole Capacity (kW)

PV 1 3 p 300 PV 3 17 p 200
3 n 100 17 n 300

PV 2 11 p 400
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4.2. Numerical Validation and Analysis of Results

The robust RQCA model was assessed on a personal computer (Dell Inspiron 15 7000
Series (Intel Quad-Core i7-7700HQ), 2.80 GHz, 16 GB RAM with 64-bit Windows 10 Home
Single Language) using the software MATLAB 2021a. Additionally, Yalmip toolbox [23]
plus Gurobi solver [24] were used to solve the proposed model.

4.2.1. Deterministic Model

This part assesses the RQCA model (34)–(53) solution for solving the OPF problem
in bipolar asymmetric DC networks considering multiple PV generators. Firstly, the pro-
posed model is evaluated for nominal values of the bipolar DC network and compared
with three metaheuristic optimization algorithms proposed in the specialized literature.
The metaheuristics are the sine cosine algorithm (SCA) [25], the vortex search algorithm
(VSA) [26], and the black hole optimizer (BHO) [27]. A convergence error of ε = 1× 10−10

was considered for these metaheuristics. In addition, 1000 iterations, 10 individuals, and
100 consecutive repetitions were performed for each metaheuristic optimization algorithm.
Secondly, the proposed model was analyzed for 24 h to determine the effect of the multiple
PV generators in the bipolar DC network.

The results of the metaheuristic optimization algorithms and the proposed model
are compared in Table 4. This table shows the performance of the proposed model and
metaheuristic optimization algorithms, considering that the PV generators are at 0, 50,
and 100 % of their nominal capacity.

Table 4. Comparison of the models for solving the OPF problem (Pbase = 100 kW).

PV Capacity Method Min. (pu) Mean (pu) Max. (pu) Std. Dev. (pu) Average Time (s)

0%

SCA 0.9542368 0.9542368 0.9542368 1.1× 10−15 4.6461
VSA 0.9542368 0.9542368 0.9542368 1.1× 10−16 4.1939
BHO 0.9542368 0.9542368 0.9542368 1.1× 10−16 9.2526

RQCA 0.9542367 0.9542367 0.9542368 <1× 10−16 6.0529

50%

SCA 0.3157859 0.3299539 0.3441219 8.3× 10−3 4.5489
VSA 0.3152253 0.3153301 0.3164762 2.1× 10−4 5.2673
BHO 0.3216582 0.3269265 0.3312492 2.1× 10−1 9.1321

RQCA 0.3152552 0.3152552 0.3152552 <1× 10−16 5.8552

100%

SCA 0.2306334 0.2529280 0.2854381 1.4× 10−2 4.3451
VSA 0.2298536 0.2298567 0.2298805 4.6× 10−6 5.0126
BHO 0.2306558 0.2317489 0.2327831 4.9× 10−4 9.1541

RQCA 0.2298554 0.2298554 0.2298554 <1× 10−16 6.1220

From Table 4 is possible to analyze that:

• The proposed RQCA reaches the global optimum for three levels of capacity of the
PV generators with the solutions of 95.423 kW, 31.525 kW, and 22.985 kW for 0%,
50%, and 100% of the capacity PV rating, respectively. The VSA algorithm shows
numerical solutions similar to the proposed RQCA model. However, the proposed
model always reaches the global optimum in each evaluation. This is because the
proposed RQCA model is convex; hence, it finds the global optimum of the problem.
By contrast, the VSA algorithm and other algorithms do not always reach the same
solution, as these methods cannot guarantee a global solution to the problem.

• As the capacity level of the PVs increases, the solutions of the metaheuristic algorithms
move away from the optimum solution. This is because these algorithms contain a
random nature and simple evolution rules. In addition, the SCA and BHO algorithms
present less sophisticated rules than the VSA algorithm, and for this reason, their
performances are inferior to the VSA algorithm.
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Figure 3 depicts the results of the proposed model for the optimal scheduling of PV
generators in the modified 21-bus bipolar DC system. For this analysis and the following
ones, only the results of the proposed model will be presented since, as seen in Table 4,
the metaheuristic algorithms achieve lower results. Figure 3a illustrates the power losses
of the bipolar DC grid at each hour. Figure 3b,c show the power delivered for the PV
generators in the positive and negative poles, respectively.
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Figure 3. Optimal scheduling of PV generators: (a) power losses of the bipolar DC grid, (b) power
delivered for the PV generators in the positive pole, and (c) power delivered for the PV generators in
the negative pole.

Figure 3 shows that the power loss in the bipolar DC grid presents its highest value
at 20:00 h; this occurs when the demand is highest, and there are no variables in the PV
generators. Therefore, after 20:00 h, the slack node only satisfies the demand. The total
power loss in the bipolar DC grid is 1513.401 kW. Analyzing Figure 3b, it can be noted that
the PV generators connected to the positive pole deliver the whole available power to the
bipolar DC grid between 00:00 h and 7:30 h as well as between 17:30 h and 24:00 h. At the
same time, the PV generators connected to the negative pole generate the total available
power from 00:00 to 8:00 h and from 16:30 h to 24:00 h (see Figure 3c). In contrast, when the
PV generators do not deliver the total available power, the bipolar DC grid presents the
least power losses. This is because the grid disposes of the necessary power to find the best
point of operation. Further, observe in Figure 3b that the PV generator connected to node
11 (PV 2) is the generator that does not behave similarly to the available power.

4.2.2. Robust Model

This paper analyzes the performance of the proposed robust model (62) to compute the
OPF problem in bipolar asymmetric DC networks with multiple PV systems. In addition,
uncertainty in the available rated power of the PV systems ±10% is considered, as shown
in Figure 4.
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Figure 4. Power available for the PV generators with Uncertainty ±10%: (a) PV generator connected
to node 3, (b) PV generator connected to node 11, and (c) PV generator connected to node 17.



Machines 2023, 11, 177 15 of 19

Figure 5 illustrates the power losses of the proposed robust RQCA model in the
modified 21-bus bipolar DC system. Furthermore, this figure presents the power losses of
the deterministic model in order to make a comparative analysis of the results.
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Figure 5. Comparison between the robust and deterministic model of the power losses of the bipolar
DC grid.

In Figure 5, it can be seen that the behavior of the power losses of the robust model is
similar to when uncertainties in PV generators are not considered. It is also to be expected
that power losses increase considering the PV generator uncertainties, since the robust
model works in the worst-case scenario. For this reason, in the hours when there is more
significant uncertainty (period from 06:00 to 18:00), the power losses are higher. In this
scenario, the total power loss in the bipolar DC grid is 1538.406 kW, increasing the power
loss by 1.65% concerning the deterministic model.

Figure 6 shows a comparison between the power delivered by the PV generators when
the robust model (solid line) and the deterministic model (dashed line) are implemented.

In Figure 5, the powers delivered by the PV generators for the robust model are
lower than for the deterministic model. This behavior is expected since the robust model
determines the worst case, selecting the configuration for the PV generators with the highest
uncertainty. However, this trend is not seen in the PV generator connected to node 11 since
it can deliver more energy in hours of more significant uncertainty. For this reason, there
was no significant change in the power losses between models.

It is worth mentioning that the physical meaning of the power generation in Figures 3 and 6
is that with these power values, the bipolar DC grid found its optimal operation point,
which is minimal power loss. These powers permit maintaining the energy balance in each
node of the bipolar DC grid.



Machines 2023, 11, 177 16 of 19

0 4 8 12 16 20 24

0

0.5

1

1.5

2

2.5

(a) Time (s)

Po
w

er
(p

u)

0 4 8 12 16 20 24

0

0.5

1

1.5

(b) Time (s)
0 4 8 12 16 20 24

0

0.5

1

1.5

2

(c) Time (s)

0 4 8 12 16 20 24

0

0.2

0.4

0.6

0.8

1

(d) Time (s)

Po
w

er
(p

u)

0 4 8 12 16 20 24

0

0.5

1

1.5

2

(e) Time (s)

Figure 6. The dispatched PV power for the robust model (solid line) and the deterministic model
(dashed line): (a) PV generator connected to positive pole at node 3, (b) PV generator connected to
positive pole at node 11, (c) PV generator connected to positive pole at node 17, (d) PV generator
connected to negative pole at node 3, and (e) PV generator connected to negative pole at node 17.

5. Conclusions

In this work, a robust RQCA for scheduling optimal PV generators in bipolar asym-
metric DC distribution grids was described. Initially, the proposed model relaxed the
constraints that involve the hyperbolic relation between constant power terminals and
voltage profiles. This relaxation was based on Taylor’s series expansion. Furthermore,
the proposed model was resolved recursively to eliminate the errors introduced by re-
laxation. Numerical simulations were performed in a modified 21-bus test system to
validate the robust convex model’s performance. These simulations were carried out in
the MATLAB programming environment using Yalmip and Gurobi solver to evaluate the
performance of the proposed model.

i. In the proposed optimization approach, uncertainties in power available for the PV
generators were considered. To solve this problem, the proposed methodology was
transformed to a min–max problem, in which the problem solution is under worst-
case cost, satisfying the set of constraints. This transformation becomes the proposed
model in a robust model.

ii. The proposed model was compared to three metaheuristic methods to show its ef-
fectiveness and validity, where it consistently achieved better solutions than the
other methods.

iii. The proposed solution methodology was evaluated in a scenario of 24 h using deter-
ministic and robust models. The results show that, in the scenario of 24 h, the behavior
of the power losses was similar between models. The results for the power losses in
the proposed robust model were higher than the deterministic model. These results
are expected since the robust mode works in the worst-case scenario.

Some future works that can be developed following this research are the following:
(i) the inclusion in the proposed convex optimization method of the presence of battery
energy storage systems in the bipolar DC grid; and (ii) the extension of the proposed
optimization method via mixed-integer convex optimization to deal with the problem of
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the optimal placement and sizing of renewable energy resources in bipolar asymmetric
distribution networks.
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Nomenclature

Indices
r, s Superscripts associated with poles.
0 Superscripts associated with the initial value of linearization.
t Superscripts associated with the recursive counter.
j, k Subscripts associated with nodes.
h Subscripts associated with period.
Parameters
Eloss Objective function value regarding the total power losses in the bipolar DC network (W).
Gjk

rs Value of the conductance matrix that associates nodes j and k between poles r and s (S).

Pp−n
d,kh

Bipolar constant power consumption connected between positive and negative poles at
node k, at time h (W).

Pp
d,kh Monopolar constant power consumption at node k, at time h, for the positive pole p (W).

Pn
d,kh Monopolar constant power consumption at node k, at time h, for the negative pole n (W).

Io,min
g,kh

Minimum current injection with a generator connected at node k, at time h,
for the neutral pole o (A).

In,min
g,kh

Minimum current injection with a generator connected at node k, at time h,
for the negative pole n (A).

Pp,max
dg,kh

Maximum power injection with a generator connected at node k, at time h,
for the positive pole p (A).

Po,max
dg,kh

Maximum power injection with a generator connected at node k, at time h,
for the neutral pole o (A).

Pn,max
dg,kh

Maximum power injection with a generator connected at node k, at time h,
for the negative pole n (A).

Vp,min Minimum voltage value allowed at node k for the positive pole p (V).
Vp,max Maximum voltage value allowed at node k for the positive pole p (V).
Vn,min Minimum voltage value allowed at node k for the negative pole n (V).
Vn,max Maximum voltage value allowed at node k for the negative pole n (V).
Vnom Nominal voltage at the substation terminal (V).

ε
Binary variable used to define the uncertainty set at node k, at time t, for the
negative pole n.

Sets
P Set that contains all the poles in the network, i.e., {p, o, n}.
N Set that contains all nodes in the network.
H Set that contains all periods in the network.



Machines 2023, 11, 177 18 of 19

Variables
Vr

jh Voltage value at node j, at time h, for the rth pole (V).
Vs

kh Voltage value at node k, at time h, for the sth pole (V).
Ip
g,kh Current injection in the slack source at node k, at time h, for the positive pole p (A).

Io
g,kh Current injection in the slack source at node k, at time h, for the neutral pole o (A).

In
g,kh Current injection in the slack source at node k, at time h, for the negative pole n (A).

Ip
dg,kh Current injection by the PV system at node k, at time h, for the positive pole p (A).

Io
dg,kh Current injection by the PV system at node k, at time h, for the neutral pole o (A).

In
dg,kh Current injection by the PV system at node k, at time h, for the negative pole n (A).

Ip
d,kh Current consumption at node k, at time h, for the positive pole p (A).

Io
d,kh Current consumption at node k, at time h, for the neutral pole p (A).

In
d,kh Current consumption at node k, at time h, for the negative pole p (A).

Ip−n
d,kh

Current consumption of a load connected between positive and negative poles at node k,
at time h (A).

Igr
d,kh Current drained to the ground at node k, at time h (A).

Vp
kh Voltage value at node k, at time h, for the positive pole p (V).

Vo
kh Voltage value at node k, at time h, for the neutral pole o (V).

Vn
kh Voltage value at node k, at time h, for the negative pole n (V).

Ip,min
g,k

Minimum current injection with a generator connected at node k,
at time h, for the positive pole p (A).

P̄p
dg,kh Power injection of the PV system at node k, at time t, for the positive pole p (W).

P̄n
dg,kh Power injection of the PV system at node k, at time t, for the negative pole n (W).

P̂p
dg,kh Power deviation of the PV system at node k, at time t, for the positive pole p (W).

P̂n
dg,kh Power deviation of the PV system at node k, at time t, for the negative pole n (W).

θ
p
kh Binary variable used to define the uncertainty set at node k, at time t, for the positive pole p.

θn
kh Binary variable used to define the uncertainty set at node k, at time t, for the negative pole n.
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