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Abstract: Crop height is a vital indicator of growth conditions. Traditional drone image-based
crop height measurement methods primarily rely on calculating the difference between the Digital
Elevation Model (DEM) and the Digital Terrain Model (DTM). The calculation often needs more
ground information, which remains labour-intensive and time-consuming. Moreover, the variations
of terrains can further compromise the reliability of these ground models. In response to these
challenges, we introduce G-DMD, a novel method based on Gated Recurrent Units (GRUs) using
DEM and multispectral drone images to calculate the crop height. Our method enables the model to
recognize the relation between crop height, elevation, and growth stages, eliminating reliance on DTM
and thereby mitigating the effects of varied terrains. We also introduce a data preparation process
to handle the unique DEM and multispectral image. Upon evaluation using a cotton dataset, our
G-DMD method demonstrates a notable increase in accuracy for both maximum and average cotton
height measurements, achieving a 34% and 72% reduction in Root Mean Square Error (RMSE) when
compared with the traditional method. Compared to other combinations of model inputs, using DEM
and multispectral drone images together as inputs results in the lowest error for estimating maximum
cotton height. This approach demonstrates the potential of integrating deep learning techniques with
drone-based remote sensing to achieve a more accurate, labour-efficient, and streamlined crop height
assessment across varied terrains.

Keywords: crop height measurement; multispectral drone images; Gated Recurrent Unit; deep
learning

1. Introduction

Agriculture is essential for human development, and its sustainability heavily relies
on accurate measurements of crop status. Monitoring crop height over time offers valuable
insights into the overall health and condition of crop ecosystems, enabling optimization
of agricultural practices and promotion of sustainable development [1]. However, in situ
monitoring, such as manual measurements and handheld sensors, is limited in coverage,
labour-intensive, and time-consuming.

One potential and widely used approach to counter these challenges is using remote
sensing technologies which can monitor crop height over large areas and track changes
throughout the growing season. While satellite-based remote sensing offers broad coverage,
it remains susceptible to weather conditions, sampling frequency, and spatial resolution [1].
In contrast, remote sensing via drones introduces enhanced flexibility and convenience in
data collection procedures, allowing for timely and accurate assessments of crop height
with reduced dependence on external factors [2,3].

By mounting a multispectral camera on a drone, overlapping images of the field
can be captured. These images can be processed using software such as DJI TERRA [4]
to reconstruct both the Digital Elevation Model (DEM) and the multispectral image of the
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field. In the DEM, each pixel corresponds to an elevation. One traditional method for crop
height prediction involves calculating the difference between the Digital Terrain Model
(DTM)—representing the bare ground surface—and the DEM—signifying crop canopy
elevation [5–11]—as depicted in Figures 1 and 2. However, crop height derived from drone
images is often shorter than the actual values [12], and the method itself is influenced by
canopy density. As crop leaves expand, ground elevation data beneath the canopy become
less visible, as shown in Figure 2b. In such cases, recovering the DTM or the ground 3D
model becomes challenging.

In certain studies, Ground Calibration Targets (GCTs) have been used as references
to address this issue [13,14]. For example, Han et al. [14] constructed wooden frames
comprising ground, lower platform, and upper platform calibration points, serving as a
semipermanent calibration system. Although using GCTs as references has demonstrated
efficacy in specific contexts, this approach faces challenges in real-world farming scenar-
ios, especially when fields span diverse terrains over extensive areas. Distinct terrains,
including hilltops, slopes, and valleys, significantly influence the accuracy of canopy height
calculations derived from drone images [15]. Generally, the traditional method of gathering
spatial information remains labour-intensive and necessitates professional expertise. More-
over, the potential of using the multispectral image of the field for crop height estimation is
still underexplored.

(a) (b)

Figure 1. Visualization of 3D models of the canopy and ground surfaces [13]. (a) DEM—representing
the elevation of the crop canopy. (b) DTM—representing the bare ground surface, with only ground
points remaining.

(a) (b)

DTM DEM Height DTM DEM Height

Figure 2. Illustration of crop height calculation derived from the difference between DEM and DTM.
(a) A scenario where the crop canopy does not cover the ground. (b) A scenario where the crop
canopy tends to cover the ground, resulting in the loss of ground elevation information.

Actually, crop canopy reflectance captured via multispectral images is highly related
to crop health and growth stages [16]. To be specific, Vegetation Indices (VIs), derived
from mathematical formulations of canopy spectral reflectances, have a strong relation
to specific characteristics in crops. Recently, some studies have used these specific VIs
through machine learning methods to develop models for crop height prediction including
wheat [17], maize [18], cotton [19], potatoes [20], and sunflower [21]. Unlike the traditional
method that relies on preset models or equations, machine learning uses specific features
as model input to calibrate and identify the most optimal parameters with the ground
truth. However, traditional machine learning algorithms like support vector machines [22],
random forests [23], and decision trees [24] often lack the capability to autonomously extract
features from raw data. In the case of multispectral images, manually extracting correlated
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VIs is still necessary for predicting different crop heights. The manual feature selection
approach often neglects variations in crop type, growth stage, and environmental influences
on reflectance, which can impact model prediction accuracy. Moreover, the crucial DEM
data, which are closely correlated to crop height, are frequently neglected.

To address these challenges, deep learning, a subset of machine learning with multiple
layers, can automatically extract and learn features from multispectral images, which
eliminates the need for manual feature selection. This adaptability enables the model
to generalize across various crop types and growth stages, ensuring more consistent
performance. Moreover, deep learning models can handle multiple data types, allowing
both multispectral images and DEM to be used as model inputs. Some studies have
used deep learning methods for crop classification [25], growth stage identification [26,27],
disease detection [28], crop counts [29], weed detection [30], soil and crop segmentation [31],
and yield prediction [32,33]. However, its application in crop height measurement using
multispectral drone images remains a largely untapped area of research.

In general, the traditional method relies heavily on the generation of the DTM to
obtain the difference between canopy elevation and ground elevation, which often suffers
from the information beneath the canopy and varied terrains. Additionally, crop spectral
reflectance, which is also related to crop height, is always overlooked. Machine learning
provides solutions for using crop spectral reflectance to estimate crop height. However, its
reliance on manual feature selection from multispectral images often neglects variances
in crop type and growth stage. This oversight subsequently leads to variability in model
performance across different crops and stages, and results can be inconsistent among differ-
ent algorithms. Additionally, the significant DEM data, closely related to crop height, are
frequently overlooked. Therefore, our objective is to find a solution that uses deep learning
to automatically extract and learn features from both multispectral images and DEM to
estimate crop height. This method aims to effectively use the DEM for capturing differences
between canopy and ground elevations and terrain situations like slope and direction.
Meanwhile, it incorporates multispectral images to identify potential VIs derived from
crop spectral reflectance to distinguish between ground and crop regions and recognize
different crop growth stages. We aim to overcome challenges including DTM generation,
manual feature selection, and performance variability.

Based on the objective, we introduce a deep learning approach G-DMD that is based
on Gated Recurrent Units (GRUs) [34] and uses DEM and multispectral drone images as
model inputs to predict crop height. Inside the model, we combine a Convolutional Neural
Network (CNN) [35] and GRUs for automatic feature extraction from inputs. The employ-
ment of GRUs enriches the model’s capability to analyse data with temporal dependencies,
facilitating the recognition of long-term relationships between channels. Recognizing the
unique characteristics of DEM and multispectral images, we introduce a data preparation
process to enhance model learning efficacy. This method is adaptable to diverse terrains,
various crop types, and all growth stages. It eliminates the need for manual GCP placement
to gather additional ground information for DTM generation, as well as manual feature
extraction from the inputs. Furthermore, the proposed approach allows for comprehensive
surveying in each drone flight, facilitating accurate crop height assessments throughout the
growing season while substantially reducing both labour and expertise requirements.

To evaluate the effectiveness of the G-DMD, we used a cotton dataset derived from
Xu et al. [13], which comprises both DEM and multispectral images from a drone, corre-
lated with on-ground measurements of both maximum and average cotton height. We
began our evaluation with a comparison of the G-DMD against the traditional method.
Subsequently, we demonstrated the enhancements brought by our visual data preparation
process, underscoring its advantage in model learning performance. A baseline model
without the GRU architecture was set to emphasize the robustness and advantages of
adding GRU to the model structure. Our assessment also included testing the model with
different input combinations such as only RGB, DEM, NIR, and RedEdge to highlight the
importance of integrating both DEM and multispectral images. Evaluation results show
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that the G-DMD method significantly improved accuracy in measuring both maximum and
average cotton height, with a 34% and 72% reduction in RMSE compared to the traditional
method. Notably, the GRU-inclusive model achieved greater stability and accuracy during
the training process and even showed slight outperformance in results compared to the
GRU-exclusive model. Additionally, the combination of DEM and multispectral images
achieved better results than any other single input. The contributions of our research are
as follows:

• We develop the G-DMD as a method for crop height measurement using drone images.
One of the main advantages is that our method does not require ground elevation
information, i.e., DTM, eliminating the labour- and time-intensive process of gathering
additional data. Meanwhile, this method has adaptability to diverse topographic
landforms where the generation of DTMs often poses challenges to the precision of
traditional techniques. Additionally, G-DMD negates the need for manual feature
selection, and it becomes suitable for various crop types throughout their entire
growth stages.

• We introduce the no-data value mask for the DEM, allowing the model to focus on the
valuable parts of the DEM. This approach is essential as DEM data sometimes misses
certain details. In addition to this, we present a separate normalization procedure for
processing DEM and multispectral images as model inputs, addressing the different
pixel characteristics between the two data types.

• We incorporate GRUs into our model after the CNN feature extraction layer to better
capture the interchannel relationships among inputs. These inputs combine DEM data
with spectral channels, each representing different segments of the electromagnetic
spectrum. While CNNs are adept at discerning spatial hierarchies, they often lack in
capturing sequential dependencies. Our evaluation results show that the addition of
GRUs improves training stability. Additionally, combining DEM and multispectral
image data as model inputs further boosts prediction accuracy.

• We evaluate and discuss the G-DMD, exploring its performance and potential applica-
tions in crop height measurement.

2. Materials and Methods

The G-DMD is designed to overcome the challenges associated with traditional crop
height monitoring methods including the labour-intensive and time-consuming process of
gathering additional information to build DTM and automatically extract features from
inputs. It involves two main components: a unique data preparation method for DEM
and multispectral images and a deep learning model based on GRU. The model is trained
to automatically extract relevant features from inputs to regress actual crop heights. As a
result, it offers not only a more precise prediction of crop height but also better applicability
to varying topographic landforms without the necessity of DTMs.

Figure 3 illustrates the comprehensive procedure of the G-DMD, encompassing both
the data processing workflow and the deep learning model structure. In Figure 3a, the input
data is displayed, which includes six channels: the DEM, blue, green, red, NIR, and Red-
Edge channels. Following the data preparation, as illustrated in Figure 3b, a mask is
designed to address the missing information in the DEM. This is then incorporated into the
dataset, followed by padding and data normalization. Figure 3c illustrates the prepared
dataset. Finally, Figure 3d outlines the proposed deep learning model, which is composed
of three integral components: feature extraction, GRUs, and the regression stage.

Section 2.1 discusses the data preparation, explaining the unique characteristics of
the model inputs and the underlying principles that guide the data preparation process.
Section 2.2 presents the feature extraction, detailing the model used for this purpose and
explaining how it extracts features from the inputs. Section 2.3 discusses the principles of
GRUs and how they contribute to enhancing model accuracy. Finally, Sections 2.4 and 2.5
introduce the regression layer and the loss function, respectively.
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Figure 3. Overview of G-DMD, including data preparation and deep learning model structure. (a) Input
dataset consisting of six channels: DEM, blue, green, red, NIR, and RedEdge channels. (b) Data
preparation step which includes the incorporation of a no-data value mask into the DEM channel,
followed by padding and data normalization. (c) The prepared input dataset with seven channels.
(d) Proposed deep learning model composed of feature extraction, GRUs, and regression stage.

2.1. Data Preparation

As part of the model inputs, DEM allows the deep learning model to learn the rela-
tionship between the DEM elevation and crop height at specific time points. This approach
allows the model to distinguish terrain attributes like slope and orientation while under-
standing the correlation between plant height and the landscape, to predict plant height
in specific situations. However, it faces challenges due to the nonlinear and dynamic
progression of crop growth across varying temporal scales, which prevents the model
from predicting crop height at different time points using only DEM features. Therefore,
multispectral images are incorporated as part of the data inputs, enabling the model to
identify different crop growth stages.

The DEM data provide continuous spatial information, capturing topographical varia-
tions within the landscape. However, like other Geographic Information System (GIS) data,
the DEM also contains regions with no-data values, indicating either missing or obstructed
information. Directly deleting the no-data values within the DEM data can cause confusion
during the model training. This is because the deletion of these values may alter the spatial
relationships and continuity in the data. In the PyTorch framework, positions that have
been removed are not subject to updates during the model training process, potentially
leading to prolonged training duration in our work. We first set all no-value data to zero to
maintain consistency across the data and prevent potential computational issues during
analysis. Then, we create a mask to identify these areas, as shown in Algorithm 1. In this
mask layer, no-data values are represented by 1, and all other values are represented by 0.
This layer allows the model to recognize and distinguish the no-value regions, preserving
spatial relationships, and ensuring that subsequent analyses focus only on valid data from
the DEM.

Additionally, the uniformity of input data size is a critical consideration for effective
model training. The input data including the DEM and multispectral image are padded
into the same dimension of 128× 512.

Data normalization, a vital preprocessing technique, has proven to be efficient in deep
learning models. By scaling all features to a uniform range, normalization mitigates issues
related to the scale sensitivity, preventing one feature from dominating others. Meanwhile,
it can accelerate the convergence to reduce the training time [36]. The Mini-Max Scaler is
chosen for data normalization, as it maintains the original shape of the distribution. In our
method, we differentiate between the DEM and other spectral channels, treating them as
separate entities in the preprocessing stage. The DEM represents topographical information
with unique scaling and distribution characteristics, while other channels may correspond
to various spectral or radiometric attributes. Given these differences, we use separate nor-
malization procedures for the DEM and other channels. This method enhances the model’s
ability to capture between topographical and spectral features, thereby facilitating a more
accurate and comprehensive analysis. Similarly, we extend this normalization approach
to the ground truth data in our study. While this method has the advantage of enhancing
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the efficiency and coherence of model training, it may lead to a temporary reduction in
interpretability as the original scales of the values are transformed. However, this concern
is addressed in the prediction phase of our analysis. By employing a denormalization
algorithm, the model can directly predict the actual heights from the input images, thereby
translating the normalized predictions back into the real-world context.

The data preparation process is illustrated in Figure 4. Initially, input data are di-
vided into the DEM channel and other multispectral image channels. Then, the no-data
value mask is added to enable the deep learning model to better understand the data.
Subsequently, the DEM channel and other multispectral image channels undergo separate
padding and normalization processes to ensure uniformity and that all input features are
on a similar scale.

During the training process, we employed data augmentation techniques including
random horizontal flips, vertical flips, and rotations on the DEM data and colour adjust-
ments including brightness, contrast, saturation, and hue throughout the training epochs
for the multispectral images.

Algorithm 1: No-data value mask
Require: DEM
Ensure: No-data value mask

Generate a mask with the input DEM size
for Each data point in the DEM do

if Data point is zero then
Set the corresponding point in the mask layer to 1

else
Set the corresponding point in the mask layer to 0

end if
end for

(a)

DEM

Other Multispectral bands

Add no-data 
value mask

Data 
normalization

Data 
normalization

Input data

Padding

Padding

(b)

Output data

Figure 4. Data preparation process. (a) The input data are separated into the DEM channel and
other multispectral image channels, followed by the application of a no-data value mask to the DEM.
(b) DEM channel and multispectral image channels are then subjected to padding and normaliza-
tion separately.

2.2. Feature Extraction

The feature extraction part plays a crucial role in transforming the prepared input
dataset, which includes the DEM and multispectral images, into a set of meaningful and
informative features. The feature extraction process involves reducing the dimensionality of
the input data while retaining the most important and informative attributes for crop height
prediction. This process focuses on the critical attributes of the data, such as edges, corners,
and textures, and enhances the speed and efficiency of the model. Ultimately, the extracted



Machines 2023, 11, 1049 7 of 22

feature set is fed into the subsequent stages of the model—GRUs and regression stage—for
further analysis and final crop height prediction.

In the feature extraction process, the Convolutional Neural Network (CNN) [35] is
used because of its proficiency in automatically learning and extracting features from im-
ages, eliminating the need for traditional manual feature extraction. Specifically, our study
aims to infer the crop growth stages and establish the relationship between crop height
and ground elevation in different terrain characteristics using the DEM and multispectral
images from a drone. The DEM provides terrain characteristics, while the multispectral
images capture the crop growth stages. Additionally, the CNN possesses translational
invariance, which can recognize the same features across different positions in an image.
This capability of the CNN, combined with the comprehensive input data, enables the
extraction of intricate features and relationships essential for understanding crop growth
stages and their relationship with ground elevation.

In this research, the feature extraction network structure is inspired by the Dense
Connectivity Network (DenseNet) [37], which has achieved good results in classification.
Compared to a single CNN layer, a comprehensive network framework typically includes
multiple convolutional layers, activation functions, and pooling layers. This complexity
helps the model learn more intricate and rich feature representations from raw image data,
capturing hierarchical structures that a single CNN layer might fail to grasp. Additionally,
complete network frameworks are often adaptable to various tasks and datasets which is a
crucial aspect in handling the specific requirements in this research. Compared to previ-
ously published networks such as ResNet [38], VGG [39], and Inception [40], the fundamen-
tal idea behind the DenseNet is the dense connections, as shown in Figure 5b. Firstly, the
Dense Block lets each layer use features from previous layers, which helps gather detailed
features. This accumulation of features helps to capture intricate details and relationships
between terrain characteristics and crop growth stages. Secondly, the Dense Blocks en-
hance the gradient flow throughout the network, mitigating issues related to vanishing
gradients and thus making it possible to train deeper models effectively. This is particularly
important when dealing with multitemporal, multispectral data where capturing complex
patterns becomes essential. Finally, the Dense Blocks provide a parameter-efficient design.
Their ability to facilitate efficient feature extraction and feature reuse allows us to achieve
high accuracy while keeping the model size relatively small. Therefore, the inclusion of
the Dense Blocks serves to enrich the feature extraction capability of our model, making
it more effective and efficient in predicting crop height based on complex, multisource
data. Figure 5 demonstrates the feature extraction network, comprising the first, second,
and third layers, each containing a Dense Block. A Dense Block consists of six consecutive
convolutional processes, where the input is combined with the previous output before
each process.

As illustrated in Figure 5a, the initial step involves padding the DEM and multi-
spectral image data to ensure uniformity, resulting in input samples with dimensions of
7× 128× 512, where 7 represents input channels and 128× 512 represents input dimension.
These samples are then processed via consecutive convolution layers to obtain a size of
64× 64× 256. After a max pooling process, the size is reduced to 64× 32× 128, which
is then passed through the first Dense Block, as shown in Figure 5b. This Dense Block
contains six basic convolution processes, each consisting of convolution, normalization,
and Rectified Linear Unit (ReLU) activation functions. Each basic convolution processes all
the previous outputs. After the first Dense Block, the feature map changes to 256 features
with a size of 32× 128, and then, following another basic process including convolution,
normalization, ReLU, and average pooling, the size changes to 128 features with a size of
16× 64. After the third layer process, the size is transformed to 176× 4× 16. Subsequently,
these embedding data are fed into a GRU layer, enabling the model to learn the sequential
relationships within the data. From the GRU module, a new embedding with a dimension
of 256 is obtained. This is then passed into an output layer to predict the crop height.
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(64,64,256)
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(64,32,128)
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(256,32,128)
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(128,32,128)

AvgPool
(128,16,64)
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（a）

（b）

Figure 5. Depiction of the deep learning model incorporating layers for feature extraction (from
input layer section to third layer section), GRUs, and regression. (a) The proposed architecture with
input dimensions (7, 128, 512), where 7 signifies the number of channels and 128× 512 represents the
image size. (b) The structure of the Dense Block.

2.3. GRU-Based Modelling

The initial feature extraction through the DenseNet is pivotal for the model as it helps
spatial relationships and complicated patterns within each individual channel. In this
research, the input data include the DEM and five specific spectral channels from multi-
spectral images. These inputs capture discrete portions of the electromagnetic spectrum,
thereby encompassing both spatial and contextual features [41].

In order to optimally capture the nonlinear relationship between the extracted features
and crop height, a GRU layer is integrated into the feature extraction network. The GRU is
proficient in identifying dependencies and sequential patterns across different channels,
effectively marrying the spatial characteristics with the unique relationships potentially
existing among DEM and multispectral image data. This is accomplished by incorporating
a gate structure, inspired by neurons, which facilitates the continuous transmission of
sequence states from the preceding stages [42].

The Gated Recurrent Unit (GRU) [34] is a type of Recurrent Neural Network (RNN) [43]
that is capable of learning long-term dependencies in sequence data. The traditional RNN
faces challenges when processing data with long-term dependencies as it is difficult to
capture patterns that span extended sequences [44]. Compared to the Long Short-Term
Memory unit (LSTM) [45] and the Transformer [46], the GRU has a simpler architecture
with fewer parameters which can lead to faster training times and reduce computational
power needs. Our research aims to find the relationships among the input channels, so
using LSTMs or Transformers might be excessive, especially when the input sequences are
relatively short.

In Figure 6, a detailed depiction of information transmission for feature points at
different positions in the GRU space is presented. The GRU consists of two main gates:
the reset gate rt and the update gate zt, as shown in the following Equations (1) and (2).
The updated gate helps the model to decide how much of the past information from
the hidden state needs to be passed along to the future. This is important for capturing
dependencies over different time steps. The reset gate helps the model to decide how much
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of the past information needs to be forgotten. The gates are regulated by the σ sigmoid
activation function, which compresses values into a range between 0 to 1, allowing them to
be interpreted as probabilities. This is crucial for the model to not remember unnecessary
information from the past. h̃t is the current memory content which is a candidate hidden
state that includes the current input and the past hidden state (modulated by the reset gate).
The tanh function used in Equation (3) scales the values to be in the range of −1 to 1, which
can help the model to learn and converge faster as the values are centred around 0. ht is the
final memory at the current time step which is a combination of the past hidden state and
the candidate hidden state, modulated by the updated gate as shown in Equation (4). This
helps the model decide on the final memory at the current time step, taking into account
the past hidden state, the current candidate memory content, and the update gate.

In preparation for the GRU module, the dimensions of the input are transformed from
176× 4× 16 to 7× 176 as shown in Figure 5’s ‘GRU layer’ section. This transformation is
achieved by applying average pooling over the appropriate dimensions, resulting in 7 time
steps and 176 features for each time step. Subsequently, these data are processed by the
GRU module with a hidden state size of 256, ultimately producing 256 features as output.

zt = σ(Wz · xt + Uz · ht−1 + bz) (1)

rt = σ(Wr · xt + Ur · ht−1 + br) (2)

h̃t = tanh(Wh · xt + Uh · (rt � ht−1) + bh) (3)

ht = (1− zt)� ht−1 + zt � h̃t (4)

where xt represents the input at time t; Wz, Wr, Wh are the weight matrices for the input xt;
Uz, Ur, Uh are the weight matrices for the previous hidden state ht−1; bz, br, bh are the bias
terms; σ represents the sigmoid activation function; tanh represents the hyperbolic tangent
activation function; and � represents element-wise multiplication [34].

GRU

Hidden state

·

·

𝜎𝜎

𝜎𝜎

tanh

𝑥𝑥

𝑥𝑥𝑡𝑡

ℎ𝑡𝑡−1 ℎ𝑡𝑡

𝑧𝑧𝑡𝑡 ℎ𝑡𝑡′

𝑟𝑟𝑡𝑡 ·

1 −

𝑥𝑥𝑡𝑡+1

unfold

Sigmoid𝜎𝜎 · Product Addition

Figure 6. Diagrammatic representation of a Gated Recurrent Unit (GRU).

2.4. Regression Layer

Subsequent to the GRU layer, a regression layer is incorporated into the model. This
layer is crucial for refining the high-dimensional output from the GRU layer and regressing
it to the actual crop height. More specifically, the regression layer employs a fully connected
(FC) layer to ensure that the model’s output is consistent with the expected range and
distribution of crop heights, as illustrated in the ‘Output layer’ section of Figure 5, where
the dimensions are transformed from 256 to 1.
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2.5. Loss Function

The MSE (Mean Squared Error) as shown in Equation (5) is chosen as the loss function
in our study which is calculated as the average of the squared differences between the
ground truth and predicted values for crop height.

MSEmax =
1
n

n

∑
i=1

(yi − ŷi)
2 (5)

where yi is the actual value of the data point, ŷi is the predicted value of the data point,
and n is the total number of data points.

3. Results

In this section, we introduce the details of dataset preparation, the experimental envi-
ronment, evaluations, and the obtained results. In Section 3.1, we present the dataset and
processing methodologies. Section 3.2 outlines our experimental environment, the parame-
ter configurations, and the evaluation indexes. Section 3.3 draws a comparison between the
G-DMD and the traditional method. Section 3.4 shows the significance of the introduced
no-data value mask using heat maps. Section 3.5 presents outcomes from the model with-
out normalization. Section 3.6 compares the G-DMD with a model without GRU layers.
Finally, Section 3.7 compares varied input channels.

3.1. Dataset

In this paper, we use the dataset collected by Xu et al. [13] which is published in
Figshare [47]. These data were collected at the University of Georgia Plant Sciences
Farm in Watkinsville, GA, encompassing 48 plots, each 3 m long and 0.9 m wide. Height
measurements of each plant within the plots were manually recorded on six separate
occasions. The data collection was divided into two segments: 48 plots were measured
twice, and 24 plots were measured four times, due to the tractor’s rolling pattern. Images
of the experimental field were captured via an Octocopter (s1000+, DJI) equipped with
a lightweight multispectral camera (RedEdge, MicaSense) at a speed of 2.5 m/s and a
height of 20 m above ground level. The software/services PhotoScan and MicaSense
ATLASGigital were used to create the DEMs and orthomosaic images as depicted in
Figure 7. Each DEM pixel represents elevation, while the orthomosaic image is an
overlaying of blue, green, red, NIR, and RedEdge bands. Overall, the dataset consists of
six cotton field DEMs and orthomosaic images, as shown in Figure 7, alongside 192 plot
height data records.

In this research, we have further processed the data to suit our study’s objectives.
Specifically, we focus on the maximum and average cotton height within each plot.
The trends in maximum and average cotton height across the data collection dates
are illustrated in Figure 8. Each line in the figure represents maximum and average
cotton height changes during the measurement dates in one plot. Notably, the dates
30 September (9_30) and 7 October (10_7) have 48 plots, while other dates have 24 plots.
Additionally, we have divided the DEM and orthomosaic images into plot segments
using the QGIS software [48]. This division allows us to correlate each plot with the
corresponding maximum and average cotton height ground truth. Some examples of
these plot images can be seen in Figure 9.
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(a) (b)

Figure 7. Sample DEM and orthomosaic image from the experimental field. (a) A 3D visualization of
the DEM. (b) RGB components of the orthomosaic image [13].
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Figure 8. The cotton height trend in each plot. (a) The maximum cotton height trend in each plot.
(b) The average cotton height trend in each plot.
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(a) (b)

Figure 9. Some input samples from the dataset. (a) RGB plot segments. (b) DEM plot segments.

The dataset is separated into training, validation, and test datasets according to a
stratified sampling method, ensuring that each subset retains the same proportion of
dates as present in the original dataset. The distribution is as follows: the training subset
encompasses 60% with 115 samples; the validation and test subsets each consist of 20%,
tallying 38 and 39 samples, respectively.

3.2. Configuration

We used the Python programming language and the Rasterio and Sklearn packages to
read, process, and save the dataset. Model training was conducted on a DELL Academ-
J7G2SV3 with Intel (R) Xeon (R) W-11955M CPU with 32.0 GB RAM and NVIDIA RTX
A3000. The deep learning model was built in Pytorch. The optimizer used to train the
model was Adam, the initial learning rate was 0.001, the batch size was 4, and the total
epoch was 300. In DenseNet, the growth rate was set at 32. The architecture comprised
three blocks, with each block containing six layers. The GRU’s hidden size was configured
to 256, and it consisted of four stacked layers. These settings helped manage the increasing
complexity as the network deepened, ensuring effective feature extraction. For the subse-
quent experiments, the model was trained from scratch. A total of 192 samples were used
for the experiment, of which 115 samples were selected as the training data, 38 samples
were used as the validation dataset, and 39 samples were used as the testing dataset.

To assess the accuracy of the predicted value and ground truth, the Root Mean Square
Error (RMSE) and Mean Absolute Error (MAE) shown in Equations (6) and (7) were used
as evaluation metrics. The RMSE measures the average difference between the predicted
values and the corresponding ground truth values. A lower RMSE indicates a more accurate
prediction of the cotton plant height using the model. MAE calculates the average of the
absolute differences between the actual values and predicted values, intuitively reflecting
the magnitude of the prediction error.

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (6)

MAE =
1
n ∑ |yi − ŷi| (7)

where yi is the observed value, ŷi is the predicted value, and n is the number of observations.

3.3. Comparison with Traditional Method

As previously mentioned, the conventional approach for obtaining crop height in-
volves using a DEM to construct a 3D model of the ground surface as DTM, where the
difference between the z-coordinates of the model is considered as the crop height. We
used the cotton dataset to reproduce the traditional method in the following steps [13]:
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1. Generate the DEM and orthomosaic images from drone images and separate them
into plots. The pixel values of the DEM present the cotton and ground elevations.

2. Calculate the cotton height. (a) Separate the ground and cotton according to the Nor-
malized Difference Vegetation Index (NDVI) value. (b) Build the point cloud model
of the ground to find the fitted plane to represent the ground surface. (c) Calculate
the difference in elevation between the ground plane surface, i.e., DTM, and cotton
canopy, i.e., DSM, to calculate the maximum and average cotton height of each plot.

We used the G-DMD to train the model for maximum and average cotton height
prediction separately. The test dataset was used to evaluate the G-DMD and the traditional
method results. We used the RMSE and MAE to test the accuracy of these two methods.
The results are shown in Tables 1 and 2.

Table 1. Comparison of maximum cotton height prediction error using RMSE and MAE for the
G-DMD and traditional method.

G-DMD Traditional Method

RMSE (cm) 9.62 14.47
MAE (cm) 7.8 13.31

Table 2. Comparison of average cotton height prediction error using RMSE and MAE for the G-DMD
and traditional method.

G-DMD Traditional Method

RMSE (cm) 9.96 35.69
MAE (cm) 7.44 34.51

In the comparison of maximum cotton height, as shown in Table 1, the advanced
capabilities of the G-DMD method in predicting crop height became apparent. Compared
to the traditional method, the G-DMD showcased its refined predictive capability, reducing
the RMSE to 9.62 cm from the 14.47 cm observed in the traditional method—a 33.5%
improvement. Similarly, the MAE also significantly declined, achieving 7.8 cm for the
G-DMD, a 41.4% improvement from the 13.31 cm of the traditional approach.

When assessing the prediction of average cotton height as shown in Table 2, the ad-
vantages of the G-DMD method become even more significant. The RMSE for the G-DMD
is recorded at 9.96 cm, marking a 72.1% decrease relative to the 35.69 cm RMSE of the
traditional approach. Similarly, the MAE highlighted the G-DMD’s enhanced precision,
achieving 7.44 cm compared to the traditional method’s 34.51 cm—a reduction of 78.4%.

Figure 10 presents scatter plots comparing the predicted versus actual cotton height
for both maximum and average measures. The x-axis denotes the estimated cotton height,
while the y-axis illustrates the actual measurements. In Figure 10a, the dispersion of
prediction points from the 1:1 line underscores the variability in the traditional method’s
estimation of maximum cotton height. Conversely, Figure 10b reveals a tighter clustering
of points around the 1:1 line, signifying the superior accuracy of the G-DMD method
for maximum height prediction. Similarly, Figure 10c,d contrast the performance of the
traditional and G-DMD methods in predicting average cotton height. While the traditional
method seems to be more accurate for maximum cotton height than for the average height,
the G-DMD method consistently exhibits stability in its RMSE and MAE predictions across
both measures.
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Figure 10. Scatter plots for maximum and average cotton height predictions (cm) using traditional
and G-DMD methods. (a,b) are of the traditional method and the G-DMD method in maximum
cotton height prediction, respectively. (c,d) are of the traditional method and the G-DMD method in
average cotton height prediction, respectively.

3.4. Comparison with the No-Data Value Mask

In this evaluation, heat maps were used to provide an intuitive depiction of the model’s
learning progression, particularly when the no-data value mask was incorporated into
the input dataset. This no-data value mask was specifically designed to pinpoint invalid
data within the DEM, thereby enabling the model to discern the true characteristics of
the terrain with greater accuracy and faster speed. By adopting this strategy, the model
was able to concentrate on the vital information contained within the DEM images, whilst
simultaneously disregarding the invalid data that might otherwise have led to erroneous
interpretations. For this reason, in this experiment, we used the presetting parameters, but
only the DEM channel was used as the input, and we compared the input with and without
the no-data value mask. Moreover, we arranged the input data into the model in sequence,
allowing us to track the trend of the heat maps in the same input DEM.

The heat maps were generated after 100 epochs of training because, by this point,
the model was likely to have either reached convergence or be nearing it, signifying a
stabilization in its parameter and weight updates. The findings are illustrated in Figure 11.
Figure 11a displays the original DEM input, with lighter shades representing higher ele-
vations. To maintain uniformity in the size of the input DEM, the image was padded to
a dimension of 512 × 128, with the padded areas highlighted in blue. Figure 11b reveals
the heat map corresponding to the input with the no-data value mask after 100 epochs
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of training, while Figure 11c shows the heat map for the input without the no-data value
mask after 100 epochs.

During training, the use of the no-data value mask led to a heightened heat index and
concentrated the model’s attention on pertinent parts of the image, effectively excluding
the padded regions. In contrast, the model without the mask dispersed its focus onto the
padded parts. One potential reason for this performance difference is that the mask aids the
model in distinctly differentiating between data points and no-data points, thus sharpening
its focus on valid data. Additionally, the mask layer might enable the model to filter out
irrelevant noise during training, allowing for greater concentration on essential features.

(a)

(b)

(c)

Figure 11. The training process of the initial DEM input over 100 epochs with and without the no-data
value mask. (a) Original DEM input where lighter shades represent higher elevations. The DEM
was padded to dimensions of 512 × 128 to maintain consistent input size, with the padded areas
highlighted in blue. (b) Heat map for the DEM input with the no-data value mask after 100 training
epochs. (c) Heat map for the DEM input without the no-data value mask after 100 training epochs.

3.5. Comparison with the Non-Normalization Method

In this part, we use an experiment to show the significance of data normalization in the
context of training a model for cotton height prediction. While prior research has suggested
that data normalization can save training time and enhance accuracy, this method often
falls short in providing an intuitive demonstration of the process during both training
and prediction stages. In our method, we first used data normalization for DEM and
multispectral images separately and then extended the renormalization process during
prediction, allowing for a more precise and intuitive representation of the results.

We trained the model using the input dataset without normalization; the results are
shown in Figure 12. The blue line shows the model prediction in the test dataset, and the
orange line shows the ground truth. It is observed that the model outputs consistent
results across different input samples. The lack of normalization appears to cause the
model to converge on predictions of uniform values to minimize the overall training loss.
This phenomenon occurs because, when data are not normalized, large feature values can
dominate the loss calculation. Consequently, the model predominantly focuses on these
large-scale features and tends to neglect others. While predicting a constant value may
reduce this dominant loss, it fails to exhibit robust generalization across varied data points,
leading to compromised model accuracy.
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Figure 12. The prediction result without data normalization.

3.6. Comparison with a Model without GRU Layer

To assess the value of the GRU structure, we compared its performance with a simpli-
fied network, hereafter referred to as the ‘base’ model. This ‘base’ model consists of only
a feature extraction network and a regression module. Other factors, such as variations
in optimization algorithms and learning rates, are kept the same. We aimed to isolate the
specific contributions of the GRU to prediction accuracy. During this investigation, we
monitored the model’s response on the test dataset throughout its training, recording the
results at each epoch to provide a clearer understanding of its performance trajectory and
the GRU’s incremental benefits.

Figure 13 presents a comparative analysis of the MSE and RMSE for two distinct
models: the ‘base’ model and our proposed model. The x-axis represents the training
epochs, while the y-axis illustrates the corresponding MSE values and RMSE values. In the
experimental results, the ‘base’ model, represented by the blue line, demonstrates a slower
rate of decline in both RMSE and MSE compared to our proposed model, depicted by the
yellow line. Moreover, the error of the model prediction in the test dataset exhibits greater
stability than the ‘base’ model. This disparity in convergence speed may be attributed
to the enhanced capability of our proposed method, which employs the GRU structure,
to capture the complex patterns and characteristics inherent in the data.

3.7. Comparison with Different Input Channels

To investigate the complex relationships between different input features and their
influence on model learning, we conducted a series of experiments using various input
channels, i.e., DEM, RGB, NIR, RedEdge, and a combination of all, with the model to
determine which kind of combination of channels is the most influential in accurately
predicting crop height. The model trained 300 epochs for each set of input channels,
and the test dataset was used to assess the model’s quality. Table 3 shows the results
with the test dataset after renormalization. Figure 14 shows the trend of RMSE on the
test dataset during training. Since the test dataset remained invisible during training,
the model’s performance on this test set provides insights into its potential accuracy in
real-world applications.

The results demonstrate that the input combining all channels presents the most
accurate predictions. During the training, this combination exhibits a stable decline in
RMSE on the test dataset. In each training epoch, it consistently outperforms other input
methods by registering the lowest error on the test dataset. This improved performance
can be attributed to the complementary information that each channel—DEM, RGB, NIR,
and RedEdge—provides about the terrain and crops. By integrating all channels, the model
benefits from a richer set of features, which capture different facets of the crops and
enhance its predictive capabilities. Moreover, combining data from diverse channels
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can counterbalance any noise or errors inherent to individual channels. This is because
inconsistencies or noise in one channel might be offset by reliable signals from others.
In general, each channel offers insights into specific terrain attributes and the growth stages.
Consequently, using multiple channels as model inputs provides a more robust prediction
of cotton height, effectively associating them with terrain attributes and growth stages.
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Figure 13. Comparison of MSE and RMSE trends during training epochs for maximum cotton height
prediction using the ‘base’ model and the G-DMD on the test dataset.
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Figure 14. Trend of RMSE during training epochs for maximum cotton height on test dataset with
various input channels, including DEM, RGB, NIR, RedEdge, and a combination of all channels.
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Table 3. Comparison of RMSE and MAE for maximum cotton height prediction on the test dataset
with various input channels such as DEM, RGB, NIR, RedEdge, and a combination of all channels.

DEM RGB NIR Red Edge Combination

RMSE (cm) 11.52 14.5 16.74 9.62
MAE (cm) 8.82 11.48 12.38 7.8

4. Discussion

Our findings highlight the potential of using the DEM and multispectral images from
a drone to measure crop height, particularly in real agricultural contexts. This approach
enables crop height prediction without the necessity for ground elevation information,
which is often obscured by crop foliage in real-world scenarios. This obstruction typi-
cally necessitates additional spatial information to reconstruct the DTM to calculate the
difference in z-coordinates between ground and canopy elevation, a process that is both
time-consuming and labour-intensive.

We use the no-value mask during data preparation to process the unique characteristics
of DEM data and use the heat map to assess its efficacy. Our primary objective is not
merely to enhance accuracy through the no-value mask but to ensure the model focuses on
crucial input segments and achieves faster convergence. The result presented in Section 3.4,
as illustrated by the heat maps, confirms that the model focuses on pertinent terrain features
due to the incorporation of the no-value mask.

Additionally, due to the distinct characteristics of the DEM, multispectral images, and
ground truth, we apply normalization separately to each component and renormalize the
output using the previous scaler, resulting in predictions more closely aligned with reality.

In the evaluation of the ‘base’ network, our attention is directed towards the test
dataset’s performance during training epochs. We also implement the GRU to identify
the relationships between channels, particularly in multispectral images, where temporal
correlations often exist. Experiment results indicate that this approach contributes to the
model’s stability.

In selecting input data channels, we determine that using multiple channels, including
the DEM, RGB, NIR, and RedEdge, facilitates more precise cotton height predictions than
previous research.

In the cotton dataset, while the maximum and average cotton height RMSE errors of
the G-DMD model are 9.62 cm and 9.96 cm, they are still 38% lower for maximum cotton
height and 72% lower for average cotton height compared to the traditional method. One
reason for this discrepancy is the error associated with the manual measurement of cotton
ground truth data. As observed in Figure 8, the maximum and average heights in each plot
do not exhibit consistent growth, and in some instances, the height even decreases over
time, which indicates possible errors in manual measurement. Another factor is the small
size of the cotton dataset, increasing the likelihood of overfitting.

Our findings corroborate the results presented by Malachy et al. [49], where the
RMSE errors for the traditional method in measuring maximum cotton, tomato, and potato
height are 25 cm, 19 cm, and 11 cm and for average height are 32 cm, 29 cm, and 13 cm.
These results are similar to our experiments for the traditional method, where the RMSE for
maximum cotton height is 14 cm and for average cotton height is 35 cm. While Malachy et al.
observe reduced errors after optimizing their machine learning approach with actual data,
this optimization compromises the model’s transferability, necessitating actual data from
new fields for result adjustment. In contrast, our method produces results without the
need for secondary optimization. When compared with the actual cotton height of around
70–100 cm in the dataset we used, the error margin remains within an acceptable threshold.
Moreover, a study by Valluvan et al. [50] highlights that the traditional method’s accuracy
in determining crop height is impacted due to slope variations. Despite using a linear
model for ground elevation adjustment, their reported RMSE error for maize crop height
remains around 14.17 cm.
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Meanwhile, our findings are in agreement with the study by Da Silva Andrea et al. [19]
which tested different machine learning algorithms combined with different manual feature
selections using satellite multispectral imagery for cotton height prediction during the
entire growing season and obtained MAE errors ranging from 8 to 25 cm. Moreover, Osco
et al. [18] reported RMSE errors between 17 cm and 30 cm for maize plant height predictions
using drone multispectral images, combined with machine learning methodologies and
manual feature extraction.

Our findings provide valuable guidance for agricultural crop height monitoring.
By integrating both elevation and multispectral image data, we aim to increase the model’s
adaptability in different scenarios, which is to be tested in our future work.

Finally, since these experimental results are specific to the cotton dataset, generalizing
these findings requires caution. Variations in crop types or crop average height could result
in different outcomes, thus emphasizing the need for additional research to thoroughly
understand the automatic solution for crop height monitoring. Future studies should
extend this exploration with larger crop datasets, aiming to train the model with transfer
learning for different real scenarios. While the results are promising, further studies could
explore the application of this model to other crops and varied geographical regions.

5. Conclusions

In this paper, we introduce the G-DMD, an approach for crop height measurement
in real agriculture scenarios based on a deep learning model that autonomously extracts
features from the multispectral images and DEM. Our approach obviates the need for
ground elevation information, specifically the DTM, thereby overcoming the labour- and
time-consuming process of gathering additional data. Moreover, the G-DMD is adaptable
across various topographic landforms, addressing accuracy issues often encountered in
traditional methods due to errors in DTM reconstruction. Importantly, we use a deep
learning method to autonomously extract and learn features from raw data, including
multispectral images and DEM obtained from drone imagery. This approach overcomes
the accuracy uncertainties associated with manual feature selection across different crop
types and growth stages. We add a GRU layer after CNN-based feature extraction to better
capture features across varied characteristic inputs. Simultaneously, we introduce a data
preparation process for both the DEM and multispectral images, optimizing the extraction
of diverse features from these inputs.

Evaluation results confirm that the G-DMD predicts crop height with an acceptable
RMSE error in the test dataset, outperforming the traditional method with around 38%
lower error for maximum cotton height and 72% lower error for average cotton height.
The incorporation of GRUs in the model resulted in a more stable training process on
the test dataset. The evaluation also revealed that the combination of inputs (DEM and
multispectral images) yielded superior results compared to single-input models. While this
study focused solely on the cotton dataset, the entire process we detailed—from preparing
the dataset to training and prediction—can be applied to other datasets. While the model’s
adaptability to other datasets has not yet been explored, our next step is to expand our
research to different datasets, aiming to enhance the robustness and generalizability of
the G-DMD. This method has held promise for automatic crop height monitoring in
agricultural settings.

As agriculture continues to evolve towards more automated crop monitoring, the de-
mand for efficient and automated solutions for crop height measurement will become
increasingly important. Our work highlights the potential of advanced deep learning
techniques to enhance agricultural practices.
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Abbreviations

The following abbreviations are used in this manuscript:

DEM Digital Elevation Model
DTM Digital Terrain Model
CNN Convolutional Neural Network
RNN Recurrent Neural Network
GRU Gated Recurrent Unit
DenseNet Dense Connectivity Network
ReLU Rectified Linear Unit
GCP Ground Control Point
VIs Vegetation Indices
GCT Ground Calibration Target
NIR Near-Infrared
MSE Mean Squared Error
RMSE Root Mean Square Error
MAE Mean Absolute Error
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