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Abstract: There are many undulating terrains in the wild environment. In order to realize the adaptive
and stable walking of quadruped robots on unknown sloped terrain, a slope-adaptability model
predictive control (SAMPC) algorithm is proposed in this work. In the absence of external vision
sensors, the orientation and inclination of the slope are estimated based on the joint position sensors
and inertial measurement units (IMU). In an effort to increase the stability margin, the adaptive
algorithm adjusts the attitude angle and the touch-down point of the swing leg. To reduce the slipping
risk, a nonlinear control law is designed to determine the friction factor of the friction cone constraint
from the inclination of the slope. We validate the effectiveness of the framework through a series of
simulations. The automatic smooth transition from the flat to the unknown slope is achieved, and
the robot is capable of walking in all directions on the slope. Notably, with reference to the climbing
modal of blue sheep, the robot successfully climbed a 42.4◦ slope, proving the ultimate ability of the
proposed framework.

Keywords: unknown slope; slope estimation; adaptive; model predictive control

1. Introduction

The legged robot has the ability to freely select discrete footholds, thus exhibiting better
environmental adaptability compared to traditional wheeled and tracked ground-based
unmanned platforms. Among them, the quadruped robot combines high stability and fast
maneuverability and has attracted high research enthusiasm from the robotics community.

The wild quadrupeds have outstanding performance in terms of high-speed running,
weight-bearing, and challenging terrain traversing. The fastest speed of a cheetah can reach
over 115 km/h, the 30-cm-long African Goliath frog can jump 5 m, and the blue sheep are
good at climbing and jumping, especially on cliffs, as shown in Figure 1a. The locomotor
capabilities of these creatures have inspired researchers to study quadruped robots and
provide estimable references for the design and control of bionic quadrupeds. It is hoped
that quadruped robots will surpass quadrupeds and be able to perform complex tasks
in challenging environments. These visions put higher demands on mechanical design,
control, perception, and planning.

Since the 21st century, many excellent quadruped robots have emerged at home and
abroad, such as Boston Dynamics’ Bigdog [1], MIT’s cheetah [2], ETH Zurich’s ANYmal [3],
Unitree A1 [4], and Zhejiang University’s Jueying [5]. The problem targeted by the control
has also shifted from static position planning [6] to highly dynamic trajectory optimiza-
tion [7,8]. Nowadays, model predictive control (MPC) has become the most widely used
control algorithm in the field of robotics.

Grandia utilized the differential dynamic programming to generate a feedback policy
to compensate for the model’s mistake [9]; a frequency-dependent cost function was
established to reduce the algorithm’s sensitivity to high-frequency modeling errors and
actuator bandwidth limitations. Bledt proposed a policy-regularized MPC [10] algorithm
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that uses several heuristic strategies to generate reference trajectories to achieve stable
walking with different gaits. Ding proposed a representation-free MPC framework [11];
the rotation matrix is utilized to directly represent the rotation dynamics, thus avoiding
the singularity of Euler angles. The impressive singularity involving a backflip motion
demonstrated its effectiveness. Liu analyzed the energy consumption of forward motion
about the speed and the height of the torso centroid, and a gait parameter design method
was proposed to adaptively select the parameters based on the current speed with minimum
energy consumption [12]. Chang proposed a proportional differential (PD) MPC controller
to provide compensating forces and moments for the linear motion and rotational motion
of the robot, respectively [13], which can compensate for the large modeling errors or
unknown loads. Carius combined the MPC with a learning approach and presented a
policy-guided search method to train the neural network controller to learn the control laws
of MPC [14], which significantly reduces the computational requirements of the controller
without losing control performance. Although the above works extend and improve MPC
for more flexible and efficient deployment, it can only adapt to slightly uneven ground
without any ground information.
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(a) (b) 

 Figure 1. The uphill posture of blue sheep and the quadruped robot (under our adaptive algorithm).
(a) Walking posture of blue sheep; (b) Walking posture under SAMPC.

A slope is one of the most typical environments on earth, the stability of locomotion
on a slope is a momentous part of the robot’s environmental adaptability. Combining the
visual, the robot can safely pass through complex terrain through online planning and
control [15–17]. In this work, we focus on slope adaptability without robot vision. Liang
achieved a 14◦ slope walking on a physical quadruped by designing a virtual slope to
adaptively adjust the torso posture [18]. Zhang used Kalman filtering to estimate the slope
angle and uphill direction [19]; the estimation error on a 5◦ slope is less than 0.2◦. Based on
the central pattern generator, Xie elevated the touch-down point through the flexion reflex
of the knee joint, modified the posture through the vestibular reflex, and finally realized the
transition from flat to slope [20]. Liu designed a bionic rigid-flexible coupled quadruped
robot based on the motion characteristics of goats [21], and a dynamic center of mass (CoM)
adjustment device was designed based on the center of gravity adjustment of goats under
different slopes; the maximum slope is 30◦. Liu extracted the biological characteristics of
sheep’s hoof and designed a bionic anti-slip hoof based on the tension principle, it was
found that the bionic hoof with a low hardness sole and large elastic coefficient ligament
has the best slip resistance [22]. Yu integrated the posture correction controller into the
foot trajectory generator [23]. A Proportion Integration Differentiation (PID) controller is
used to adjust the body posture to reduce the variance degree of the body when the robot
upward or downward 10◦ slope. This method may help the transport task, but it is not
conducive to walking on large slopes. Focchi proposed a control framework for quasi-static
walking [24]; the quadratic programming (QP)-based force distribution method results in
no foot slippage and minimization of the actuator’s effort, although they realized that in
high-slope (50◦) walking, the V-shaped wall terrain is uncommon and the quasi-static gait
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is not suitable for fast walking. The above methods achieve basic walking on slope terrain
based on bionic mechanism analysis or Zero Moment Point (ZMP) theory, and there is still
room for further improvement in slope adaptability.

In order to improve the adaptability of the quadruped robot to unknown slope terrains,
a slope adaptability model predictive control (SAMPC) is proposed, as shown in Figure 2.
The operator inputs the desired motion commands, including forward velocity vd

x, lateral

velocity vd
y and yaw angular velocity

.
ψ

d
through the joystick; the reference trajectory

planner integrates these commands to obtain the reference trajectory xre f ∈ R12 of the
CoM within the prediction horizon. The MPC controller optimizes the feedforward force
f f f ∈ R12 and plans the movement of the stance leg in the hip frame, Pre f

st , Vre f
st ∈ R3 are

position and velocity vector of the foot respectively. The swing planner plans the movement
of the swing leg to reach the next touch-down point. The low-level joint controller tracks
these control commands to generate the joint driving torque τ ∈ R12. q,

.
q ∈ R12 are the joint

angle and angular velocity. The state estimator estimates the robot’s state x̂ according to the
information of the proprioception. In the absence of external sensors, the slope-adaptive
algorithm used to estimate the orientation θn and the inclination ψn of the unknown
slope, and a series of adjustment methods for the other parts of the control framework is
established based on the estimated information, which are the blue parts in Figure 2.
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Figure 2. Control framework of the adaptive MPC for an unknown slope.

Simulation experiments verified the effectiveness of the algorithm, and achieved a
smooth transition when the robot walked from flat to slope. Finally, referring to the mode
of blue sheep uphill, our robot successfully topped the 42.4◦ slope, which approached
the physical limit. The remainder of this paper is organized as follows. Section 2 briefly
presents the visionless motion control algorithm of MPC. Section 3 introduces the slope-
adaptive algorithm and contains slope estimation and adaptive adjustment of SAMPC.
The validation experiments of the simulation platform and the analysis of the results
are illustrated in Section 4. Finally, Section 5 concludes the whole work and proposes
future work.

2. MPC Formulation

Model predictive control is a classic model-based method, which uses a mathematical
model to represent the kinematic and dynamical properties of the control object, and the
model is used to predict the future state in a finite prediction horizon based on the current
state and control input. The optimal control considers various explicit constraints, and
solves the control input to minimize the cost function regarding the desired task; only the
first step solution is applied to the object. This receding horizontal optimization is able
to handle the disturbances caused by internal or external uncertainties so as to achieve
stable control.
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2.1. Simplified Dynamic Model

In our application, the quadruped robot model and the coordinate system are shown in
Figure 3. The inertial frame and floating base frame are recorded as OI and Ob respectively.
ϕ, θ and ψ respectively represent the pitch angle, roll angle and yaw angle of the body
relative to the inertial frame, which form the Euler angle Θ = [ϕ, θ, ψ ]T according to the
rotation order of Z-Y-X. fi ∈ R3 and ri ∈ R3 are the foot reaction force and the position
vector from the foot end to the CoM in the inertial frame, the subscript i represents the
indicia of leg.
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Figure 3. Schematic diagram of the robot and coordinate system.

Each leg contains three joints, which are called side-hip, front-hip, and knee, respec-
tively. Furthermore, the three links of the leg are called abduction-adduction (abad), thigh,
and calf, respectively. All motors are mounted compactly around the trunk and integrated
into a virtual body. The two hip joints are directly driven, and the knee joint is driven by a
connecting rod hidden in the thigh.

Quadruped robots have the characteristics of high dimensionality and strong nonlin-
earity, making it difficult to guarantee the real-time property of the receding horizontal
optimization. The complete state space consists of 6-dimensional posture, 12-dimensional
joint angle and and their first-order differential, the total 36-dimensional state space is not
conducive to the optimal calculation and is difficult to ensure real-time performance.

Generally, under reasonable assumptions, the model can be simplified into a linear
model to improve the speed of optimization and reduce the computing requirements of
an onboard computer. Compared to the BigDog [1] with hydraulic actuators mounted on
the legs and the ANYmal [3] with knee motors mounted on the thigh, the leg’s mass is
much smaller than the virtual body’s mass, so the influence of the leg’s movement on the
body can be ignored. Therefore, the whole body dynamics can be simplified to a single
rigid body model with four massless variable-length rods. According to the Newton-Euler
equation, the simplified dynamic model is obtained as follows:

..
p =

∑4
i=1 fi
m

+ ag (1)

d
dt
(Iω) = I

.
ω + ω× Iω = ∑4

i=1(ri × fi) (2)

where p, ω ∈ R3 are the position and angular velocity of the body, m, I ∈ R3×3 are the mass
and the inertia matrix of the virtual body, ag ∈ R3 represents the gravitational acceleration
vector. Assuming that the deviation of attitude is relatively small during horizontal motion,
the gyro moment term ω× Iω in Equation (2) can be neglected. In order to form a standard
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equation of state (EOS), we take ag as an additional state variable, and the simplified EOS
is obtained:

.
θ
.

ω
.
p
..
p
.
ag

 =


03 RT 03 03 03
03 03 03 03 03
03 03 03 13 03
03 03 03 03 13
03 03 03 03 03




θ
ω
p
.
p
ag

+


03 · · · 03
03 · · · 03

I−1r1 · · · I−1r4
13/m . . . 13/m

03 · · · 03




f1
f2
f3
f4

 (3)

where R ∈ R3×3 is the rotation matrix of the body frame Ob in the inertial frame OI , 03
and 13 are diagonal matrices. Equation (3) is discretized by the zero-order hold method to
obtain Equation (5), which is the prediction model for MPC.

2.2. Receding Horizontal Optimization

For the robot with horizontal locomotion, the desired movement commands are vd
x, vd

y,

and
.
ψ

d
. The trajectory planner generates the reference trajectory of CoM xre f ∈ R13 within

prediction horizon N based on the commands and the current states. In order to track
the reference trajectory, an optimization problem is established to find the optimal control
sequence, i.e., the desired foot reaction force during the stance phase to drive the body.

min
u

J(u) =
N−1

∑
n=0
||xn+1 − xn+1,re f ||Qx

+ ||un||Ru (4)

s.t. : xn+1 = Anxn + Bnun (5)

Dnun = 0 (6)

cn ≤ Cnun ≤ cn (7)

where n is the control horizon of MPC, the optimization variables un = [fn
1 , fn

2 , fn
3 , fn

4 ] are
the foot force at nth step. J(u) is the optimization objective function, the first term aims
to minimize the trajectory tracking error, and the second term is to minimize the control
effort, Qx ∈ R13×13 and Ru ∈ R12×12 are the corresponding weight matrix, which trades
off all aspects in the process of optimization.

The predictive model Equation (5) is used to deduce the dynamics of the robot based
on the given control input, An ∈ R13×13 is the state transition matrix, Bn ∈ R13×12 is
the control matrix. Equation (6) contains gait information, 0 ∈ R12×1 is a zero vector,
Dn = diag

(
dn

1 , dn
2 , dn

3 , dn
4
)

is the force selection matrix, diag() represents the diagonal
matrix. dn

i ∈ [O3, I3], O3, I3 ∈ R3×3 are diagonal matrices and the entry equals 0, 1,
respectively. This equation constrains the availability of optimization variables. The
submatrix is set according to the phase of each leg, when a leg is in the stance phase, the
corresponding dn

i is set to O3, so the the value of corresponding fn
i is unconstrained. On

the contrary, the subdiagonal matrix of the swing leg is set to I3, so the corresponding
optimization variables are constrained to zero; this conforms to the fact that there is no
contact between the swing leg and the ground.

Inequality Equation (7) expresses the constraint relationship of each component of
foot force, and it can be decomposed into the following two equations:

0 ≤ fz ≤ f (8)

− µ fz ≤ ± fx,y ≤ µ fz (9)

Considering the torque limitation of the actual joint motor, Equation (8) limits the
vertical force component fz. In order to avoid foot slipping, Equation (9) requires the foot
force to satisfy the friction cone constraint, where µ is the friction factor of foot-ground
contact, and fx and fy are the forward component and lateral component, respectively.
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Although the above optimization problem solves N steps control inputs, the long-
term control sequence cannot meet new control requirements because of the unknown
disturbance caused by the uneven environment or external force. In order to improve
the adaptability and response quickly to the deviated state, only the first step of the

optimal control sequence u0 =
[
f0
1, f0

2, f0
3, f0

4

]T
will be sent to the leg controller, and the

optimization will be repeated before the next MPC step comes; this is known as receding
horizontal optimization.

2.3. Leg Controller
2.3.1. Stance Leg

The quadruped robot is an intermittent underactuated system. The stance legs are in
charge of the whole motion; for the trot gait, the support line formed by two diagonal stance
legs is insufficient to provide the torque around it. MPC provides a certain predictive ability
for this underactuated condition to obtain effective stability, the same for the underactuated
condition that all four legs are in the swing phase.

The low-level controller is established in the hip frame of each leg, the hip frame is
fixed with the body, located at the abad joint. Since the optimization algorithm is defined
in the inertial frame, the expected foot reaction force f0

i need to convert to the hip frame as
the feedforward foot force:

f f f = −RT ·u0 (10)

Assuming that the stance feet do not slide during the stance phase, the reference

motion of the CoM can be mapped to the motion of the foot end Pre f
st and

.
P

re f
st under the

hip frame; this track will also be controlled.

2.3.2. Swing Leg

The control of the swing leg includes two parts: the touch-down point and trajectory.
The trajectory starts from the position where the foot lifts off and ends with the touchdown
point. For the plane walk robot, the expected touch-down point of the swing leg is designed
in the hip frame:

Pre f
sw =

vcomTst

2
+ kv

(
vcom − vre f

)
(11)

where vcom ∈ R2 is the current horizontal velocity of the robot, and Tst is the predefined
supporting duration. The first item of Equation (11) represents a half-step length, for
uniform motion, the foot trajectory is symmetrical with respect to the hip. The second one
is for motion compensation, kv ∈ R2 is the compensation factor used to correct the tracking
error of the velocity of CoM.

The Bezier curve is used to generate the foot trajectory between the touch-down point
and lift-off point. A suitable vertical height is set for clearance of the ground obstacle,
and several control points are used to smooth the path, arrange the desirable swing leg
retraction rate [25], and reduce the impact.

Combining the control demands of the stance leg and swing leg, the following joint
torque/position controller is obtained:

τi = JT
i

[
f f f + Kp

(
Pre f

i − Pi

)
+ Kd

(
.
P

re f
i −

.
Pi

)]
(12)

where τi ∈ R3 are the joint control torque vector of each leg, Ji ∈ R3×3 is the Jacobian matrix
of i leg that maps the force in operational space to the torque in joint space. Kp, Kd ∈ R3 are
the proportional coefficient and damping coefficient of the position control in operating
space, respectively. It is worth noting that the position control has different functions in
different phases. The swing leg needs to track the desired trajectory with higher accuracy;
the coefficient is larger, and the stiffness is higher. However, in the support phase with
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optimal feedforward force, the position control is only used to compensate for the tracking
of the CoM for the reference trajectory, so the coefficient is smaller and the stiffness is lower.

3. Slope-Adaptive Algorithm

The MPC algorithm in Section 2 has good performance on level ground or slightly
uneven terrain. However, due to the time-based gait schedule, the force selection matrix
is determined only by time and gait patterns. Without terrain awareness, a robot cannot
adapt to complex terrains such as slopes. When the robot walks on a slope, the actual
touch-down event is bound to be different from the planning; the swinging leg touches
the ground in advance still using the high stiffness position control, which will affect the
stability of the robot. The higher the inclination, the stronger the impact.

For the above disturbances, the compensation ability to recede horizontal optimization
is no longer effective, and the estimation of the orientation and inclination of an unknown
slope can essentially solve this problem.

3.1. Slope Estimation

When the robot enters the slope with a trot gait, the diagonal legs will be in different
planes, as shown in Figure 4.
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The 1–4 diagonal legs and body form a space link closed chain. Based on forward
kinematics, the foot position vector P1 and P4 under the body frame is obtained according
to the joint angle sensors. Combined with the body attitude estimated by IMU, the position
vectors of the two touch-down feet in the inertial frame can be obtained:

P14 = R(P1 − P4) (13)

Thus, according to this vector, the nominal pitch angle θn can be estimated based on
the components of P14. Moreover, according to the forward rotation direction defined by
the right-hand system, a minus sign is required:

θn = −atan(Pz
14/Px

14) (14)

However, because the slope direction is unknown, the robot’s uphill direction does
not necessarily coincide with the main slope direction, as shown in Figure 5.

When the robot ascends the slope head-on, as the left robot in Figure 5, the estimated
nominal pitch angle is approximate to the real inclination θs of the slope. When the robot
deflects from the slope, as in the right robot in Figure 5, the estimated nominal pitch angle
is unequal to the inclination. Therefore, the correct estimation also needs to know the
orientation angle of the slope.

Due to the deflection angle between the robot and the slope, the two front legs do
not enter the slope at the same gait cycle; there is an altitude difference between the two
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touch-down points, then it can be judged that the uphill direction at this time is not the
slope orientation, so a heuristic algorithm is designed:

.
ψ

re f
= kψPz

12 (15)

where kψ is the parameter of adjustment steering speed. Pz
12 is the vertical direction

component of the position vector from 2 legs to 1 leg. The robot is guided to turn according
to the altitude difference. With the robot turning to the slope, the difference gradually
decreases, decreasing the expected steering speed. When the movement reaches the steady
state, the current robot yaw angle is regarded as the slope orientation ψs. Moreover,
Equation (13) is replaced by the following formula; only the modified position vector
contains the true slope information.

P14 = R−ψs R(P1 − P4) (16)
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3.2. Adaptive Adjustment
3.2.1. Desired Attitude Angle

The goat will adjust its body to keep parallel to the slope, and this climbing posture
provides higher stability [18]. Referring to blue sheep, the desired attitude angle can be
adjusted according to the estimated slope information. By the way, in order to enable the
robot to turn at will on the slope and walk stably in all directions, it is necessary to assign
the estimated nominal inclination to the desired pitch angle θre f and desired roll angle ϕre f

according to the actual yaw angle:

θre f = θn·cos(ψ− ψs) (17)

ϕre f = θn·sin(ψ− ψs) (18)

3.2.2. Touch-Down Point

Based on the new desired attitude angle, the original horizontal reference trajectory
needs to be updated along the uphill direction. The speed in the original horizontal
direction should be converted to the slope direction, and the reference trajectory of CoM
also changed accordingly.

vre f
world = R·vre f (19)

For the touch-down point planning on a slope, Equation (11) is insufficient. The new
desired attitude makes the body always parallel to the slope. As shown in Figure 6, the
cross symbol represents the CoM of the virtual body. the red robot has not undergone any
adjustment; when it is in the middle stage of the stance phase, the projection of CoM is in
the middle of the support line. For the green one, after posture adjustment, due to the local
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planning of foot position in the hip frame, the support line moves up because it does not
take into account the pitch angle of the body; the projection of CoM is closer to the rear
foot, so the stability is lower based on the ZMP theory.
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According to the current posture of the robot, the yellow robot plans in the inertial
frame so that the foot is directly beneath the hip on the slope. Equation (11) is calculated
under the inertial frame and mapped back to the hip frame through the rotation matrix.

Pre f
sw = RT

(
Pre f

hip +
IPre f

sw − H
)

(20)

where IPre f
hip and IPre f

sw are the position of each hip frame and expected touch-down point in
the inertial frame, H is the virtual leg length. The adjusted touch-down point makes the
robot still maintains a strong stability margin on the inclined plane.

3.2.3. Friction-Cone Constraint

For all ground robots, the friction characteristics of the contact part determine the
performance of the motion [26]. It is essential to prevent lack of control caused by slipping
during locomotion. For the slope motion, the friction force decreases as the slope increases,
and the dynamic friction factor required for self-locking is increased.

In the framework of MPC, the control of slipping is embodied in Equation (9). The
predetermined parameter µ for flat ground is not applicable to slope movement; it is easier
to slip due to the reduction of normal pressure. Therefore, it is necessary to adjust the range
of the friction cone according to the slope:

µn = 0.5× exp(−θn·β) + 0.1 (21)

where β is the regulatory factor. The updated factor µn decreases with the slope increase. A
smaller factor constraint MPC generates the desired foot force more strictly, making the
resultant force closer to the normal vector of the slope and reducing the risk of slipping.
The nonlinear form of Equation (21) decreases the factor rapidly when the slope is small,
which helps the robot make a smooth transition to the slope.

Based on Sections 2 and 3, the framework of the adaptive model predictive control
algorithm for unknown slope is established, as shown in Figure 2, where the blue part is
the innovative work of this paper.

4. Results and Discussion

This section verifies the proposed unknown slope-adaptive model predictive control
algorithm. In the simulation environment, the friction factor is set to 1, and the angle and
direction of the slope can be set at will. The optimization problem of Equations (4)–(9) is
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solved by the open-source qpOASES Slover. The robot model parameters and simulation
parameters are shown in Table 1:

Table 1. Model parameters and simulation parameters.

Parameters Value Unit

m 9 kg
I diag(0.112, 0.362, 0.426) kg·m2

body length L 0.38 m
body wide B 0.1 m
link length l (0.072, 0.2, 0.2) m
swing leg Kp diag(700, 700, 150)
swing leg Kd diag(7, 7, 7)
stance leg Kp diag(50, 50, 10)
stanceleg Kd diag(2, 2, 2)

N 10
n 15

step of leg controller Tstep 2 ms
half gait cycle Ttrot 300 ms

Qx diag
(

1.25, 1.25, 10, 2, 2, 50
0, 0, 0.3, 1.5, 1.5, 0.2, 0

)
Ru 0.00004× I12
β 4

The control horizon of MPC n = 15Tstep, which means the low-level leg controller
executes the same MPC feedforward force within 30 ms. Moreover, the prediction horizon
N = 10n, which is equal to the half-trot gait cycle, means that with this constraint, a foot
will not touch down the ground twice in one prediction horizon. Figure 7 shows the speed
tracking performance of the original MPC controller in plane motion, the red lines and the
blue lines represent the forward velocity and the lateral velocity respectively, the dotted
line and the solid line represent the reference velocity and the actual velocity respectively.
The average tracking error in both directions is less than 0.01 m/s, the mean square error
(MSE) is 0.0019 and 0.0017 respectively.
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4.1. Comparison of the Posture

Although the original controller has good tracking performance for the commands on
flat ground, it has no adaptability to the slope, as shown in Figure 8a. The slope is set to
30◦; the robot is still expected to keep the body level during the uphill process, resulting
in the front leg being squeezed and the back leg stretched, which is not conducive to the
movement of the slope. The posture under SAMPC is shown in Figure 8b,c; whether
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forward or lateral uphill, the adaptive algorithm keeps the body parallel to the slope, the
virtual leg length of each leg remains the same, and the adjusted foot touch-down points
keep the CoM in the center of the ZMP stable region.
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Figure 8. Comparison of the slope walking posture. (a) Before adjustment; (b) Forward walking after
adjustment; (c) Lateral walking after adjustment.

4.2. Slope Estimation and Adjustment

An unknown slope with a 30◦ inclination and 30◦ deflection angle is placed at 1 m
forward of the robot. As shown in Figure 9a, the robot first moves forward and then
enters the slope at 1.6 s, the gradient of position changes accordingly. Figure 9b shows the
estimation of the slope and the adjustment of the friction factor. After 3 s, the slope enters
the steady state, with a steady state estimation error of 6.7%, and the estimation of slope
orientation is more accurate. For the convenience of explicit expression, the friction factor
is magnified by 50 times, gradually decreasing from 0.6 to 0.15.
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Figure 9. Uphill process of the unknown slope. (a) CoM position on a sagittal plane; (b) Estimation
and adjustment.

Figure 10 shows the estimation of different unknown slopes, the Box-plot is used to
describe the statistical characteristics of the estimation, the black bar indicates the extreme
value, the red bar indicates the median values, the blue box connects upper and lower
quartiles, the shorter the Box-plot, the more concentrated the estimation. Six slopes are
set from 0.1 rad to 0.6 rad. It can be seen in Figure 10a, with the increase of the slope, a
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sight slip will occur, so the steady state error and oscillation amplitude of the estimation
increase gradually.
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actual yaw angle is shown as the black line; the instantaneous hop is due to the yaw angle 
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Figure 10. Estimation of different slopes. (a) The estimation of slope inclination; (b) The estimation
of slope orientation.

For the estimation of slope orientation, the initial yaw angle of the robot is set to 0◦.
Slopes with 30◦ inclination are divided into 9 groups based on the deflection angle within
the range of 90◦, as shown in Figure 10b; since the robot turns from an initial yaw angle
to a larger slope orientation angle, the altitude difference gradually diminish and finally
ignored, so the estimated angle is always less than the actual value, the estimation error is
less than is within 3◦ anyway.

4.3. Omnidirectional Walking and Extreme Climbing

In order to execute various tasks, robots need to have omnidirectional walking ability
on slopes. Figure 11 shows the omnidirectional walking process of the robot on a 35◦ slope.
The desired yaw angular velocity is fixed, the robot rotates in a reverse direction, and the
actual yaw angle is shown as the black line; the instantaneous hop is due to the yaw angle
defined in±π. The estimated nominal pitch is adaptively assigned to two desired attitudes,
pitch, and roll, based on the current yaw, so the trunk is always parallel to the slope.
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The self-locking angle reflects the contact properties between different materials and
depends on the friction factor. When the slope angle is less than the self-locking angle, the
static object on the slope will not slide, that is, a self-locking phenomenon, for the moving
objects only powered by friction, it is dangerous and slippery to move on a slope with the
inclination close to the self-locking angle. In nature, the body width of quadrupeds is far
less than the body length, so the blue sheep often adopt the mode of lateral climbing in
extremely steep terrains, which is more conducive to leg movement. Similarly, when we
ride a bicycle up the slope, we often take an S-shaped route, which can reduce the gradient
of the route.

As the friction factor is set to 1, the self-lock angle is 45◦. As shown in Figure 12a, there
are six snapshots in uphill order; with the reference to blue sheep, the maximum climbing
inclination angle under SAMPC is 42.4◦. Figure 12b illustrates three robot states uphill; the
red line represents the altitude of the CoM of the robot, the green line represents the actual
yaw angle, and the blue indicates the estimated nominal pitch angle. Because the slope is
too tilted, the front leg skids on the slope, and the rear leg cannot propel the robot up, so
the robot switches to a lateral posture at step 2; the steering is completed at 20 s, and then
enters the slope smoothly. The gradually increased estimated nominal slope is assigned to
the desired roll angle, and returns to zero after reaching the summit.
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5. Conclusions

In this work, we proposed a slope-adaptive model predictive control (SAMPC) to
realize the stable locomotion on an unknown slope for a quadruped robot. By fusing IMU
and joint angle sensors, the slope orientation and inclination are estimated, and the adaptive
algorithm adjusts the desired attitude so that the robot’s body is always parallel to the slope.
In order to leave sufficient motion space for the front leg and maintain a large stability
margin, the touch-down point has also been adjusted. At last, the adaptive friction factor
utilized in the constraint of optimization reduces the risk of the foot slipping by generating
a force more perpendicular to the inclined face. Above all, the smooth transition of the
robot from the flat to the slope is realized, and the robot is able to walk in all directions on
the slope. Finally, referring to the climbing mode of blue sheep, the successful ascent of the
42.4◦ slope proves the ultimate ability of the SAMPC.

In future work, firstly, we plan to deploy the SAMPC to the physical platform Uni-
treeA1 to verify the performance further. Secondly, the manually designed adjustment
law of friction factor is not the optimal choice definitely; combining the learning-based
method, such as utilizing the policy search to choose the optimal traversal time for agile
drone flight [27], the optimal factor can be found automatically for different slopes.
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As we all know, the slope is just one kind of natural terrain. In order to enable
robots to achieve or exceed the environmental adaptability of quadruped mammals, it
is necessary to consider the adaptation problems in a variety of complex environments,
utilize external sensors such as depth cameras to achieve upper-level motion planning in
the limited landing areas, further improving the autonomous interaction ability of robots
to the challenging environment. Despite all this, our work is vital for conditions in which
the visual sensor is not available, such as heavy fog, strong light, or sensor damage.
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