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Abstract: The pose estimation can be effectively solved according to the feature point matching
relationship in RGB-D. However, the extraction and matching process based on the whole image’s
feature point is very computationally intensive and lacks robustness, which is the bottleneck of the
traditional ICP algorithm. This paper proposes representing the whole image’s feature points by
the salient objects’ robustness SIFT feature points through the salient preprocessing, and further
solving the pose estimation. The steps are as follows: (1) salient preprocessing; (2) salient object’s
SIFT feature extraction and matching; (3) RANSAC removes mismatching salient feature points;
(4) ICP pose estimation. This paper proposes salient preprocessing aided by RANSAC processing
based on the SIFT feature for pose estimation for the first time, which is a coarse-to-fine method. The
experimental results show that our salient preprocessing algorithm can coarsely reduce the feature
points’ extractable range and interfere. Furthermore, the results are processed by RANSAC good
optimization, reducing the calculation amount in the feature points’ extraction process and improving
the matching quality of the point pairs. Finally, the calculation amount of solving R, t based on all the
matching feature points is reduced and provides a new idea for related research.

Keywords: salient preprocessing; salient object’s SIFT feature; matching quality; calculation amount

1. Introduction

SLAM (robot simultaneous localization and mapping) can realize the autonomous
exploration of unknown environments. Visual odometry is the critical technology of SLAM,
which uses the relationship between matching feature points in the adjacent frame images
to estimate the camera’s rotation R and translation t for calculating the camera’s pose
change [1]. Among many visual cameras, the vision sensor RGB-D camera can provide
depth information for the positioning and perception of the mobile robot’s environment. It
can be directly used to estimate the camera pose after matching the feature points in RGB-D
images. Moreover, using the ICP (iterative closest point) to solve the pose estimation
between two matching 3D feature point sets is a very reliable method to solve the RGB-D
visual odometry problem [2–4].

ICP (iterative closest point) uses the correspondence relationship between the two-
point clouds and solves the R, t by solving a least squares problem. It is the most effective
and reliable 3D-3D pose estimation method [5–7], which is suitable for RGB-D SLAM and
lidar SLAM. However, the lidar data features are not rich enough to know the matching
relationship between two data point sets. A better matching relationship can be obtained
according to the feature points in the visual RGB-D. The entire pose solution problem
becomes easier than the ICP based on lidar [8]. The ICP can better complete the rigid body
registration of the point cloud based on RGB-D. The related work is mature and is widely
used because of the advantages of high precision and fast operation speed [9–11]. However,
in the actual registration process, the effect will not be perfectly achieved. The effect is
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not ideal for containing outliers, noise points, missing point clouds, edge disturbance, etc.
Furthermore, the improper selection of the initial position will also lead to registration
failure. Here, we carry out research in this paper from the perspective of improving the
pose estimation quality by improving feature point matching.

ICP is calculated based on the matching point pairs in the images. In the process of im-
age feature extraction, description, and matching, the amount of calculation is tremendous,
and the speed is slow, which is the bottleneck of the traditional ICP algorithm [12]. The
traditional ICP algorithm calculates the corresponding relationship based on all matching
feature points in the images. The extraction and matching based on this large number
of feature points is time-consuming. In subsequent studies, related researchers proposed
various feature selection methods [13]. The primary purpose of these methods is to reduce
the feature point extraction and matching number, that is, how to select the fewest fea-
tures with high quality to represent all the original image’s feature information. It mainly
includes the following research aspects: the filtering (sampling) of the point cloud [14],
the matching method of the corresponding point cloud [4], the weighting of the matching
point pair [3,15], and the screening of the matching point pair [16,17]. Related research
mainly focuses on the feature selecting and matching way of the scene. Here, we introduce
the salient attention mechanism by using the extraction and matching of salient object’s
features to represent the whole image’s features for pose estimation. It is theoretically feasi-
ble and full of application potential to reduce the whole image’s feature point extraction
and matching to save time. Among the many kinds of features, we choose to perform
pose estimation based on SIFT (scale-Invariant feature transform) features because the SIFT
feature remains invariant to rotation, scale scaling, and brightness changes, and is a very
stable local feature [18,19].

RANSAC (random sample consensus) means consistent random sampling. The
RANSAC is now widely used in image registration and splicing [20]. It means taking
random samples from matching samples to find consistent sample points and removing
incorrect matching feature point pairs. The RANSAC algorithm is based on a set of sample
data sets containing abnormal data to calculate the data’s task model parameters and obtain
effective sample data [21]. One common problem is feature points incorrectly matching
when using existing algorithms without RANSAC. These incorrectly matching points
greatly impact the matching effect and pose estimation. Therefore, we propose using salient
preprocessing methods to coarsely eliminate the incorrectly matching feature points and
using the RANSAC algorithm to further finely eliminate the incorrectly matching points.
Our previous exploration experiments show that the image salient preprocessing in this
paper still has the possibility of noise influence of feature points incorrectly matching, so
we further improve the matching feature point quality based on the RANSAC processing.

The salient object is the most critical object in the scene, which is the response of
modern computer vision tasks to imitate human beings to the objective nature. Objectively
speaking, it is the response weight of human eyes to specific regions in the frequency
domain and chroma space (HSV, LAB). After years of evolution, it is natural attention and
unconditioned reflection of feature sparsity [22–24]. Relevant studies show that feature
point extraction and matching are time-consuming in ICP pose estimation based on feature
points. Increasing 3D point sets to be matched will severely reduce the ICP algorithm’s
calculation efficiency [25,26]. Here, we propose a new feature selection method, which
introduces the salient attention mechanism. We use the most critical objects’ feature
points to represent the whole scene. The pose estimation is only based on the critical objects’
matching feature points, which reduces the influence of background noise and improves the
matching quality because the larger the scene, the greater the probability of error matching,
and without any background feature involved in the feature matching. Theoretically, the
background feature points can be effectively eliminated by salient processing. It is feasible
to reduce the number of matching feature points, and thus reduce the calculation of pose
estimation based on feature points.

This is the highlight of this article:
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(1) Our method proposes reducing the SIFT feature points’ extraction and matching
based on salient preprocessing, which saves the calculation of solving R, t based on
all the matching feature points and with less processing time.

(2) The interference from the background’s feature points can be eliminated, and the
matching quality of feature points can be improved after salient preprocessing.

(3) Our algorithm uses a coarse-to-fine method to eliminate the wrong matching feature
points, simultaneously improving the quality of the matching point pairs and reducing
the number of point sets.

(4) We propose a salient object’s feature point selection method to improve the real-time
performance of ICP pose estimation while achieving good robustness. Moreover, we
analyze the main influencing factors that affect its related performance.

2. Related Work

The standard ICP algorithm has a high calculation amount for feature point extraction
and matching, which is sensitive to initial transformation and easily falls into the local
optimum. Since ICP was proposed, many improved ICP algorithms have been proposed.
We will list some influential research cases here and list the problems that our work is
committed to solving:

Point-to-Plane ICP. Zeng Y et al. [2] proposed a new weight method for the ICP al-
gorithm of point-to-plane error metric to improve the accuracy and robustness of the ICP
algorithm. Li J et al. [3] presented a new symmetric point-to-plane distance metric whose
functional zero-set is a set of locally second-order surfaces. Then, they introduced a robust
adaptive loss to construct their robust symmetric metric. Compared with directly calculat-
ing the point-to-point distance used in the cost function of the original ICP algorithm, the
point-to-plane is the distance from the original vertex to the face where the target vertex is
located. Furthermore, it should be noted that the optimization of point-to-plane is a nonlin-
ear problem, and calculation is slow and generally uses linearization approximation. The
point-to-plane will converge faster than the point-to-point, but the speed is relatively slow
due to the optimization being a nonlinear problem. So, in this article, we still use the most
classic and simplest point-to-point algorithm as the basis for further salient preprocessing
for better real-time performance.

Plane-to-Plane ICP. Wang J et al. [4] proposed an acceptance-rejection sampling-based
two-step point filter to exclude the points that rarely benefit the lidar odometry performance,
reducing the distribution approximation errors when the GICP works as a plane-to-plane
iterative closest point (ICP). Pavan N L et al. [5] presented a plane-based matching algorithm
to find plane-to-plane correspondences using a new parametrization based on complex
numbers, which avoids the ambiguity in the calculation of the rotation angle formed
between normal vectors of adjacent planes. The plane-to-plane considers the point cloud’s
local structure and calculates the face-to-face distance, similar to the point-to-plane that
considers the target point cloud’s local structure [27,28]. The above-related literature put
forward a new idea of point cloud matching. The improvement of the point cloud matching
method can reduce the logarithm of feature matching. Further, we propose reducing
the feature matching consideration from the source of point cloud data through salient
preprocessing, which can be used to enrich the research on correlation matching algorithms.

Generalized ICP (GICP). Min Z et al. [6] first formally formulated the generalized
PS registration problem probabilistically. Especially, positional and orientational informa-
tion was incorporated into the registration. Makovetskii A et al. [7] proposed an exact
closed-form solution for orthogonal registration of point clouds based on the generalized
point-to-point ICP algorithm. Moreover, they used points and normal vectors to align 3D
point clouds, while the common point-to-point approach uses only the coordinates of points.
The generalized ICP (GICP) comprehensively considers point-to-point, point-to-plane, and
plane-to-plane. In comparison, the strategy, accuracy, and robustness have been improved.
The related literature proposed a new point cloud matching idea, and the excessive de-
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tails and consideration of data can be reduced from the point cloud data source through
salient preprocessing.

Normal iterative closest point (NICP). Serafin J et al. [9] presented a novel online
method to align point clouds recursively. The algorithm relies on a least-squares formula-
tion of the alignment problem that minimizes an error metric depending on these surface
characteristics. Jia S et al. [10] presented a novel method called color support normal
iterative closest point (color NICP) to align point clouds recursively. Their algorithm takes
advantage of not only the 3D structure but also the texture information of the color image.
NICP considers the normal vector and local curvature and further utilizes the local structure
information of the point cloud. The experimental results in their paper are better than those
of GICP. The above-related literature puts forward a new idea of point cloud matching.
However, we found that the improved ICP algorithm above does not introduce a salient
attention mechanism to imitate the human perspective to process tasks. Here, we pro-
pose further reducing the data consideration from the source of point cloud data through
salient preprocessing, which can be used to enrich the work of relevant algorithms in point
cloud matching.

The above research demonstrates that the improved ICP method of point cloud match-
ing can reduce feature matching and improve pose estimation robustness. Relevant research
shows that the extraction and matching of feature points occupy a considerable proportion
of the entire process of ICP pose estimation [5,9,15]. With the increase in the number of
spatial matching points, the efficiency of the ICP algorithm solution will decrease seri-
ously [25,26]. So, in addition to the above-improved point cloud matching method, we
also focus on choosing fewer feature points to represent all the original point set’s fea-
ture information. The existing related research work revolves around the following work:
(1) uniform sub-sampling [11]; (2) random sampling [29]; (3) feature-based sampling [14];
(4) normal-space sampling [12]; and (5) curvature sampling [13].

As represented by the above, various methods are used to reduce the extraction and
matching of feature points, and various sampling and matching methods are proposed.
However, there is rarely a report on introducing the salient attention mechanisms in related
research fields. The salient object is the most critical in an image. It is more representative of
the whole image, which is used in reducing the whole image’s feature point extraction and
matching to save time, and is theoretically feasible and full of application potential. Recent
influential articles, such as Wan T et al. [30], offer three strategies to increase the robustness
of the iterative closest point (ICP) algorithm involving the salient object detection (SOD)
method, and their experimental scheme. These are interesting, but complex. Yao Run
Zhao et al. [31] proposed a joint objective to align both salient color points and background
points based on the color-supported generalized ICP. Furthermore, they fully leveraged
geometric and texture information, but their method lacks consideration from the per-
spective of reducing matching features. In this paper, we propose a simple coarse-to-fine
approach to study the help of salient preprocessing and RANSAC processing in reducing
feature point matching. Our feature point selection method is based on the feature points
on the salient object for sampling and using RANSAC for optimizing. Our method can
effectively reduce the noise interference from incorrect environmental matching point pairs
and reduce the feature points’ extraction and matching, thereby improving the real-time
performance of ICP pose estimation.

3. Methodology

In this section, we provide flowchart Figure 1 of the algorithm proposed in this paper
with the main experimental operation explanations. Furthermore, we describe the main
algorithm theories involved in the proposed method, including three main components:
3.1. Salient preprocessing; 3.2. RANSAC removes incorrectly matching salient SIFT feature
points; 3.3. Pose estimation based on matching salient feature points.
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Figure 1. The flowchart of the method proposed in this paper contains explanations. Our pro-
posed method includes salient preprocessing, feature extraction, feature point matching, RANSAC
processing, and ICP pose estimation.

3.1. Salient Preprocessing

Salient object detection can be defined as detecting the areas in the image with the
most obvious and prominent contrast with the background [23,24], which is often used as a
preprocessing stage for advanced vision tasks, such as video SOD [32], visual tracking [33],
SLAM [34], etc. We propose to process images using a salient object detection neural
network architecture [35] as the preprocessing stage of pose estimation based on the
RGB-D camera. We use salient preprocessing to eliminate the extraction and matching of
background feature points. Furthermore, we use salient objects’ feature points to replace the
entire image’s feature points to improve the real-time performance of ICP pose estimation.
The salient preprocessing neural network architecture [35] introduces a dynamic feature
integration strategy to choose favored features dynamically in an end-to-end learning
manner. It runs in real time, while producing good detection results. This dynamic strategy
can largely ease the process of architecture construction and promote the backbone to adjust
its parameters for solving multiple problems adaptively.

3.2. RANSAC Removes Incorrectly Matching Salient SIFT Feature Points

SIFT (scale invariant feature transform) is the most classic local feature extraction
method [36]. The SIFT feature remains invariant to rotation, scale scaling, and brightness
changes and is a very stable local feature [18,19]. So, in this article, we perform ICP pose
estimation based on SIFT features.

There are still incorrectly matching pairs of feature points in our proposed algorithm
after salient preprocessing. The incorrectly matching points belong to outliers in statistics,
which are interference noises. These mismatches will have a great impact on the subsequent
camera pose estimation. Too many mismatches will make the camera pose estimation more
and more outrageous. Therefore, we need to improve the matching quality through
RANSAC further.

RANSAC (random sample consensus) adopts an iterative method to estimate the
parameters of the task model from a group of observed data that contains outliers. The
RANSAC algorithm assumes that the data contain correct and abnormal data (or noise).
The correct data are labeled as inliers, and the abnormal data are labeled as outliers [20,21].
RANSAC also assumes that given a set of correct data, the task model parameters that
conform to these data can be calculated. The core idea of the algorithm is randomness
and hypothesis. The randomness is to randomly select sampling data according to the
occurrence probability of correct data. The randomness method can approximate the correct
results according to the law of large numbers. The hypothesis is to assume that the selected
sampling data are all correct and then use these correct data to calculate other points by the
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task model and give a score to the result. Finally, the highest-scoring task model was treated
as the model for the entire data set [37,38]. Relevant studies have fully demonstrated that
RANSAC can effectively improve matching point pairs’ quality.

3.3. Pose Estimation Based on Matching Salient Feature Points

ICP (iterative closure point) has the advantages of simplicity and low computational
complexity compared with other algorithms, and it has become the most popular rigid
point cloud registration method [14,29]. The ICP algorithm assigns correspondence it-
eratively based on the nearest distance criterion and obtains the rigid transformed least
squares for the two-point clouds. That is a process of continuously determining the corre-
sponding relationship and continuing to iterate until the minimum value of least squares is
reached [3,39]. Currently, many point cloud matching algorithms are based on the ICP
improvement, which is simple and does not need to segment the point cloud. When the
initial matching is good, the accuracy and convergence are good. When the initial matching
is bad, the accuracy and convergence are bad. The features of lidar data are not rich enough,
so it is not easy to know the matching relationship between the two-point sets. A better
matching relationship can be obtained in visual RGB-D according to the matching feature
points, and the whole pose estimation problem has become simpler [8,40,41]. This paper
proposes to improve the real-time performance of ICP pose estimation based on an RGB-D
camera by reducing the image feature point extraction and matching range.

The solution of ICP is to solve R and t to minimize the following formula:

E(R, t) =
1

Ps
∑|Ps|

i=1 ‖P
i
t −

(
R ∗ Pi

s + t
)
‖

2
, (1)

where Pi
s and Pi

t are the corresponding points in the origin point cloud Ps (source) and the
target point cloud Pt (target), respectively.

The idea of the ICP algorithm is that if we know the correspondence between the
points of the two-point clouds, we can solve the rotation transformation R and translation
transformation t in the pose transformation by solving the least squares problem.

4. Experiments

In this section, we conduct the experiments of our proposed method. The method
contains the following content: (1) perform salient preprocessing experiments on images;
(2) the experiments prove that salient preprocessing can effectively reduce the extraction
and matching of feature points; (3) according to the improvement of pose estimation after
salient preprocessing, we analyze the influencing factors and conduct the verification
analysis; (4) we conduct comparative experiments and analyses. The experiments have
verified that the salient preprocessing algorithm can effectively reduce the calculation
amount in the feature point extraction and matching process. Our method’s relative
pose error and real-time performance are reasonable, providing a new research idea for
processing feature points in pose estimation.

The data set used in this paper is shown in Table 1:

Table 1. The test set data information details.

Category Data Type Number Sampling Premise

TUM [42] RGB-D image 600 pairs Salient imaging is clear, and the Raw RGB
image pairs are the same scene.

Our experiments under the condition of the GPU are NVIDIA GeForce GTX 1650, the processor is AMD Ryzen 5
4600H with Radeon Graphics, the memory is 8GB, the main frequency of the processor is 3GHz, and the highest
turbo frequency is 4 GHz.

Here, we use the subset with the ground truth trajectory in TUM. There are 600 image
pairs in total with the true pose values and clear salient imaging selected as the test data
set for the proposed algorithm (the subset includes: sequence ‘freiburg1_plant’, sequence
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‘freiburg1_teddy’, sequence ‘freiburg2_coke’, sequence ‘freiburg2_flowerbouquet’, sequence
‘freiburg2_flowerbouquet_brownbackground’, sequence ‘freiburg2_metallic_sphere’, sequence
‘freiburg3_cabinet’, sequence ‘freiburg3_large_cabinet’, sequence ‘freiburg3_teddy’, Sequence’
freiburg2_desk’, sequence ‘freiburg1_xyz’, sequence ‘freiburg1_rpy’, sequence ‘freiburg2_xyz’,
sequence ‘freiburg2_rpy’, sequence ‘freiburg1_360’, sequence ‘freiburg1_desk’, etc.).

4.1. Salient Preprocessing Experiment

Figure 2 is a schematic diagram of the salient preprocessing method in this paper.
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Figure 2. We use a salient grayscale image (b) to mask image (a) to get colorful salient object imaging (c).

The following are the steps of salient preprocessing:

(1) We process the original image Figure 2a to obtain a salient image Figure 2b with a
gray value imaging.

(2) We set the alpha channel of the salient object part where the pixel value is greater than
200 to transparent in the gray value image. That is, its alpha value is set to 0 at the
place where the pixel value is greater than 200.

(3) Under the same coordinate system, we use Figure 2b with the transparent channel to
mask Figure 2a for obtaining Figure 2c with colorful salient object imaging.

Our salient preprocessing method makes the background image masked with black
pixels. Compared with Figure 2b that salient objects in gray value imaging, the salient
preprocessing step help Figure 2c get salient objects with richer texture features, which are
more conducive to SIFT feature points’ extraction and matching.

4.2. The Advantages of Salient Preprocessing

Here, we compare the two images before and after salient preprocessing. Figure 3(a)
has more extracted feature points than Figure 3(a)#. After our salient preprocessing pro-
cesses in the original image, the feature points in the background do not exist. However,
the feature points in the new salient image imaging are dense at the edge of the contour. In
this case, the total number of feature point differences in the image before and after salient
preprocessing is still obvious. The total number of extracted feature points after salient
preprocessing is less than the total number of feature points before salient preprocessing by
more than 10%. That shows that our proposed salient preprocessing method can reduce
the number of extracted feature points.

Figure 3(b),(b)# are based on the SIFT feature for feature matching comparison. The
matching quality of the feature points in Figure 3(b)# is better after the salient preprocessing,
and there is no background feature at this time without the noise point interference. Image
similarity (FLANN method) improves from 41.23% in Figure 3(b) to 49.77% in Figure 3(b)#.

Figure 3(c),(c)# are the feature point matching maps before and after the salient prepro-
cessing with RANSAC removing the incorrectly matching pairs. Our salient preprocessing
without RANSAC processing can improve the matching feature quality with image similar-
ity improving. However, with RANSAC further processing, this advantage is not obvious
because the RANSAC and salient preprocessing algorithm can both remove the noise of
feature points in the image and improve the matching quality of feature points. RANSAC
can mask the advantages of coarsely salient preprocessing after RANSAC finely processing,
such as the matching quality of Figure 3(c),(c)# are both well after RANSAC. The effect
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of improving feature point matching after salient and RANSAC processing is not very
obvious. However, from the whole process of our proposed algorithm, over 95% of image
pairs that the incorrectly matching feature point pairs are reduced in the process from
salient preprocessing to RANSAC processing after we observed and calculated the statistics
for all of the images.
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It can be seen from Table 2 that before and after salient preprocessing, whether or
not RANSAC processing is performed, salient preprocessing can reduce the number of
feature extractions to save time and improve feature matching quality. It can be seen from
the comparison that under the same conditions, RANSAC processing can further improve
the quality of feature matching. Figure 3(b)# shows the matching feature point pairs of
the extracted feature points from Figure 3(a)# after salient preprocessing. The matching
feature points after RANSAC processing are shown in Figure 3(c)#, and Figure 3(c)# has
fewer feature point pairs available for pose estimation compared with Figure 3(c). The
feature point extraction and matching of the whole process of our method are less than the
corresponding horizontal position image without salient preprocessing, which saves the
extraction and matching time of feature points.

Table 2. Information details of Figure 3.

Category Extracted Key Points Feature Point Matching Pairs Number of Matching Pairs
after RANSAC Processing

Without salient preprocessing Left IMG 611, Right IMG 666 202 30
Salient preprocessing Left IMG 627, Right IMG 535 172 12

4.3. Main Influencing Factors

Our experiments found that the quality of feature point matching can be improved
after salient preprocessing (the pose estimation becomes better after salient preprocessing
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(without RANSAC) takes a proportion of 92.5%). However, the matching feature points
are wrong in some cases, and the incorrectly matching feature points cannot be effectively
removed by RANSAC after salient preprocessing, and thus cannot effectively be used for
pose estimation. After experimental analysis, we infer that the relative pose error is large
because the feature points cannot be matched effectively and are affected by the following
influencing factors, including (1) large image frame differences; (2) object contour and
texture information; and (3) salient imaging quality differences.

The improved pose estimation after the salient preprocessing and RANSAC processing
takes a proportion of 85.6%, which is not apparent compared with the improved pose
estimation only based on salient preprocessing and which takes a proportion of 92.5%.
That is because RANSAC will finely eliminate the wrong matching point pairs in all the
matching point pairs. The advantages of salient preprocessing with RANSAC are not
apparent, no matter whether we use coarsely salient preprocessing. The interference
of incorrectly matching noise points will be finely removed in the later RANSAC stage.
Our proposed salient preprocessing plus RANSAC is a coarse-to-fine way to eliminate
incorrectly matched pairs and has fewer incorrectly matched pairs compared with using
salient preprocessing only or the parallel comparison test without salient preprocessing, as
shown in Table 7. However, our proposed method also obtains fewer feature pairs making
it more susceptible to receiving the interference of incorrectly matching feature points
than the original image using RANSAC processing. That is why the improvement of pose
estimation after salient preprocessing plus RANSAC processing is less obvious than that
only based on salient preprocessing in Table 3.

Table 3. The performance of the proposed method in improving pose estimation.

Category

Unable to Estimate the
Pose by Our Method
(Relative Pose Error

t > 0.1 m/s, R > 2 deg/s)

The Pose Estimation
Becomes Better after

Salient Preprocessing
(without RANSAC)

The Pose Estimation
Becomes Better after

Salient Preprocessing
(with RANSAC)

Improved Real-Time
Performance

Our method 7.9% 92.5% 85.6% 96.5%

The performance of the loss mainly comes from the influence of the poor matching quality of the feature points. It
should be noted in this part of the experiment that the evaluation of pose estimation is based on the relative pose
error for comparison.

About 7.9% cannot effectively estimate the pose in the experimental data set by
our method, which comes from the influence of feature point extraction and matching
quality. From the improved real-time performance in Table 3, we can see that as long
as our salient preprocessing plus RANSAC processing is carried out, then our method
can effectively improve the real-time performance of pose estimation, except for some
influencing conditions (such as in Section 4.3.2, the feature points become more after salient
preprocessing). Our algorithm’s real-time performance improved 96.5% of the image pairs
after the salient preprocessing using RANSAC processing compared with the original
image using RANSAC processing, mainly owing to salient preprocessing reducing the
feature point extraction and matching.

The verification tests of the three main influencing factors of the matching feature
points quality that influence pose estimation are as follows:

In our analysis experiments below, in Figure 4(a),(a)#, Figure 5(a),(a)# and Figure 6(a),(a)#
are the extracted feature points before and after the salient preprocessing. Figure 4(b),(b)#,
Figure 5(b),(b)# and Figure 6(b),(b)# are the matching SIFT feature points before and after
the salient preprocessing without RANSAC processing. Figure 4(c),(c)#, Figure 5(c),(c)#
and Figure 6(c),(c)# are the matching SIFT feature points before and after the salient
preprocessing with RANSAC processing.
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Figure 5. Feature matching cannot be performed effectively even after the salient preprocessing when
the contour features are symmetrical and lack texture information. The feature points in the RGB map
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4.3.1. The Large Difference between Image Frames

Figures 3 and 4 are from the same subset of TUM, but the feature points’ extraction
and matching quality are very different. The reason is that the difference between image
frames (the interval time of two image frames) in Figure 4 is too large to calculate pose
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estimation effectively. In contrast, the difference between image frames in Figure 3 is much
smaller and can effectively estimate the pose.
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Figure 6. Feature matching numbers will be reduced after the salient preprocessing when obvious
salient imaging differences exist. The feature points in the RGB map and the feature points in the
Depth map have the same coordinate relationship in the same plane coordinate system, and it is easy
to obtain the spatial positions of these feature points.

When there is a large time interval between the two image frames, there will be
a large change in the imaging angle. As shown in Figure 4(b),(c) and Figure 4(b)#,(c)#,
whether or not salient and RANSAC processing is performed, the matching quality of
feature points is poor, and the pose estimation cannot be performed effectively. Figure 4(c)#
is the last step of our experiment, and its final result has relatively better feature point
extraction and matching than the parallel comparison experiment shown in Figure 4(c)
because without any background interference points. All operations, including the result in
Figure 4(c)#, the previous feature extraction in Figure 4(a)#, and the feature matching before
RANSAC processing in Figure 4(b)# as a whole show that we can improve the real-time
performance by reducing the time of feature points’ extraction and matching compared
with the comparison experiments on the left in Figure 4 (Table 4).

Table 4. Information details of Figure 4.

Category Extracted Key Points Feature Point Matching Pairs Number of Matching Pairs
after RANSAC Processing

Without salient preprocessing Left IMG 549, Right IMG 626 42 4
Salient preprocessing Left IMG 350, Right IMG 615 30 4
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4.3.2. Object Contour and Texture Information

The lacking contour features and texture information will affect the extraction and
matching of SIFT features.

When the contour features of the objects in the two images are symmetrical, and the
texture information is single, the feature point matching cannot be effectively carried out
regardless of whether the images are after salient preprocessing, as shown in Figure 5(b),(b)#
and Figure 5(c),(c)#. The pose estimation is invalid at this time. In our experiment, the whole
feature point extraction and matching are relatively reduced after salient preprocessing, and
the percentage of real-time improvement accounts for 96.5%, as shown in Table 3. Where
the error situation is, as shown in Figure 5(a), the feature points become more after salient
preprocessing, as shown in Figure 5(a)#. The matching logarithm of feature points after
salient preprocessing is also more (Figure 5(b)# compared with Figure 5(b)). We infer that it
is due to the salient object having a symmetrical contour and lacking texture information.
In this situation, the imaging boundary of the salient object will change white width due
to the influence of the imaging quality of the previous salient preprocessing, as shown in
Figure 5(a)#. White stripes with varying widths are generally considered texture parts, and
their characteristics are extracted as SIFT features. That is why the number of feature points
on the contour boundary increases after salient preprocessing (Table 5). The final results of
Figure 5(c),(c)# after RANSAC processing show that their feature point matching is poor,
no matter whether it is after salient preprocessing. That is because the object lacks texture
information at the symmetrical shape. The features in the image can easily be mismatched
with the symmetrical part of another image, making the feature point matching ineffective
for estimating pose.

Table 5. Information details of Figure 5.

Category Extracted Key
Points

Feature Point
Matching Pairs

Number of Matching Pairs
after RANSAC Processing

Without salient
preprocessing

Left IMG 70, Right
IMG 40 17 4

Salient
preprocessing

Left IMG 197,
Right IMG 79 20 4

4.3.3. Salient Imaging Differences

The salient preprocessing process of the robot camera at different positions is easily
affected by the shooting angle in some situations, which makes the imaging of the salient
object have certain differences. Such as, some smaller salient objects have smaller areas of
salient imaging easily affected by salient preprocessing from different shooting angles, and
this makes the salient small object can be clearly imaged at one shooting angle but may
not fully be imaged at another. Moreover, the extracted features on this small salient object
cannot be matched in different image frames, and this reduces the number of matching
feature point pairs. If the salient object is large, the imaging area is relatively large, and
the effect of this influencing factor is much smaller because of the more extracted features
available for matching.

When the main objects in the scene have certain shapes and textures, our proposed
salient preprocessing method can greatly reduce the feature point extraction and matching,
as shown in Table 6, thereby saving time. However, our experiments show that when there
is a salient imaging difference between the two frame images, the results in extractable
feature differences affect the pose estimation. As shown in Figure 6(b)#, the salient imaging
of the Cola and mouse in the two images are quite different. The matching feature point
pairs in Figure 6(c)# are far less than in Figure 6(c) after the RANSAC processing. Too
few matching point pairs will affect the pose estimation quality, and the fewer matching
feature points are more susceptible to receiving the feature point noise interference. That
is why the pose estimation quality after salient preprocessing is not as good as the pose
estimation based on the original image (both after being processed by RANSAC). The
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matching feature point pairs in the original image after RANSAC processing in Figure 6(c)
with more matching feature points and have a stronger anti-interference for feature point
noise than the image after salient preprocessing and RANSAC processing in Figure 6(c)#.

4.4. Comparison Test Analysis

In this part, we use parallel contrast experiments to illustrate the performance of the
proposed algorithm in feature extraction, feature point matching, time-consuming of pose
estimation, and so on.

Table 6. Information details of Figure 6.

Category Extracted Key
Points

Feature Point
Matching Pairs

Number of Matching Pairs
after RANSAC Processing

Before salient
preprocessing

Left IMG 1629,
Right IMG 1602 591 321

Salient
preprocessing

Left IMG 885,
Right IMG 592 164 29

In this section, we will illustrate the effectiveness of the coarse-to-fine way in our
algorithm in Table 7. After salient preprocessing, the matching feature pairs in the images
are further improved by RANSAC processing to eliminate the wrong matching feature
points and improve the matching quality.

Table 7. The salient preprocessing can preliminarily reduce the incorrectly matching feature point pairs,
and then the RANSAC processing can further eliminate the incorrectly matching feature point pairs.

Category

The Incorrectly Matching
Logarithm of Figure 3

(before RANSAC
Processing)

The Incorrectly Matching
Logarithm of Figure 3

(after RANSAC Processing)
600 Pairs of Images

Without salient
preprocessing 172 The incorrect matching pairs

difference is not apparent before
and after salient preprocessing.

Over 95% of image pairs reduce the
incorrectly matching feature point pairs

containing the process from salient
preprocessing to RANSAC processing.

Salient
preprocessing 160

Salient preprocessing can greatly reduce the number of wrong matching logarithms before RANSAC processing,
which is convenient for improving the matching quality of feature points in the scene in a real-time way. The
difference in the incorrectly matching logarithm between the image after salient preprocessing (with RANSAC)
and the original image (with RANSAC) is not obvious in most pairs. That is because RANSAC can finely remove
the mismatching logarithm, which weakens the advantages of salient processing. However, we found that the
average error matching logarithm after the salient preprocessing (with RANSAC) is slightly lower than that in the
original image (with RANSAC). That is because incorrectly matching logarithms being obviously reduced after
the salient preprocessing (with RANSAC) affects the average value of incorrectly matching logarithms.

Due to the lack of the ground truth of matching feature point pairs, we manually
count the incorrectly matching feature point pairs after enlarging the picture. It can be
seen from Table 7 that there are fewer incorrectly matching feature point pairs after salient
preprocessing than those without salient preprocessing (before RANSAC processing).
Furthermore, we take Figure 3 as an example to calculate the incorrectly matching feature
point pairs, in which neither the salient preprocessed nor the non-salient processed images
have obviously incorrectly matching feature point pairs after RANSAC processing and
are not detected by us. Nevertheless, we take Figure 6 as an example. There are no
obvious wrong matching pairs in Figure 6(c)# after the salient preprocessing using RANSAC
processing compared with some incorrect matching feature pairs detected in the original
image using RANSAC processing. Similar blurry contrast observations were made in
600 image pairs with an accuracy of over 95% in reducing the incorrectly matching feature
point pairs containing the process of salient preprocessing and RANSAC processing. The
less than 5% part is mainly the case because there is no apparent difference in the number of
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incorrectly matching feature point pairs that the naked eye identifies, and the salient object
has a symmetrical contour and lacks texture information after salient preprocessing. The
experiments demonstrate that the proposed method can obtain fewer incorrectly matching
feature points after salient preprocessing. Further, it can reduce the incorrectly matching
feature points in a more detailed manner based on RANSAC. It is worth noting that the total
number of matching pairs obtained after salient preprocessing and RANSAC processing
in Figure 3(c)# is 12 pairs, which is less than the 30 matching pairs in Figure 3(c) without
salient processing. This means our method is used for solving pose estimation and can
save time based on fewer matching feature point pairs.

The following compares the feature extraction, feature matching, and time-consuming
pose solution of the SIFT+RANSAC before and after salient preprocessing.

In our experiment, the average number of feature point extraction and matching
decreased after salient preprocessing. The average number of extracted feature points in
Table 8 is based on the total number of feature points extracted in all images in the data
set divided by the number of images. The average matching logarithm of feature points
before and after RANSAC processing in Table 8 is the sum of the matching logarithm of all
feature points in the 600 image pairs divided by the number of image pairs. The average
calculation time in this paper is the average value of the time spent in the pose estimation
based on ICP, including SIFT feature point extraction and matching, RANSAC processing,
and pose estimation.

Table 8. Comparison of feature point extraction and matching before and after salient preprocessing.

Category
The Average Number
of Extracted Feature
Points (One Image).

Average Matching
Feature Point Pairs

(One Pair of Images).

Match Logarithms after
RANSAC Processing
(One Pair of Images).

Average Pose
Estimation Time

(One Pair of Images).

Without salient
preprocessing 522.8 181.1 69.4 1.92s

Salient preprocessing 351.5 123.7 43.3 1.49 s
Percentage of saved time 22.40%

The average calculation time in this part is the average value of the time spent in the pose estimation according to
the matching feature point pairs based on the ICP analyzed in Section 3.3.

The percentage of saved time after salient preprocessing in Table 8 is the ratio of the
average time difference spent on the pose solution before and after salient preprocessing to
the average time spent on the pose solution before salient preprocessing. The formula is
as follows:

Timesaved =
Timewithout processing − Timeprocessing

Timewithout processing
, (2)

where Timesaved means the percentage of saved time after salient preprocessing,
Timewithout processing means average time spent on the pose solution before salient preprocessing,
and Timeprocessing means average time spent on the pose solution after salient preprocessing.

Through comparative experiments, it can be seen that masking the image background
through salient preprocessing can effectively reduce the feature point extraction and match-
ing range. The matching logarithm of feature points after RANSAC processing is also
reduced. Our method reduces the time of solving the pose by 22.40% on average because
the salient preprocessing algorithm proposed in this paper can reduce the number of SIFT
feature point extraction and matching. In theory, our method can also be realized by other
types of feature points.

In addition to comparing the pose estimation based on the SIFT + RANSAC method
before and after salient preprocessing, we also compare the pose estimation algorithms
based on ORB+RANSAC and SURF + RANSAC, respectively, as shown in Table 9.
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Table 9. The performance comparison of the proposed method and related methods.

Method

The Average
Number of

Extracted Feature
Points (One Image).

Average Matching
Feature Point

Pairs (One Pair of
Images).

Match Logarithms
after RANSAC

Processing (One
Pair of Images).

Average Pose
Estimation Time

(One Pair of
Images)

Relative Pose
Error (RPE)

Ous 351.5 123.7 43.3 1.49 s 0.057 m/s,
1.512 deg/s

SIFT+RANSAC
[19,40,41] 522.8 181.1 69.4 1.92s 0.054 m/s,

1.467 deg/s
ORB+RANSAC

[40,41,43] 494 177 59 0.36s 0.076 m/s,
1.791 deg/s

SURF+RANSAC
[40,41,44,45] 353 159 62 0.84 s 0.062 m/s,

1.619 deg/s

In the experiment in the table, we use a pair of images as the statistics unit to calculate the data. Furthermore, we
use the 600 pairs of images described above as the data set to calculate the average matching feature point pairs,
pose error, etc., and take the average value. It should be noted that some image pairs with poor matching effects
in the data set will affect the average relative pose error performance. All the experiments in this paper use GPU
to accelerate the feature matching and ICP pose estimation to shorten the running time. Each kind of comparative
experiment here is based on the content of several articles because we cannot rely only on one article to realize the
operation of the comparative experiment. The parameter settings of feature extraction and RANSAC processing
in the parallel comparison experiment are consistent. The relative pose error contains translation and rotation
errors and can be assisted using the EVO tool [46].

The calculation method and details of the relative pose error (RPE) are involved in
Table 9.

The TUM data set contains the ground truth trajectory of the camera (including
timestamp and actual pose). Then, under the same timestamp, we calculate the relative
pose of two image frames before and after the salient preprocessing. This paper uses the
relative pose error to calculate the difference between the pose changes within the identical
two timestamps. After aligning timestamps, both the actual pose and the estimated pose
can be obtained at the same time interval. We are, according to Equation (3), to obtain the
relative pose error. The relative pose error is calculated according to the inputted actual
pose value and the estimated pose.

The relative pose error ER.i of frame i is defined as follows:

ER.i =
(

Q−1
i Qi+∆

)−1(
P−1

i Pi+∆

)
, (3)

where Qi is the actual value of the pose of the image, Pi is the estimated value of the pose,
and ∆ represents the interval time. Then, the actual value of the image pose after ∆ time is
Qi+∆ and the estimated value Pi+∆. Our experiment calculates the pose based on 600 pairs
of images in the data set. The actual pose and the estimated pose of the previous frame
are the same (Qi = Pi), and after the ∆ time interval, the true value of the pose Qi+∆ and
the estimated value of the pose Pi+∆ are not the same. The ∆ of the 600 image pairs in the
used data sets is the interval time of two image frames with clear salient imaging, which is
much larger than the ∆ in the two adjacent frames of the standard data set. That is why
this article’s relative pose error data are universally larger no matter what feature is used.

In this paper, ORB+RANSAC has the largest relative pose error, but the best real-time
performance. We analyze that this is because ORB feature extraction is fast and in real time.
However, the disadvantage is that ORB features do not have scale and rotation invariance
and are sensitive to noise.

In our experiments, the SURF has certain rotation and scale transformation robustness,
and its real-time performance is better than SIFT. Although SIFT takes longer, the feature
extraction and matching quality are much higher than SURF. Our proposed method is based
on SIFT because the pose estimation using SIFT features can extract some local features
of the image. Moreover, the SIFT feature has the advantage of maintaining invariance to
rotation, scale scaling, brightness changes, and maintaining a certain degree of stability to
angle changes and noise. Using the SIFT feature can more effectively identify an object
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in different scenes and be more accurate for pose estimation. It can be seen from Table 9
that SIFT+RANSAC has better relative translation error and rotation error performance
than ORB+RANSAC and SURF+RANSAC, no matter whether after salient preprocessing.
The SURF feature has less robustness and better real-time performance than SIFT, which
makes the pose estimation based on SURF+RANSAC have better real-time performance
and a larger relative pose error than SIFT+RANSAC. The SURF feature has better feature
robustness and worse real-time performance than the ORB feature. So, the pose estimation
based on SURF+RANSAC in Table 9 takes more time to calculate the pose, but has a smaller
relative error than the ORB-RANSAC-based pose estimation.

The SIFT-RANSAC with salient preprocessing has fewer relative translation and
rotation errors than ORB-RANSAC and SURF-RANSAC. That is because the SIFT feature
is the most time-consuming but robust feature. After the salient preprocessing, the number
of extraction and matching logarithms of feature points is greatly reduced compared
with the SIFT+RANSAC without salient preprocessing, and the time-consuming result
is reduced. However, there is no advantage in the time-consuming amount compared to
ORB-RANSAC and SURF-RANSAC because there is no salient preprocessing step in the
other related comparison experiments. Nevertheless, our proposed method is based on
salient preprocessing to reduce feature points, so the amount of time consumed in salient
preprocessing needs to be considered.

In our comparative experiments, the method proposed in this paper can effectively
improve real-time performance based on SIFT features. However, translation and rotation
errors are larger than the SIFT+RANSAC without salient preprocessing. It can be seen from
Table 7 that there are fewer incorrectly matching feature point pairs after salient preprocess-
ing than in the comparative experiment without salient preprocessing. Most image pairs
have improved their pose estimation after our salient preprocessing. However, where a
small part of individual pose estimation values is low, this makes the overall average RPE
values lower than those without salient preprocessing. The reasons that the RPE becomes
larger after salient preprocessing are analyzed as follows: (1) our proposed method can
reduce the number of incorrectly matching logarithms. However, the total number of
matching logarithms is also reduced, and the pose estimation is more susceptible to receiv-
ing interference from incorrectly matching point pairs; and (2) the experiments show that
the relative pose error in some cases becomes larger because they receive interference from
the main influencing factors, such as those shown in Figure 5, where the edge of the salient
objects’ imaging contour has relatively rich texture information after salient preprocessing
when the salient objects have symmetrical outlines and lack texture information. The
texture parts have more feature points that can be extracted and more mismatching feature
pairs. The mismatching feature points on the salient object’s symmetrical contour will
affect the pose estimation and worsen the average value of the relative pose error.

We further use the YCB-Video data set to verify our above comparative analysis (in
Table 10). The objects in the YCB-Video scene have high-quality 3D models and good
visibility in depth.

Table 10. Comparative tests on different data sets.

Method
Average Pose Estimation

Time (One Pair of
Images, TUM)

Relative Pose Error (RPE)
(TUM [42])

Average Pose Estimation
Time (One Pair of Images,

YCB-Video)

Relative Pose Error (RPE)
(YCB-Video [47])

Ous 1.49 s 0.057 m/s,
1.512 deg/s 1.32 s 0.033 m/s

1.023 deg/s
SIFT+RANSAC

[19,40,41] 1.92 s 0.054 m/s, 1.467 deg/s 1.97 s 0.032 m/s
0.987 deg/s

ORB+RANSAC
[40,41,43] 0.36 s 0.076 m/s,

1.791 deg/s 0.24 s 0.062 m/s
1.545 deg/s

SURF+RANSAC
[40,41,44,45] 0.84 s 0.062 m/s, 1.619 deg/s 0.67 s 0.041 m/s

1.203 deg/s

The image size of YCB-Video and TUM are both 640 * 480, and the experimental conditions are consistent
(YCB-Video is only temporarily used in Table 10).
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The test results on the YCB-Video data set further verify our analysis conclusion of the
comparative experiment of pose estimation based on the different features above. The lack
of background features after salient processing will decrease the correspondence between
frames, which will harm the robustness. That is why our proposed method is consistently
slightly worse than SIFT+RANSAC in relative pose estimation, but there is no doubt that
our proposed method has better real-time performance than other methods while ensuring
good pose estimation. Our method based on YCB-Video has less relative pose error than
TUM. We infer this is because the objects in YCB-Video have high-quality 3D models and
good visibility in depth, which is conducive to the extraction of high-quality spatial feature
points for pose estimation. The shape and color of these high-quality objects are different
from the background and are located in the center of the field of view, which is easier
to be detected as salient objects and is more conducive to reliable feature extraction on
salient objects. The performance of various methods without salient preprocessing based
on YCB-Video is generally better than that of the TUM data set. This is because the objects
in YCB-Video have high-quality 3D models and good visibility in depth. This is conducive
to extracting high-quality spatial feature points on these objects for pose estimation.

This paper proposes to reduce the computational complexity of pose estimation and
improve the feature extraction and matching quality in a coarse-to-fine way for the first
time. It verifies the feasibility of the proposed scheme through comparative experiments.
The method proposed in this paper has good relative translation error and rotation error
and performs well in terms of the amount of time consumed on the whole, which reduces
the relative pose estimation error and is more robust compared with the pose estimation
based on ORB and SURF features, respectively, and has better real-time performance than
the traditional pose estimation based on SIFT features. Although our proposed algorithm
can save computation regarding feature extraction and feature point matching, it is based
on the premise of clear salient imaging. Furthermore, the experiments show that the salient
preprocessing’s imaging quality and real-time performance will impact the proposed
method. With the improvement of salient detection neural network architecture, the
practicability of our proposed method for pose estimation based on salient preprocessing
will also be further improved.

5. Conclusions

The extraction and matching of feature points for the traditional ICP pose estimation
process are time-consuming and lack robustness. In order to balance these two challenges,
we first propose a coarse-to-fine method. After salient preprocessing, the matching SIFT
feature pairs in the images are further improved by RANSAC processing to eliminate
the wrong matching feature points and improve the matching quality. The influencing
factors that affect the pose estimation quality after salient preprocessing are analyzed
experimentally. The proposed algorithm is influenced by the difference between image
frames, salient objects’ contour plus texture, and salient preprocessing’s detection imaging
quality. We analyze the three situations and infer that the relative pose error becomes
larger because the feature points cannot be matched effectively. Our method is more
suitable for static and texture-rich asymmetric object scenes by salient preprocessing. This
paper verifies the advantages of the proposed algorithm in the time-consuming amount by
comparing the performance differences based on the SIFT feature before and after salient
preprocessing. This paper also compares our method with the mainstream algorithm based
on ORB or SURF. The experimental results show that our algorithm processing based on
the same kind of feature can effectively reduce the feature points’ extraction and matching
and reduce the pose estimation time. Moreover, our proposed algorithm has improved
pose estimation compared with the mainstream algorithm. In this paper, we propose a
new feature point selection method, which uses salient objects’ feature points to replace the
entire image’s feature points to improve the real-time performance and provide a reference
for real-time pose estimation research.
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