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Abstract: This paper assesses the energy consumption, control performance, and application-specific
functional requirements of a modular drivetrain in comparison to a benchmark drivetrain. A de-
centralised control architecture has been developed and validated using mechanical plant models.
Simscape models have been validated with data from an experimental setup including an equiva-
lent modular and benchmark drivetrain. In addition, the control strategy has been implemented
and validated on the experimental setup. The results prove the ability of the control strategy to
synchronize the motion of the different sliders, resulting in crank position tracking errors below
0.032 radians on the setup. The model and experimental data show an increased performance of the
modular drivetrain compared to the benchmark drivetrain in terms of energy consumption, control
performance, and functional requirements. The modular drivetrain is especially advantageous for
machines running highly dynamic motion profiles due to the reduced inertia. For such motion
profiles, an increased position tracking of up to 84% has been measured. In addition, it is shown
that the modular drivetrain root mean square (RMS) torque is reduced with 32% compared to the
benchmark drivetrain. However, these mechanical energy savings are partly counteracted by the
higher motor losses seen in the modular drivetrain, resulting in potential electrical energy savings of
around 29%.

Keywords: modular drivetrain; drivetrain performance; energy consumption

1. Introduction

In the manufacturing industry, more stringent requirements are continuously set
on operating machines and systems as a way to leverage manufacturers’ competitive
advantages. Productivity, reliability, energy consumption, and flexibility are frequently
recurring key performance indicators (KPI) for designing, developing, and selecting ma-
chines. The concept of modularity has been proposed [1–3] as a potential method to design
and build machines with increased operational performance and customisation potential.
The demand for easy customisation requires more flexibility in machine configuration.
The literature has shown that modularity has benefits when it comes to developing more
flexible machines [4,5]. A module-based approach can further reduce engineering and time
costs [6], as scaling the system does not require a detailed redesign, instead relying on the
addition or removal of modules built from standardized components. This paper adheres
to the following definition of modularity [7]: the degree to which a system’s components
may be separated and recombined, often enhancing the system’s scalability, flexibility, and
variety of use cases. The unique set of separated and recombined components is called
a module.
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In [2], the authors showed that for direct drive systems a modular approach can result
in increased operational efficiency. Furthermore, controller reference tracking outperformed
the benchmark case, indicating the potential to push machines to higher operating speeds
and thereby obtain an increased production rate. The benefits of introducing modularity
have been illustrated for other applications as well, such as cranes [8], wind turbines [9],
and electric vehicles [10,11]. For crane applications, ref. [8] showed that load-sharing
electrical drive configurations result in a more uniform load distribution between motors
and have the ability to eliminate crane skew. The grid connection of large wind turbines [9]
can benefit from reduced capacitor voltage ripple when connected to a hybrid modular
multilevel converter. For electric vehicle applications, ref. [11] demonstrated low harmonic
distortion and high efficiency when implementing a modular multilevel topology using
power electronics transformers.

This research paper aims to assess the performance of application cases for modular
drivetrains typically used in tufting, weaving, and stamping machines. These machines
often rely on the conversion of rotational motion to translational motion by means of bar
and/or slider–crank mechanisms, which typically introduce a variable inertia. In [12], the
authors demonstrated the robust performance of a slider–crank mechanism driven by a
permanent magnet synchronous machine (PMSM) with an adaptive controller. However,
this paper is limited to the motion control of a single slider–crank mechanism. Therefore,
a modular drivetrain concept with six motors and slider-crank mechanisms (modules) is
used as a test case to evaluate the performance of a decentralized control architecture for a
modular drivetrain. Each independent drivetrain module executes a local control strategy
without any information on the neighbouring modules. In addition, a benchmark (non-
modular) drivetrain is developed in detail as a reference for a performance comparison.
An experimental setup including the modular and benchmark drivetrain was designed
and built, allowing the operational performance of the modular drivetrain system to be
experimentally compared with the benchmark system.

Industrial weaving machines typically contain different functional components oper-
ating at high speeds, and each of their respective motion patterns must be synchronized
to meet the machines’ functional requirements. Traditionally, these machines have a sin-
gle motor that is mechanically linked to the machine load through bar linkages, cams,
etc. This is equivalent to the benchmark drivetrain presented in this paper. The sliders
of this benchmark drivetrain are inherently synchronized (neglecting the non-rigidity of
crankshaft) by the mechanical design; ref. [13] already showed that the application of
programmable controllers and electronic drive regulators can improve the operational
efficiency and reliability of multi-motor machines in the textile industry. Modularity in
drivetrain systems furthermore implies modifications in the control architecture. The mo-
tions of each individual module need to be electronically synchronized with each other
in order to achieve the required motion of the load without causing unnecessary internal
stresses or damage to the system. This topic has been discussed elaborately in previous
research [14–19] for different kind of applications. In [16], for example, the authors applied
the total sliding mode control method in order to synchronize multiple asynchronous
machines. However, the above research focuses on centralized control architectures for
synchronizing the modules, introducing the disadvantage of a single point of failure; if the
controller fails, the entire drivetrain system fails to operate. For example, ref. [19] presented
a speed control method for a dual PMSM connected in parallel and regulated with a single
inverter. In [20], the author investigated a decentralised control strategy for synchronized
control of multi-motor drive systems; however, his research was limited to a simulation
environment and was not experimentally validated. Furthermore, the case of mechanically
coupled motor loads, which are often present in textile machines, was not investigated. In
contrast, the contributions of the present research include a performance analysis of a driv-
etrain system with mechanically linked loads. In practice, the six sliders are connected with
an aluminum bar as the load. With respect to drivetrain modularization, this poses more
stringent requirements on drivetrain control performance in order to avoid mechanical
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failures during drivetrain operation. Assuming a rigid system, multiple actuators provide
control with a single degree of freedom. Along with implementing a modular mechan-
ical design of the drivetrain system, this research further aims to implement a modular
and scalable masterless control architecture. This paper describes a decentralised control
architecture, aiming to avoid a single point of failure and allow continuous drivetrain
operation in the event that the controller of a single module fails. The local module control
strategy consists of cascaded proportional–integral (PI) loops and a feed-forward term. The
dynamic drivetrain model in Matlab Simscape [21] allows this control strategy to be safely
validated in a virtual environment before implementing and testing it on the experimental
setup. To the best of our knowledge, introducing modularity in terms of both mechanical
design and control architecture on a slider–crank drivetrain system with coupled loads
represents a novel research approach.

The remainder of this paper is organised as follows. Section 2 introduces the theory,
models, and methods used to design, develop, and implement the modular slider–crank
drivetrain on both the system and component levels. Section 2.5 elaborates the design
of the experimental setup and planned experiments used to assess the drivetrain perfor-
mance. The model validation and drivetrain performance assessment are then discussed in
Section 3, while Section 4 provides a final summary.

2. Materials and Methods

This section first elaborates on the methodology used to compare and assess the
different drivetrain architectures. Second, the the concepts underlying the two drivetrain
architectures under investigation are described. Third, the modelling of the drivetrain
architectures and the control architecture and strategy are explained. Lastly, the design of
the experimental setup is described in detail and the drivetrain KPIs are defined.

2.1. Assessment Methodology

The comparison of the drivetrains was executed following the principles illustrated in
Figure 1. In [22], this methodology was explained and applied for the assessment of modu-
lar drivetrains in a simulation environment. Multiple drivetrain architectures have been
conceptually designed and modelled. An architecture can consist of Z physical models,
representing, for example, a slider–crank mechanism. The detailed simulation parameters
are implemented in the simulation model. These may include physical component parame-
ters, controller parameters, environmental conditions, etc. The simulation models are run
with a certain load profile that defines the motion and external forces applied to the system.
Furthermore, a set of key performance indicators are defined; using the output of the
simulation models, the KPI values are calculated for the different drivetrain architectures,
allowing a performance assessment and comparison to be carried out. Figure 1 focuses on a
model-based performance assessment approach. This paper applies a similar methodology,
using data from experimental setups instead of simulation models.

Figure 1. Assessment methodology.
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2.2. Drivetrain Architectures

The definition of the modular drivetrain concept is based on the application of an
industrial weaving (tufting) machine [1]. These machines make use of multiple slider–crank
and/or multi-link bar mechanisms in parallel to convert rotational motion to translational
motion on the load. In this case, the load is a uniformly-distributed mass connecting all of
the sliders. Traditionally, these slider–crank mechanisms are connected by a crankshaft and
driven by a single rotational power source, e.g., an electric motor. Figure 2 illustrates a sim-
plified system architecture of this benchmark drivetrain with six slider–crank mechanisms.
In [1], a novel modular alternative to this benchmark drivetrain was introduced, as shown
schematically in Figure 2. This modular drivetrain architecture contains six slider–crank
mechanisms, with the sliders all connected to a single load. This load is identical to the one
in the benchmark drivetrain; however, each slider–crank mechanism is driven by a separate
electric motor. Hence, the modular drivetrain system has six independently powered and
controlled modules moving the load. This paper evaluates and compares the performance
of both the benchmark and modular drivetrains by means of a dynamic mechanical model
developed in Mathworks Simscape and an experimental test setup.

(a)

(b)

Figure 2. Drivetrain architectures: (a) benchmark and (b) modular.

2.3. Drivetrain Models

The two system architectures depicted in Figure 2 were both modelled in the Mat-
lab Simscape (R2019a) environment. Blocks from the Simscape foundation library were
used, and custom Simscape blocks were developed as well. In order to build the mod-
els of the above-mentioned drivetrain systems, component models of the electric motor,
slider–crank mechanism, and inertial load are required. The benchmark system architecture
additionally requires modelling of the crankshaft. The different component models are
described in more detail below.

The permanent magnet synchronous machine (PMSM) and its drive were simplified
as a first-order system with rotational inertia and output torque saturated at the motor peak
torque curve. In order to add a minimum of motor dynamics, a discrete low-pass filter
was implemented. The transfer function for this filter allows the electromagnetic dynamic
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performance of the modelled motor to be limited by filtering the motor torque target TTgt
generated by the controller:

G =
TAct
TTgt

=
(ts/τ)z−1

1 + (ts/τ − 1)z−1 (1)

where TAct is the actual torque generated by the electric motor. The time constant τ is
chosen such that the filter cutoff frequency (−6 dB) equals 800 Hz. Furthermore, the
motor resolver data is modelled to include a communication delay and measurement
noise. The delay is simple signal time delay between the resolver and the motor controller
feedback loop (Section 2.4). White noise with a constant power spectral density (PSD) was
superimposed on the crank resolver signal. The delay and noise values were fitted using
experimental data of the setup, and are listed in Table 1.

A separate Matlab script based on the power loss model of the PMSM, inverter, and
cables was used to estimate the consumed electrical energy from the grid based on the
measured (or simulated) motor speed and torque. The power loss model of the PMSM
was defined by first establishing the current and voltage equations of a PMSM depending
on the torque and speed setpoint [23], allowing efficiency maps to be computed by taking
into account iron loss, copper loss, and mechanical loss [24] and validation to be carried
out based on the efficiency maps provided by the the supplier. The motor performance
characteristics were obtained from the datasheets of the PMSM motors used in the physical
setup; more details can be found in Section 2.5. The cable Joule losses were directly
computed from the motor currents and cable resistance. The inverter model was simplified
through a load-dependent efficiency curve that was tuned to match the nominal loss from
the suppliers’ datasheets.

In the benchmark drivetrain, the PMSM is connected to a crankshaft, as depicted in
Figure 2. The crankshaft is driven by the electric motor, and connects the cranks of the
six slider–crank mechanisms. The shaft was modelled based on the rotational stiffness,
damping, and inertia.

While the Simscape foundation library already collects a large set of component
models, a detailed model for the slider–crank mechanism was lacking. First, the default
Simscape slider–crank block does not include friction. Second, it does not include the
effect of the position of the centre of gravity (Cog) of the crank and rod on the dynamic
behavior. Third, gravity itself is unmodelled behaviour in the default Simscape block.
Thus, the slider–crank mechanism [25] was analytically modelled and implemented in a
custom Simscape block. The analytical equations included the kinematic and dynamic
relationships between the rotational motion of the crank and the translational motion of the
end of the rod (i.e., the slider) while taking into account the variable inertia effects. Second,
the vertical and horizontal forces at the crankshaft, crank rod, and rod–load connections
were calculated while taking into account the gravitational effects. All equations were
derived based on the slider–crank free-body diagram depicted in Figure 3, and can be
found in Appendix A.

Figure 3. Slider–crank free-body diagram.
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Table 1. Component properties.

Component Parameter Value Units

AM8063L motor

Nominal power 4.97 kW
Nominal torque 33.9 Nm

Peak torque 111 Nm
Torque constant 3.33 Nm/A

Rotor inertia 29.0 kg× cm2

AM8051F motors

Nominal power 1.52 kW
Nominal torque 5.8 Nm

Peak torque 17.7 Nm
Torque constant 1.77 Nm/A

Rotor inertia 2.24 kg× cm2

Motor resolver
delay 1.1 ms

Noise sample time 10−5 s
Noise PSD 10−20 Mag2/Hz

Crankshaft

Inertia 1.208× 10−3 kg×m2

Length 1.96 m
Torsional stiffness 3.4× 103 Nm/rad
Torsional damping 0.02 Nm× s/rad

Slider-crank

Crank length 20 mm
Rod length 95 mm

Crank inertia 12 kg× cm2

Rod inertia 28 kg× cm2

Crank mass 1.04 kg
Rod mass 0.77 kg

Slider friction coefficient 0.45 /
Crank Coulomb friction 0.77 Nm
Crank viscous friction 0.03 Nm× s/rad

Load

Mass 4.42 kg
Length 1.8 m

Segment stiffness 9.55× 105 N/m
Segment damping 8.29 N × s/m

The load consisted of an aluminium bar connecting the six sliders of the slider–crank
mechanisms. For modelling purposes, the load was divided into five segments, with
each located in between two slider–cranks. The segments were modelled using the lateral
bending stiffness and damping along with the translational mass between the different
sliders. The load’s total mass was determined on the basis of the mechanical CAD model
and the lateral moment of inertia (Iy = 51, 739 mm4), which is necessary in order to calculate
the load segment stiffness. For each segment, the stiffness was separately calculated using
the following equation:

K =
1
2
× 48× E× Iy

2× L3
segment

(2)

where E is the Young’s modulus, Iy is the moment of inertia, and Lsegment is the length of
the segment. The parameter values of the load are summarized in Table 1.

Additionally, static and kinetic frictions were taken into account in the model using a
Simscape rotational friction element for the crank bearings and the translational friction for
the slider carriage. The slider carriage friction model additionally took into account the total
normal force acting on the slider carriage, including the gravitational force and the dynamic
vertical force on the rod–load connection computed by the model of the slider–crank
mechanism. The friction coefficients were determined by parameter optimization using
experimental data from the setup (see Section 2.5), and are summarized in Table 1.

Figure 4 schematically shows how the modular drivetrain system model was built
using the component models. The figure only shows two of the six modules. The benchmark
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drivetrain system model was built up equivalently, with the additional inclusion of a
crankshaft model connecting all six cranks.

Figure 4. Modular drivetrain mechanical system model.

The main model parameters were defined from the component datasheets, and the
friction parameters were tuned and validated by comparison with measurements taken on
the physical setup. Table 1 provides the parameters values.

The mechanical system plant models of the benchmark and modular drivetrain were
utilized to develop and validate the drivetrain control strategy, which is discussed in
Section 2.4 below.

2.4. Control Architecture and Strategy

The sliders of the benchmark drivetrain are inherently synchronized by the presence
of the crankshaft, which mechanically connects all six cranks. However, the modular
drivetrain does not have mechanically linked slider–crank mechanisms, and as such the
sliders have to be electronically synchronized through adequate control of all six motors.

Previous research on control methods has shown good performance for multi-drive
systems; however, the control architectures were largely implemented in a centralized
manner [8,14–18], limiting the modularity to the mechanical design of the system. In
this research, a decentralised control architecture for the modular drivetrain has been
developed, with each motor being controlled locally. In this way, the concept of drivetrain
modularity is further extended to the drivetrain control. In addition, removing the master
controller scheme eliminates it as a potential single point of failure. A schematic of this
control architecture is visualized in Figure 5. Each motor is controlled by a local controller
with a sample time of 4 kHz. All local controllers act towards the same reference position
and speed. This decentralised control architecture allows for increased system reliability
and fault tolerance while maintaining synchronization of the six sliders.

Both the benchmark and modular drivetrains were implemented with an identical
local control strategy, which is visualized in Figure 6. While in the benchmark drivetrain
only a single motor needs to be controlled, the modular drivetrain requires synchronized
control of six independent motors. The applied control strategy is composed of the two
main components depicted in Figure 6. First, a cascaded proportional integrator (PI) loop
contains two PI feedback loops. This includes a positional PI controller which aims to track
a rotational reference position for the motor. The output of this position controller is an
input for the second PI loop, which aims to track a reference velocity. The proportional
term of this velocity feedback loop is equivalent to the derivative term of a traditional
PID feeback loop. Both PI loops include an anti-windup mechanism. The cascaded PI
loop (position + velocity) was chosen over a traditional PID position controller because
it enables sharing of the control parameter tuning between continuous and reciprocating
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motion (see Section 2.6 for definitions of continuous and reciprocating motion). For both
drivetrains, the control parameters of the cascaded PI loop were optimized using the
model-based PI tuning method. The control performance for each setup was numerically
optimized for position and velocity tracking during high-speed operation.

Figure 5. Modular control architecture.

Figure 6. Local control strategy.

Second, a feed-forward controller based on the analytic equations of the slider–crank
mechanism (see Appendix A) was implemented. This block outputs an estimation of
the required motor torque for a certain reference crank position, velocity, acceleration,
and slider–crank properties. The slider–crank properties include the dimensions, weight,
inertia, and frictional characteristics of the mechanism. The exact properties and their
values are listed in Table 1. The frictional characteristics were empirically defined using
the experimental data from the setup, which is described below and is equivalent to the
inverse of the slider–crank model described in Section 2.3.

The target motion time series is defined by a motion profile type, target slider fre-
quency (number of slider cycles/second), and target stroke length (only applicable for the
reciprocating motion type). Using the above two inputs, the reference block in Figure 6
computes the target crank position, velocity, and acceleration time traces for the different
motion profile types under investigation. More information on these time-dependent
motion profiles can be found in Section 2.6.

It is important to note that for the modular drivetrain, this control strategy needs to
be applied in a decentralized manner; hence, each motor has its own local independent
controller acting towards the same reference, resulting in a total of six active controllers.
Such a decentralized control architecture eliminates the single point of failure and allows
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the system to remain functional (potentially with limited performance) in the event that a
motor or its respective controller fails.

The combination of the mechanical plant models and control algorithm in the Matlab
Simscape environment allows the performance of both the modular and non-modular
(benchmark) system architectures to be virtually evaluated. Next, we aimed to further
validate these findings with experimental results. Therefore, an experimental setup was
developed and built, which is described in the next section.

2.5. Design of Experimental Setup

A mechanical design and component selection process was executed based on the
conceptual diagrams of the system architectures visualized in Figure 2.

The setup is visualized in Figure 7 and its operation is demonstrated in the video
provided in [26]. Both the modular and benchmark drivetrain were installed on the same
Welda test bed table and rotated in opposite directions, resulting in the inertial forces
of both setups being counterbalanced, thereby reducing the vibrations and swinging of
the table. However, this has the negative consequence that a single drivetrain cannot
be operated individually at high speeds, inhibiting the experimental evaluation of the
maximum operating speed of the fastest drivetrain. The Welda table was installed with
multiple T-slot plates, allowing for easy and flexible mounting of all components on the
table. This mounting flexibility and freedom is particularly important for the modular
drivetrain, as the mechanical alignment of the six modules is both challenging and critical
for proper operation. For the benchmark drivetrain, the six slider–crank mechanisms were
inherently aligned (within design tolerances) by the presence of the crankshaft.

(a) (b)

Figure 7. Experimental setup: (a) CAD design and (b) setup in the lab.

To keep the research industrially relevant, component sizing and selection focused
primarily on off-the-shelf components. The modular drivetrain used six AM8051F motors,
while the benchmark drivetrain used a single AM8063L motor. Table 1 lists several basic
properties of these motors. The motors’ front faces were bolted onto a steel frame. This steel
frame had slots in the bottom to affix the frame to the test bed using the T-slots, allowing for
a range of movement when positioning the motors. This range of movement is particularly
important for the modular drivetrain, as it has no crankshaft connecting all modules,
meaning that the six slider–crank mechanisms are not inherently mechanically aligned.
Custom alignment tools were developed together with a specific alignment procedure
to achieve mechanical alignment within tolerances. The slider carriage was a caged ball
linear guide of THK (SSR 15 X W 1 SS QZ + 160 L), and is shown in Figure 8. The load
bar connecting all six slider carriages was a standard aluminum item profile with a total
weight of 4.42 kg. All electronic components, such as the motor drives, IPC, IO cards, and
low-voltage power supply, were stock components. A total of four type AX5000 Beckhoff
drives were installed in the electrical cabinet: a single drive for the benchmark drivetrain,
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and three dual-channel drives for the modular drivetrain. For the latter dual-channel
drives, the two channels were separated, allowing independent control of the six motors of
the modular drivetrain. Each drive was operated at a switching frequency of 8 kHz. The
IPC implemented and ran the control algorithm, as discussed in Section 2.4, at a sample
frequency of 4 kHz. The IPC then sent the individual torque targets to each drive over an
EtherCAT communication network.

Figure 8. Slider carriage and eccentric bearing.

The main custom components of the setup were the crankshaft and the slider–crank
mechanism. The crankshaft was a custom machined steel rod connecting the motor to
the six slider–crank mechanisms of the benchmark drivetrain. The modular drivetrain
did not have this crankshaft. All slider–crank mechanisms were identical by design.
The mechanism was composed of an eccentric bearing converting the rotational motion
to translational motion. The eccentricity of the bearing was obtained by offsetting the
bearing’s centre axis with respect to the rotational axis. The eccentric bearing is visualized
in more detail in Figure 8. The slider–crank mechanism had a crank length of 20 mm,
allowing a maximum full slider stroke of 40 mm to be achieved. The dimensions and
properties of the main off-the-shelf and custom components are listed in Table 1.

2.6. Performance KPIs

The availability of a simulation environment and experimental environment allowed
an accurate performance assessment of the benchmark and modular drivetrains to be
carried out.

The following KPIs were defined for evaluating the performance of both drivetrain
systems following the approach described in Section 2.1.

The maximum torque required for a certain operating condition is an indicator of the
peak load of a drivetrain system. A lower peak load results in higher system reliability
and lifetime. The crank torque is calculated on the basis of the motor currents reported
by the respective drive. The following equation was applied for field-oriented controlled
(FOC) PMSM:

T(t) = kt ∗ iq(t) (3)

where kt and iq(t) are the motor torque constant and the motor q-axis current, respectively.
Next, the maximum torque for a time series torque signal is calculated as follows:

Tmax = max(‖T(t)‖) (4)
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For the modular drivetrain, T(t) is the total drivetrain torque, which is equal to the
sum of the torques of the six independent motors.

RMS torque allows the mechanical energy consumption of the system drivetrains to
be compared for a given motion profile.

Trms =
√

mean(T(t)2) (5)

The crank position control error defines the control accuracy of the system drivetrain.
The crank position is measured by the motor resolvers and read out from the drives. Based
on these resolver signals, the KPI is calculated as follows.

emax
θ = max{‖

(
θact(t)− θre f (t)

)
‖} (6)

The slider error defines how accurately the slider positions are aligned and syn-
chronized with each other during motion. For an ideal drivetrain (meaning one without
disturbances such as misalignment and other design tolerances), this largely correlates
with the above-mentioned crank position control error; however, for a non-ideal system
such as the experimental setup, this is not necessarily the case. In practice, design tol-
erances, mounting misalignments, etc., are inherently present. The slider positions are
measured using linear encoders (RLS LA11) attached to the slider carriage. Based on these
measurements, the maximum slider error is calculated as follows:

emax
sliderPos = max

tε[t0,tend ]
{‖max

iε[1,6]
{PSi,t} − min

iε[1,6]
{PSi,t}‖} (7)

where PSi,t is the position of slider number i at instant t, t0 is the start time of the experiment
with the machine at steady speed, and tend is the end of the experiment.

The RMS electrical power defines the average power drawn from the electrical grid
for a certain motion profile. The instantaneous electrical power Pelec(t) is estimated using
the motor, inverter, and cable loss models, which require the motor speed and torque as
inputs. For accurate estimation of the electrical energy consumption, the measured speed
and estimated torque signals of the setup experiments are used as inputs to the loss models.
The RMS electrical power consumption for a certain motion profile is calculated as follows.

Pelec
rms =

√
mean

(
Pelec(t)2

)
(8)

The performance comparison using the above KPIs of the benchmark and modular
system drivetrain was performed for an equal load profile (see Figure 1). The performance
was investigated for three different motion profiles: continuous motion, reciprocating mo-
tion, and start/stop motion. In the continuous motion profile, the crankshaft continuously
rotates in one direction at a constant speed. The start/stop motion rotates the crankshaft
in one direction as well, except that the shaft stops rotating every full cycle with a duty
cycle of 50%. This motion profile is typical for pick-and-place applications. In reciprocating
motion, the crankshaft smoothly oscillates in two directions, which means that the motor
operates in both positive and negative speed ranges. Examples of these different motion
profiles are visualised in Figure 9 for the crank. It is clear that both the reciprocating and
start/stop motion profiles are far more dynamic and introduce higher acceleration than
the more stationary continuous motion profile. Both the continuous motion and start/stop
motion profiles have a fixed stroke length, i.e., the maximum stroke is defined by the
mechanical design. The reciprocating motion profile has the additional benefit of providing
an electronically controllable stroke length, meaning that the stroke length is determined
by the amplitude of the sinusoidal crank position time signal.
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Figure 9. Crank motion profiles.

3. Results and Discussion
3.1. Simulation Versus Experimental Results

A first analysis was carried out to compare the simulation results with the exper-
imental results for both the modular and benchmark drivetrains. For the continuous,
reciprocating, and start/stop motion profiles, the above mentioned KPIs were compared
using a fixed slider motion frequency of 16 Hz, 10 Hz, and 5 Hz, respectively. These
operational frequencies are close to the maximum obtainable operational frequencies of
the experimental benchmark drivetrain for the continuous, reciprocating and start/stop
motion profiles, respectively. Figure 10 shows a comparison of the results for the modular
drivetrain running the start/stop motion profile. The accuracy of the simulation estimation
for each KPI is calculated as follows:

accuracypct = (1 + (KPIsim − KPIexp)/KPIexp) ∗ 100 (9)

The resulting accuracy is a percentage value, where 100 percent indicates a perfect
match between simulation and experiment.

Figure 10. Modular drivetrain and start/stop motion profile: simulation versus experiment.
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All analysis results are summarized in Tables 2 and 3.

Table 2. Modular drivetrain: simulation versus experiment.

KPI Reciprocating Continuous Start/Stop
10 Hz 16 Hz 5 Hz

RMS torque
simulation 32 Nm 27 Nm 28 Nm
experiment 38 Nm 13 Nm 28 Nm

accuracy 83% 202% 98%

Max torque
simulation 51 Nm 42 Nm 67 Nm
experiment 57 Nm 23 Nm 64 Nm

accuracy 90% 183% 105%

Max crank error
simulation 0.018 rad 0.025 rad 0.026 rad
experiment 0.032 rad 0.019 rad 0.022 rad

accuracy 56% 132% 122%

Table 3. Benchmark drivetrain: simulation versus experiment.

KPI Reciprocating Continuous Start/Stop
10 Hz 16 Hz 5 Hz

RMS torque
simulation 42 Nm 32 Nm 32 Nm
experiment 57 Nm 13 Nm 41 Nm

accuracy 74% 235% 76%

Max torque
simulation 59 Nm 40 Nm 85 Nm
experiment 98 Nm 28 Nm 108 Nm

accuracy 60% 145% 79%

Max crank error
simulation 0.071 rad 0.067 rad 0.111 rad
experiment 0.160 rad 0.023 rad 0.135 rad

accuracy 45% 286% 82%

The slider error is not analysed in the tables, as the simulation was assumed to be
ideal in the sense that mechanical misalignment or design tolerances were not included in
the model. The electrical power consumption is not included either, as the sensors required
for electrical measurements were not installed in the experimental setup.

The results show accurate torque estimation of the models for both the start/stop
motion and reciprocating motion profiles. This can be clearly seen in Figure 10 for the
modular drivetrain running the start/stop motion profile, and is reflected in the comparison
of RMS and maximum torque as well. For example, in Table 2, a 98% fit for the RMS torque
of the modular drivetrain running the start/stop motion profile can be observed. A less
accurate fit is observed for the continuous motion profile, with an accuracy of only about
200% when estimating the RMS and maximum torque. This can be explained by the need
to analyse the different terms of the total required torque for the three motion profiles.
The total torque amount consists of the inertial torque, gravity torque, and friction torque.
The model relies on accurate analytic, kinematic, and dynamic equations for estimating
the inertial and gravity torque based on known design parameters such as the geometry,
mass, and inertia. These parameters are easily measured and/or calculated with a high
degree of confidence. However, the friction torque is far more difficult to predict, and is a
source of uncertainty. Although the friction parameters were fitted using measured data,
the friction model can be further improved. For example, a large temperature dependency
of the friction torque on the setup was observed. The current model does not include a
thermal domain, which would help to estimate component temperatures. As our model
does not include temperature-dependent friction, its estimation of the friction torque is
far less accurate than that of the inertial and gravity torque. Start/stop and reciprocating
motion are highly dynamic motion profiles causing high inertial torque values. As a result,
the total required torque for these motion profiles is dominated by the inertial torque,
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meaning that the ratio of the accurately estimated inertial torque over the less accurately
estimated friction torque is fairly high. This explains the better torque estimation results
for the more dynamic start/stop and reciprocating motion profiles.

The same reasoning applies when comparing the torque estimation accuracy of the
modular and benchmark drivetrains. The results in Tables 2 and 3 generally show a
better model fit for the modular drivetrain. The benchmark drivetrain design includes a
crankshaft and supporting bearings, while the modular drivetrain does not have these
components. Our experimental observations using the testing setup show a significant
amount of friction in these grease-lubricated supporting bearings of the crankshaft on
the benchmark drivetrain. Accordingly, the frictional torque is higher for the benchmark,
resulting in lower model accuracy for this drivetrain.

3.2. Performance Comparison of the Benchmark and Modular Drivetrains

This subsection focuses on a technical performance comparison between the modular
and benchmark drivetrains. Similar to the previous subsection, the performance of both
drivetrains was analyzed for the three different motion profiles with the modular and
benchmark drivetrains running simultaneously at the same speed. Table 4 shows the
resulting KPI values of both drivetrains for each motion profile and the KPI differences
between the modular drivetrain and the benchmark drivetrain in percentages. All KPI
values shown in the table were directly derived from experimental data except for the RMS
electrical power.

Table 4. Performance comparison.

KPI Reciprocating Continuous Start/Stop
10 Hz 16 Hz 5 Hz

RMS torque
Benchmark 57 Nm 13 Nm 41 Nm

Modular 38 Nm 13 Nm 28 Nm
Delta −33% −2% −32%

Max torque
Benchmark 98 Nm 28 Nm 108 Nm

Modular 57 Nm 23 Nm 64 Nm
Delta −42% −18% −41%

Max crank error
Benchmark 0.160 rad 0.023 rad 0.135 rad

Modular 0.032 rad 0.019 rad 0.022
Delta −80% −9% −84%

Max slider error
Benchmark 0.43 mm 0.95 mm 0.46 mm

Modular 0.39 mm 0.83 mm 0.41 mm
Delta −9% −13% −11%

RMS electrical power
Benchmark 3.58 2.01 5.17

Modular 3.1 2.2 3.68
Delta −13% +9% −29%

For the continuous motion profile, the measurements show only a minor reduction of
2% in the RMS torque required to run the motion cycle. The maximum observed torque
is reduced by about 18%. Hence, while the peak load of the modular drivetrain is clearly
reduced, the average mechanical power delivered by the motors in the continuous motion
profile is not significantly altered. Unfortunately, the electrical power consumption of
the modular drivetrain is 9% higher than the benchmark drivetrain. Figure 11 shows
that this can be explained by the increased overall motor losses of the six smaller motors
compared to the motor loss of the single motor in the benchmark drivetrain. Furthermore,
the experimental results shows a 19% increase in the position tracking performance of the
modular drivetrain compared with the benchmark. As a result, the maximum slider error
is reduced by 13%.
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Figure 11. Electrical power consumption.

More significant performance improvements are experimentally observed for the
reciprocating and start/stop motions. The total RMS torque delivered by the six modular
motors is up to 33% lower compared to the RMS torque delivered by the single motor
of the benchmark drivetrain. The maximum torque is decreased by up to 42%, resulting
in lower fatigue stress on the modular drivetrain. As a result, for these more dynamic
(high-acceleration) motion profiles, significantly less average mechanical power is required
to drive the modular system compared to the benchmark system. In addition, a reduction
in electrical energy consumption of up to 29% is estimated, and an 84% reduction in the
tracking error is observed. Having the system load distributed over the six actuators helps
to achieve better control performance. As a consequence, the slider error is reduced due to
mechanical play in the pin connection between the slider and the rod, albeit less drastically,
up to 11%.

These experimental results demonstrate that a modular drivetrain can result in better
tracking performance, lower peak system loads, and reduced average mechanical and elec-
trical power consumption with respect to the standard non-modular drivetrains currently
used by industry. This is especially true for highly dynamic motion profiles with large
acceleration values, which can benefit from a mechanical system with reduced inertia.

3.3. Outlook

Improvements could be made to both the testing setup and the model. The accuracy
of the friction model could be increased by including the thermal domain. For validation of
thermal behavior, temperature sensors would need to be added to the setup. In order to
analyse the high-frequency system dynamics (>1 kHz), the simulation environment could
benefit from a detailed model of the motor drive that includes current control.

Interesting future work could include the application of novel robust control tech-
niques for uncertain nonlinear systems on the modular drivetrain discussed in this research.
For example, a sliding mode controller such as the one described in [27] could be imple-
mented and tested using the experimental setup described in this paper.

Future research should examine additional functionalities that modular drivetrains
could potentially generate for applications in tufting, weaving, and stamping machines.
We have already begun research on the potential of active damping of vibrations in the
modular system. Because the modular drivetrain has six independently acting motors at
different locations, there is the possibility of correcting any crank and/or slider errors. An
active damping method based on a dynamic average consensus algorithm [28] has been
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developed and integrated in the current decentralized control architecture. Experimental
validation is ongoing, and simulations already show promising results [29].

Furthermore, the impact of modular drivetrains on system reliability is being investi-
gated. Future work could include researching safe and robust methods for handling failure.
As the modular drivetrain has built-in actuator redundancy, the system can operate in
the event of a single motor failure. How to implement and execute this failure handling
method and what performance can be expected after such a failure are among the questions
that we plan to answer in our future research.

Other future work could focus on the economics of modular drivetrains through a
comparison of the total cost of ownership (TCO), including the purchase cost, cost of usage
(energy), and maintenance and repair costs. Such an analysis should further build on the
performance and reliability conclusions of existing research to support industrial machine
manufacturers in quantifying the economical impact of modular drivetrains and making
informed design decisions.

4. Conclusions

Machine manufacturers continuously aim to increase their market competitiveness
by designing machines with improved productivity, reliability, energy consumption, and
flexibility. The concept of drivetrain modularity was proposed in [1,2] as a method to
enhance the operational performance of industrial machines. In this paper, we have
introduced the concept and detailed design of a modular drivetrain architecture that
implements a decentralized control architecture. A simulation plant model was set up to
support the development and validation of the control strategy. The modular drivetrain
performance was assessed and compared with a benchmark drivetrain using the above-
mentioned simulation model as well as an experimental setup. Both drivetrains were
subjected to the same load profiles, and a performance evaluation was conducted based on
a set of key performance indicators: maximum torque, RMS torque, crank position tracking
error, slider error, and electrical energy consumption. In addition, three different load
profiles (motion cycles) were defined: continuous, reciprocation, and start/stop motion.

Comparison of the simulation KPI results with the experimental KPI results showed a
good match for the more dynamic motion cycles (reciprocating and start/stop motion). For
the modular drivetrain, a simulation accuracy of 98% was observed for the RMS torque
KPI. The continuous motion profile, on the other hand, showed a slightly less accurate fit
between the results of the simulation model and those of the experimental setup, which
was due to unmodelled thermal characteristics in the friction model. The same reasoning
applies to the observed discrepancies between the simulation and testing setup results
for the benchmark drivetrain. As the benchmark drivetrain has more bearings, the (less
accurately known) frictional force are more dominant.

Our experiments on the test setup showed significant performance improvements for
the modular drivetrain as compared to the benchmark drivetrain for the highly dynamic
motion profiles (reciprocating and start/stop motion). A 42% reduction in peak torque
was observed and the position tracking performance was increased up to 84%, resulting in
an 11% reduction in the slider error. The electrical power consumption could be reduced
by up to 29%. Unfortunately, the performance increase was less pronounced for motion
cycles with lower accelerations, such as the continuous motion cycle, which is largely due
to the increased electrical motor losses. In closing, it can be concluded that the operating
load profiles of industrial machines with high acceleration rates could benefit from a more
modular drivetrain architecture.
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Appendix A. Slider–Crank Mechanism Equations

In Figure 3, (1) is the CoG of the crank, (3) is the CoG of the rod, and (4) is the slider
position. The angular position of te crank is defined by θ, while the angular position of
the rod is defined by φ; φ is indicated as a negative angle in order to maintain right-hand
sign conventions. The respective centers of gravity (CoG) in (1) and (3) have the inertial
properties m1,2 and I1,2, respectively, while gravity is indicated by g.

The kinematic relationships are as follows.

x1 = l1,c cos(θ) (A1)

y1 = l1,c sin(θ) (A2)

x2 = l1 cos(θ) (A3)

y2 = l1 sin(θ) (A4)

x3 = x2 + (l2 − l2,c) cos(−φ) (A5)

y3 = l2,c sin(−φ) (A6)

x4 = x2 + l2 cos(−φ) (A7)

φ = − arcsin(
l1
l2

sin(θ)) (A8)

The equations of motion are as follows.

ẍ1 =
HA− HB

m1
(A9)

ÿ1 =
VA−VB

m1
− g (A10)

ẍ3 =
HB− F

m2
(A11)

ÿ3 =
VB−VC

m2
− g (A12)

θ̈ =
T + (l1,cHA + (l1 − l1,c)HB) sin(θ)

I1

+
(−l1,cVA− (l1 − l1,c)VB) cos(θ)

I1
(A13)

φ̈ =
(−l2,cF− (l2 − l2,c)HB) sin(−φ)

I2
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+
(−l2,cVC− (l2 − l2,c)VB) cos(−φ)

I2
(A14)

Using the the MATLAB symbolic toolbox and differentiating (A1)–(A8) except for x2,
y2, and θ provides the following.

ẍ1 = −l1,c sin(θ)θ̈ − l1,c cos(θ)θ̇2 (A15)

ÿ1 = l1,c cos(θ)θ̈ − l1,c sin(θ)θ̇2 (A16)

ẍ3 =
l2
1 sin(θ)2(l2 − l2,c)θ̇

2

l2
2

√
1− l2

1 sin(θ)2

l2
2

− l1 sin(θ)θ̈

−
l2
1 cos(θ)2(l2 − l2,c)θ̇

2

l2
2

√
1− l2

1 sin(θ)2

l2
2

− l1 cos(θ)θ̇2

−
l4
1 cos(θ)2 sin(θ)2(l2 − l2,c)θ̇

2

l4
2

(
1− l2

1 sin(θ)2

l2
2

)3/2

−
l2
1 cos(θ) sin(θ)(l2 − l2,c)θ̈

l2
2

√
1− l2

1 sin(θ)2

l2
2

(A17)

ÿ3 =
(l1l2,c cos(θ)θ̈)− (l1l2,c sin(θ)θ̇2)

l2
(A18)

φ̈ =
l1 sin(θ)θ̇2

l2

√
1− l2

1 sin(θ)2

l2
2

− l1 cos(θ)θ̈

l2

√
1− l2

1 sin(θ)2

l2
2

−
l3
1 cos(θ)2 sin(θ)θ̇2

l3
2

(
1− l2

1 sin(θ)2

l2
2

)3/2 (A19)
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