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Abstract: The benefits of multi-robot systems are substantial, bringing gains in efficiency, quality,
and cost, and they are useful in a wide range of environments from warehouse automation, to
agriculture and even extend in part to entertainment. In multi-robot system research, the main
focus is on ensuring efficient coordination in the operation of the robots, both in task allocation and
navigation. However, much of this research seldom strays from the theoretical bounds; there are
many reasons for this, with the most-prominent and -impactful being resource limitations. This
is especially true for research in areas such as multi-robot path planning (MRPP) and navigation
coordination. This is a large issue in practice as many approaches are not designed with meaningful
real-world implications in mind and are not scalable to large multi-robot systems. This survey aimed
to look into the coordination and path-planning issues and challenges faced when working with
multi-robot systems, especially those using a prioritised planning approach, and identify key areas
that are not well-explored and the scope of applying existing MRPP approaches to real-world settings.

Keywords: coordination; prioritised planning; routing; MRPP

1. Introduction

Robotics, automation, and artificial intelligence (AI) have a great influence on many
domains that traditionally relied on the human workforce. By replacing human-based roles
with robotics and AI-based tools designed solely for the task, able to work with less error
and fatigue and with enhanced communication speed and cooperation, the throughput of
businesses can be increased along with the quality of the goods produced. With higher-
quality automation and decreasing costs for robots, the potential for autonomous systems
has soared. As these trends continue, more systems will see much more mass automation [1].
With these developments and the need to address wider spatial contexts, multi-robot
systems (MRSs) have seen a significant increase in their use over the last decade. An
example of the benefits of MRS was shown in [2], where strawberry harvesting logistics
were improved by 20–30% with the use of autonomous robots to deliver fruit from pickers to
storage. MRSs have already seen promising development in fully autonomous coordination
such as in warehouses [3], agriculture [4], search and rescue [5], and drone shows [6].

A large factor impacting the effective deployment of MRSs is multi-robot path planning
(MRPP), being the ability to define paths each robot should take through the environment
from its location to its respective goal, which both minimises the total distance each robot
takes through the network and, more importantly, avoids all potential collisions with other
robots. MRPP research overlaps with multi-agent path finding (MAPF) in multi-agent
system (MAS) research, which is defined as the problem of finding paths for multiple
agents such that every agent reaches its goal and the agents do not collide. The discussions
in this survey are relevant to both MRPP and MAPF.
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Different environmental representations have been used in MRPP research. Contin-
uous space metric map representations have been used for local trajectory planning of
multi-robot systems [7,8]. However, the computational complexity of considering a contin-
uous space for MRPP is prohibitively high for large environments, even for a small MRS. To
enable efficient planning in large environments, most of the existing MRPP algorithms have
used discretised environmental representations. A grid representation of the environment,
with each cell connected to four neighbouring cells, has been used for different MRPP
algorithms [9]. More recently, a discrete topological perspective of the environment is the
most-commonly used discrete environment representation in MRPP. In this topological
perspective, the environment is modelled as a graph or network with nodes identifying
key points and edges describing how these points connect to one another, and this utility
effectively describes the navigable connections between spaces in which the robot can move.
With the utilisation of these representations, the complexity of the space is minimised to
only the aspects of key importance and allows MRPP algorithms to work more efficiently
such as in [10], though the planning can be performed without such a map, instead opting
for the use or metric representations, such as in [11], despite a trade-off in scalability.

Even with the topological representation of the environment, MRPP has been proven
to be NP-hard [12], wherein the joint state space grows exponentially as the complexity
increases, with the complexity increasing alongside either the total number of robots or
the size of the map. This means that finding optimal routes through a topology requires
more processing resources or time, as there are more options and possibilities that must be
explored. This restricts the scalability and, thus, deployment of large MRSs in potentially
congested spaces or domains.

The purpose and contributions of this survey are focused on three aims. First, and
primarily, is to consolidate the variety of prioritised multi-robot-path-planning approaches
and the rationale behind them to form a single, referable source from which researchers
can begin their study in this area. Second is to identify areas within the space of prioritised
planning that warrant further exploration. Many approaches use simulations for their
development; thus, there is potential for further development when considered in practice
for physical robots. Third is to identify and provide solutions for common weaknesses
in the evaluation methodologies, which otherwise limit the transferability of efficacy into
actual deployments.

There has been extensive research on multi-robot systems and the efficient coordination
among robots within a system, with some overlap in the focus areas of research between
multi-robot systems and multi-agent systems, where multi-agent systems can consider
agents as physical (such as robots or humans), software (as in simulated or projected robots),
or general constructs (of mobile or stationary entities); these may not contain any robots
at all. Multi-robot systems exclusively consider robots as the agents. In the context of this
survey, consider the terms robot and agent to be synonymous. Similarly, as many of the
MRPP approaches discussed in this survey rely on explicit communications between the
robots, multi-robot networks and networks are used as synonymous with MRSs.

Similarly, domains that have vastly different contexts share the same or similar re-
search challenges, and the algorithms developed for a specific context in one domain may
also be applicable in another domain. For instance, agricultural transportation logistics [10]
and pipe routing [13] are both capable of utilising versions of prioritised planning imple-
mentations to optimise path assignments to individual robots. Thus, this survey will be
useful for research in domains where prioritised planning has a role to play.

The Structure of this paper: In the remainder of this paper, the wider MRPP landscape
is presented initially to provide a holistic view of the challenges and the wide variety of
existing MRPP algorithms. These are presented in Sections 2 and 3:

• In Section 2, the common challenges to MRPP are presented, looking in depth into
the specifics of why the four main issues of completeness, deadlocks, scalability, and
communication are challenging, along with what can be done to help manage them.
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• In Section 3, a categorical classification of existing MRPP approaches is given, includ-
ing a brief description of how each category fits within the two major classifications
based on inter-agent communication and the decision-making topology.

This is followed by a focused review of prioritised MRPP algorithms and discussions
on the use of heuristics and rescheduling in prioritised MRPP in Sections 4 and 5:

• In Section 4, a detailed analysis is given of prioritised planning approaches, where the
two fundamental components of prioritised planning, heuristics and rescheduling,
are detailed alongside a breakdown of motion planning algorithms, which are the
cornerstones of routing.

• In Section 5, we discuss our findings of the commonly identified limitations with
research across the literature in prioritised MRPP algorithms, namely the ideas of the
static scoring of edges, the batch assignment of tasks, the drive for context generality,
the lack of heuristic-focused works, and the lack of supporting topology manipulation.

We then summarise these findings in the conclusions in Section 6.

2. Core Challenges for Multi-Robot-Path-Planning Algorithms

While developing an MRPP algorithm, many design challenges need to be addressed.
Often, these challenges are mutually exclusive, with one or more other constraints failing
when the MRPP algorithm is designed to conform to one constraint. A short description of
the five main challenges to MRPP is given below in this section.

2.1. Completeness

In MRPP solutions, the main aim is to find a set of routes that the robots within an
MRS may use to reach their respective targets, subject to some constraints. Whilst it is often
a guarantee that such a set of assignments may exist, it is not always possible to find it [12].
Completeness, the most-important challenge faced by MRPP approaches, is used to define
whether an approach can guarantee that, if a solution exists that allows all agents to reach
their targets, it will be identified.

2.2. Optimality

For any collection of robots, their start locations, and the targets, there is always an
optimal collective route, that is the collection of routes that each robot can take in order to
minimise a collective objective measured by a metric such as the total distance travelled
by all robots through the network [11]. The metric chosen is most commonly either the
make-span (time the last robot arrives) or flow-time (sum of all route lengths). The key
idea is that there is some optimal assignment of routes that can be matched, but cannot be
beaten.

Optimality refers to the ability of the MRPP algorithm to guarantee the identification
of an optimal solution given enough computing time, i.e., the ability to find the optimal
route from the start to the target given such a route exists. This is an issue on which much
of the research on MRPP is focused, as the computational complexity of finding the optimal
route is much higher.

2.3. Deadlocks

Deadlock situations are a significant concern for MRPP solutions and deployments.
Deadlocks refer to a situation in which a robot is unable to find a route through the
environment because it is trapped by another robot. Often, this is caused by planning
inefficiencies such as the incorrect assessment of priorities or sub-optimal waiting points.
In [14], the authors designed an abstract concept detailing the causes of deadlocks, which
they used to evaluate the efficacy of a range of prioritised planning approaches. While
their aim was to detail specifically prioritised planning issues, the theory can be extended
beyond this. They summarised the causes of deadlocks into two key situations. In the
first, the cause of the deadlock is the result of the high-priority robot lying in the path



Machines 2023, 11, 1033 4 of 20

required by a low-priority robot, and in the second situation, the cause is a high-priority
robot following behind a low-priority robot.

Papers such as [15] have attempted to resolve these common types of deadlocked
situations using methods that discourage navigation around the initial movement areas
of other agents. These methods, while simple, are effective at managing many causes
of deadlocks.

While not as prevalent of an issue, approaches must also ensure they do not fall into
the risks of livelock (i.e., robots circle around one another and are unable to move forward)
and starvation (where resources, such as nodes of special interest, are locked up under
different processes) as these can also be critical problems for a deployed system.

2.4. Scalability

The largest challenge to the successful deployment of an MRS is its scalability, where
the performance is not degraded with an increase in the size of the MRS or the working
environment. The grand aim of a MRS is to have many robots coordinating and working
fully autonomously for long periods of time. There are three primary components that
impact the scalability: the size of the map, the number/length of tasks, and the quantity
of robots. As these grow, the complexity of the joint state space increases with them at
an exponential rate due to more data requiring processing and more situations that need
evaluation. This type of growth leads to a slower processing of the system overall [12].

Effective approaches to combat this are the utilisation of distributed and decentralised
deployments. These can help unburden a centralised coordination system that would
otherwise be handling all the processing by itself [16]. This, however, comes with other
scalability problems such as communication or synchronisation overheads.

Decentralisation is effective at spreading the workload; however, it is not enough
alone; the processing requirement is only divided by the total number of decentralised
processors. So, if the number of robots exceeds the capacity for a decentralised unit, the
coordination must be decentralised further so that the number of robots per processor
is stable.

Distributed processing is used widely with autonomous robots, where even if the
primary coordination system is centralised, the elements of the motion planning can be
run locally for each agent. For instance, an agent can be given a simple goal or path from
the coordination system, allowing it to compute its own motion trajectories. This type of
offloading allows for scalability issues to be lessened as a minimal amount of information
needs to be computed centrally. With the full utilisation of distributed coordination, robots
can make all decisions themselves utilising technologies such as swarm behaviour or
potential fields [17].

2.5. Communication

Communication is another challenge within MRSs that must be overcome. In any
MRPP approach, there must be a method for robots to share information, either via a
wireless data connection or via physical observations of their environment. Without
such channels, agents in centralised or decentralised systems are unable to plan/share
their routes, and agents in distributed systems are unable to share their intentions about
their movements.

This challenge can have critical impacts on not just the efficiency of a system, but also
on safety. If communications slow down too much and processing takes too long, hazards
can appear and become critical before the coordinator has time to react and recalculate
the routes. This is especially troublesome in MRSs involving both robots and humans
sharing the same workspace, where even though local navigation can work to avoid direct
collisions, robots suddenly moving in unexpected manners can cause accidents indirectly.

When utilising wireless data communication, which is the most-common approach, it
is important to understand the coupling between the robots and the environment. Many
aspects of the environment can impact the reliability of such a system. Many materials can
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have significant impacts on the quality of wireless signals: stone walls for caving/mining
robots or metal infrastructure in warehouses/factories can significantly impact the reliabil-
ity of wireless technologies, and the radiation in nuclear decommissioning can prevent any
signals from passing through. In outdoor environments such as for agricultural robots, the
reliability of 4G is not always guaranteed, and even in a well-suited environment such as
an office or school, issues such as blackouts and bandwidth limitations can also occur [18].
In real-world settings, there are many elements that can cause communication issues and
are easily overlooked when solely working in simulation.

Communication overhead scales linearly with the number of agents in a system where
the agents are only required to communicate with the coordinator; however, when the
robots are all communicating their locations in a distributed manner without the use of a
central coordinator, this can result in much communication processing for each robot and
each coordinator, and if they must process much information with each communication,
there is also potential for error accumulation [17]. Many coordination issues can arise if a
piece of information, such as a robot’s location, is sent, but becomes delayed or corrupted
or is inaccurate, even if it is eventually received.

3. General Classifications of Multi-Robot-Path-Planning Algorithms

There are two classification systems for which all MRPP approaches can be described,
inter-agent communication (IAT) and decision-making topology (DMT). IAC describes
how much communication occurs between robots during routing, while the DMT describes
the number of processing units active throughout the planning and control.

3.1. Inter-Agent Communication

Within the path planning in an MRPP implementation, agents can present different
levels of consideration to other agents in their proximity, and this is shown through their
communication with one another. The complexity of their interactions can be described on
a scale, where on one end is a coupled approach where all agents are considered together,
and the other is a decoupled approach where agents do not use this communication directly,
between which is a combination where communication is rarely used.

3.1.1. Coupled

In a coupled approach, the routes of all agents are planned together within the same
configuration space. Due to the interdependence with the configuration space, coupled
approaches are at risk of scalability issues. As described above, the time it takes to find
an optimal collision-free trajectory is dependent on the amount of complexity within the
planning space. Where the search space increases exponentially with the number of agents,
this can lead to large MRPP situations, struggling to find an optimal route.

While coupled approaches can take longer to process, the results are often much
better than decoupled approaches as searching the entire joint state space can lead to
identifying more-complex and -optimal solutions that may not be so easily discoverable
using decoupled methods as described in Section 3.1.2.

3.1.2. Decoupled

Decoupled approaches work by ignoring the links and connections between agents,
instead making use of conflict resolution. This often works with agents each initially
planning their routes independently either online (computed by the robots) such as in [11]
or offline (computed by an external machine) such as in [10], with these routes then being
passed through some comprehensive conflict resolution phase.

Due to the limited exploration of the state space and no consideration of other agents
within the route-generation stage, decoupled approaches are not always able to guarantee
the optimal set of trajectories for each agent; however, they are able to guarantee a reason-
able set of trajectories where possible, within a polynomial time. As this type of approach
can more quickly find a valid route, it is better suited for scenarios with more robots and



Machines 2023, 11, 1033 6 of 20

for use in human–robot shared spaces. In these scenarios, swiftly calculating new routes to
avoid collisions in a dynamic environment is key to ensuring both safety and efficiency. As
much of the processing for decoupled MRPP algorithms is not reliant on a joint state space,
these approaches are also much more effective than coupled approaches when the domain
makes use of a distributed or decentralised topology.

3.1.3. Dynamic Coupling

While most approaches are either coupled or decoupled, there exist some methods that
utilise both. In these approaches, agents may perform their own decoupled planning and
re-couple the fleet to resolve issues. Alternatively, they may perform re-coupling to some
agents in their proximity and decoupling to the rest of the agents in the system. There are
many approaches that utilise this dynamic coupling behaviour, but the general principle is
that the state of coupling is not explicitly fixed.

Depending on the scope of the re-coupling, there are two broad sets in which re-
coupling approaches may fall. Total re-coupling (TRC) requires all agents in the system to
reconnect for conflict resolution, and partial re-coupling (PRC) only requires agents that
are in the local proximity to the conflict to join in with resolution.

Total Re-Coupling:

These types of approaches are commonplace in distributed decision-making topologies
(see Section 3.2.3), where algorithms are designed so each robot can limit communication
with the fleet without adverse effects [19].

Partial Re-Coupling:

Algorithms like the ones produced by [20,21] take advantage of PRC to identify the
optimal route for all agents in a distributed topology. In their approaches, when agents
are within a local distance from one another, they plan in a joint state space; however,
once apart, they make use of a decoupled approach. This style of approach is useful for
environments with limited network coverage.

3.2. Decision Making Topology

The decision-making topology (DMT) defines the structure of the decision-making sys-
tems, that is the number of processing units (PUs) responsible for generating the trajectories
of the robots and performing the conflict resolution. There are many types of decision-
making topologies that can be broadly categorised based on their level of decentralisation.
A fully centralised (centralised) topology has a single processing unit for many robots, and
a fully decentralised system (distributed) deploys each robot with its own processing unit.
Between these are what can be referred to as decentralised approaches, where there are
many processing units, but less than one per robot [22]. Centralised, decentralised, and
distributed DMTs are shown in Figure 1a–c. These categories can be broken down further
based on the coupling that happens between agents.

Inherently, these structures can be considered synonymous with the network commu-
nication topology, especially for the centralised and some types of decentralised topologies.
However, it is important to note the distinction between the network communication
topology and the decision-making topology. A DMT is focused on how the agents and
servers implement control over one another. e.g., as in Figure 1d; while it is possible for
Agent 1 to communicate with Agent 3 via Agent 2, the limits of coordination for Agent
1 would be only with Agent 2. Overall, the DMT defines the limits of how agents make
decisions together, rather than the availability of communication.
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Figure 1. Communication structures: (a) Centralised: single central server; (b) Decentralised: lo-
calised servers communicating information; (c) Fully distributed: no servers; agents broadcast all
information directly; (d) Unevenly distributed: each agent only communicate required informa-
tion with a subset of other agents. The numbers 1–6 indicate the agents and the lines indicate
communication links.

3.2.1. Centralised

The centralised topology consists of a communication network of a star, where a single
processing unit (SPU) functions as the central coordinator. This SPU handles all decision-
making processes related to task assignment, route planning, and conflict resolution.

Compared with decentralised and distributed topologies, centralised topologies have
a significant reduction in communication overhead. Each agent communicates only with
the SPU, meaning the amount of open connections is limited to the number of agents in the
system. This allows for simple and straightforward approaches to be developed such as
the prioritised planning method developed by [23].

The biggest risk of making use of a centralised approach is scalability. As the number
of robots increases, having only one processing unit can lead to an overburdened system,
which is slow to generate even the simplest of results. This can be especially risky when the
SPU is responsible for many other critical functionalities such as navigation safety analysis.

3.2.2. Decentralised

Decentralised decision-making topologies are characterised by their use of multiple co-
ordinators, each of which is responsible for a subset of the overall system. Two approaches
that emphasise their unique benefits clearly are sub-fleet control and sub-region control.

In sub-fleet control, coordinators assume responsibility for a subset of robots. The co-
ordinator in each group is responsible for calculating the routes and, then, communicating
these with either a central coordinator or the network of other decentralised coordina-
tors. Approaches such as platooning or virtual structures come under this definition. In
leader–follower platooning, a single leader takes the lead and agents entering their vicinity
relinquish their own control to follow the leader [17]; in virtual structures, agents will
become a part of a temporary collective to maintain a geometric shape [17].

In sub-region control, the distribution of the coordinators is environment- or topology-
based. In this structure, the coordinators take responsibility for managing defined regions
within the network. This method can be seen in [24], where the decentralised coordinators
each manage a defined junction, taking control of the autonomous vehicles that approach
it and coordinating their movement through the junction. Decentralised approaches help
manage the computational load away from a central coordinator, but may still struggle to
keep up with demand as the number of agents distributed in the system increases.

3.2.3. Distributed

Distributed decision-making topologies, like decentralised methods, make use of a
collection of processing units. However, unlike decentralised methods, distributed methods
of MRPP do not risk scalability issues, whereas each robot works as its own processing
unit, and the number of processing units scales proportionally with the number of robots.

In distributed topologies, algorithms are designed so that each robot is able to perform
its own planning and organise its conflict resolution locally. Distributed approaches are
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often also decoupled approaches; however, this is not always the case: a coupled approach
may make use of a distributed decision-making topology to offset elements of its processing
that work independently. These types of distributed approaches can be grouped based on
how much re-coupling occurs in the conflict resolution (see Section 3.1.3).

These types of topologies are distinct in their architecture from centralised and decen-
tralised methods due to the absence of independent cloud-based/edge–server coordinators.
However, not all distributed topologies are identical in structure. Depending on the appli-
cation, environment, and robots, the topology may be either fully or partially connected.
In a fully connected distribution, every robot will be in communication with every other
robot, allowing for all robots to coordinate as a collective [25]; when conflict resolution is
conducted for an individual robot, every agent is capable of contributing.

This is in contrast to a partially connected distribution, in which robots might only
be allowed to connect to the resolution if they have a necessity to do so such as if they
are in proximity to the agent needing replanning. In practice, these types of connected
distributions are necessary due to communication constraints, where agents are unable to
maintain a consistent or reliable connection to a single server and must instead act as relays
for information [19,26].

4. Prioritised Multi-Robot Path Planning

Prioritised planning, developed by [23], is a commonly used decoupled approach
to MRPP. It is a combination of two components, a prioritisation schema and a motion-
planning system.

In traditional prioritised planning, each agent is assigned a priority, then their routes
are planned in the priority order, with each subsequent agent planning around those with
a priority higher than itself. These priorities are defined by a priority schema, which orders
the agents based on some predefined metrics such as the distance to their respective targets
(see Section 4.1). The routes themselves are calculated by the motion planning system (see
Section 4.2), which makes use of a planning algorithm such as A*.

As the agents defined with the higher priorities plan first, they will often be planning
on an empty map, i.e., so long as a valid route is possible, these higher-priority agents are
guaranteed to reach their goal. In contrast, agents defined with a lower priority plan their
routes in a more-restricted space navigating around the other robots, which are treated as
dynamic objects. Due to the limitation on navigable routes, a route is not always guaranteed
for the lower-priority robots. The complexity of the MRPP is, thus, reduced with prioritised
planning with the decoupled and prioritised approach and can be used in large MRS
deployments. However, it may also result in an incomplete MRPP in some conditions, as
discussed above, and would require dynamically adjusting the underlying prioritisation
schema or the motion planning system to obtain a complete solution.

More details on the prioritisation schema and the planning algorithms are discussed
in the following subsections.

4.1. Prioritisation Schema

The prioritisation schema defines the approach to prioritise the agents, which is then
used for ordering the agents in the decoupled path-planning phase.

4.1.1. Heuristics

The approach used to set the priority order of the robots is referred to as the heuristic.
This subsection aims to highlight a broad range of heuristics found in the literature on
prioritised planning. While some heuristics may work well generally, tailoring the chosen
heuristic to the complexity and arrangement of the environment may lead to better results.
These heuristics are summarised in Table 1 with brief descriptions and corresponding
key publications.
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Table 1. Overview of heuristics used in prioritised MRPP.

Identifier Description

[23] Static Ordering 1 Prioritised based on order added to network

[27] Hill-Climbing Search Randomly swap priorities to search for better routes

Random Ordering Prioritised Randomly

[28] Static Ordering 2 Agents given priorities based on their ID

[29] Naive Surroundings Counts number of other agents in local workspace

[30] Road-Map Distance 1 Furthest robot is given priority

[31] Road-Map Distance 2 Longest path first

[31] Road-Map Distance 3 Ratio of context-aware plan to optimal path length

[32] Coupled Ordering Schema coupled with effective routing lengths

[33] Continuous Enhancement Blocked robots have scores increased

[34] Planning Time Total time to identify route in empty workspace

[11]

Path Prospects-R Total number of distinct routes (with random tie-break)

Path Prospects-LF Total number of distinct routes (with Euclidean tie-break)

Coupled Surroundings Counts the number of objects in the local workspace that obstruct the robot

Forwards Looking Naive surroundings with restricted-search to low-route regions

[31] Busiest Resource First Agents using busiest resource receive higher scores

Static Ordering

The initial ordering for the priority schema in [23] used the sequence in which agents were
added to the network as their heuristic. A similar heuristic was also used in [28], where the
agents were assigned static scores based on their identity and always gave way to agents
that had a higher priority. By itself, this ordering is not able to combat issues prevalent
with larger and more-complex scenarios.

Road-Map Distance

The prioritisation heuristic used in [30] arranged the agents based on their travel distance
through a road-map to their respective targets, with the furthest from their target having the
highest priority. Conceptually, this was the first well-known use of knowledge-based
heuristics in prioritised planning with a coupling to the environment (see Figure 2). This
was similarly utilised in [31] with the heuristic of the longest path first being calculated as
the ratio of the context-aware plan to the length of the shortest path.

A similar approach was utilised in [32], where the authors simultaneously performed
task assignment and path planning. This results in the prioritisation schema being closely
coupled to the resulting make-span and being more accurate to the reality of the routing
than either the Euclidean distance or road-map distance.

Planning Time

Another approach that relied on network knowledge was designed by [34], in which
agents were assigned a priority based on the time taken to find a route by them. Here, the
intent was that agents that took a long time to find a route would benefit more from
planning in an emptier map and should, thus, receive a higher priority. Just as with using
the road-map distance, this worked well to support the prioritised planning and return
priorities quickly, which is key for a scalable centralised approach. However, due to varying
hardware on different robots in a distributed decision-making topology making use of
heterogeneous robots, this can prove to be unreliable with the current implementation.
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An alternative implementation could instead prioritise based on the total FLOPS during
planning, which would be more consistent across evaluations of distributed processing,
where each agent utilises unique hardware and sub-processes.

Figure 2. Impact of environmental constraints on optimal assignments; Robot 1 has a small Euclidean
distance to the goal, but would take a longer route along a road-map than Robot 2.

Naive and Coupled Surroundings

In [29], the author developed a heuristic making use of knowledge about the local
environment. Later titled naive surroundings by [11], this prioritisation heuristic scored
agents based on the number of other agents within its vicinity. The intent behind this ap-
proach is that agents with a more-cluttered workspace would struggle more to find a route
out of the workspace and may become trapped by other agents moving through it with
higher priorities.

This is termed naive as it does not consider the effect of the agent on these objects. This
is in contrast to the coupled surroundings heuristic developed by [11], which instead uses
the number of obstacles in the neighbourhood. Here, an obstacle can be defined as a collection
of objects that the robot cannot move between. If a robot is not being able to move between
two objects, this approach classifies those objects as a single obstacle, and thereby coupling
the robot to its environment.

Path Prospects

The authors of [11] worked to develop their own knowledge-based heuristic titled
path prospects; in this, the agents are prioritised based on the number of surrounding paths
that are available to them, calculated by counting the number of obstacles and the number of
effective obstacles between them and their target by analysing the homology classes of the
trajectories (the number of distinct routes that can be created to join two points). Obstacles
are regarded as any obstruction, while effective obstacles are regarded as regions the robot
is unable to navigate through due to the constraints of its footprint on the environment
(see Figure 3). The researchers also evaluated the effectiveness of constraining the search
algorithm to areas with more-promising minimal route options (forward-looking).

They evaluated a total of seven heuristics, comparing the two variants of path prospects
(one that dealt with tie-breaks using random assignment and one that used the optimal
route length), naive and coupled surroundings [29], the optimal route length adapted
from [27], random assignment, and forward-looking. Their results showed using simula-
tions comparing theirs to the benchmarks set out that they were able to achieve a higher
global optimum with respect to completeness, which offered a good balance between
make-span and flow-time.
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Figure 3. Generated homology class of trajectories [11]: (a) generation ignoring the coupling of a
robot on the environment (obstacles); (b) generation considering environmental constraints of robot
footprint (effective obstacles). In (a), R and G indicate the starting and target positions of the robot. In
(b), 1 and 2 indicate two different starting positions of a robot and G indicate the target position.

Busiest Resource First

In [31], the authors utilised the direct information of the environment to improve the
accuracy of the assignments, whereby they identified the resources within the topology
that had the highest activity and raised the priority of agents utilising those facilities. This
improved the coupling of the priorities to the environment and is one of very few heuristics
that considers the structure of the topology as a motivation for improving assignments.

This approach went further by pairing the priorities of agents desiring the use of the
resources in the same manner, e.g., two agents traversing an edge of the topology in the
same direction. The motivation behind this is altruistic behaviours, i.e., if one agent is able
to secure a section of a route, they secure it for all that need it.

4.1.2. Rescheduling

As discussed earlier, the original prioritised planning as defined by [23] is incomplete,
i.e., the prioritisation of the robots can result in a situation where the robots with lower
priority do not have a route to be found, thus failing the overall planning. Rescheduling
is a modification to the priority schema, which exists to prevent such planning failures.
However, it can also be extended to optimise the assignments to improve the ordering of
agents. Inherently, decoupled approaches are not optimal as planning for each robot is
performed independently. Some of the rescheduling approaches are able to guarantee a
high global optimum; however, many others are unable to give a theoretical guarantee of
optimality in polynomial time. Some of the commonly used rescheduling approaches are
discussed below and summarised in Table 2.
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Table 2. Summary of rescheduling approaches used to modify priority assignments.

Identifier Description

[23] Prioritised Planning Core algorithm

[35] Full Search Considers all possible configurations

[36] Random Rescheduling Random switching of priorities

[37] All Opportunities All agents occasionally given highest priority

[27] Hill-Climbing Search Randomly swap priorities to search for better routes

[38] Deterministic Rescheduling When an agent fails, it receives the max score

[39] Local Priority Adjustment Only conflict onlookers are required to replan

[40] Priority Tuning Robots with the least optimal routes have priorities
increased and replan till convergence

Full Search

One of the first approaches to tackle optimality was completed by [35], where the
author implemented a full state space search by calculating routes with all combinations of
priorities. The result itself is able to guarantee optimality; however, not in a reasonable
amount of time. As described by [35] at the time, the only way to guarantee optimality is
to perform a complete search through every combination of priority orderings. However,
as some approaches below show, a reasonably high global optimum can be reached while
leaving some search spaces unexplored [27,40].

Random Rescheduling

The search for scalable optimality with the use of rescheduling first began in 2001
when [36] employed an approach making use of random rescheduling (RR). Here, the
priority scheme was randomised when a deadlock was detected, and the plan was recomputed.
Whilst simple, this was developed before the development of knowledge-based heuristics.
This design was successful at avoiding many deadlocks; however, due to the random
nature of the approach, it was not guaranteed to do so quickly.

All Opportunities

Randomisation in priorities was also used in the cooperative motion planner WHCA* [37],
where the priorities of agents were shuffled randomly so each agent had an opportunity to be in full
control of the environment. This allows agents that are stationary, having already completed
their routes, to continue to cooperate with agents they are blocking.

Hill-Climbing Search

RR was later improved on by [27] with the use of a hill-climbing search. Here, initial
priorities are randomly allocated and the set of routes calculated, then random pairs of agents
are selected and their priorities swapped. This repeats iteratively until a more-optimal set of
routes is found, restarting from scratch occasionally to prevent being stuck in local minima.
This approach had a much-more-reasonable search space to explore than [35] and was still
scalable; however, it took time to recompute routes each time an amendment was made.

Continuous Enhancement

In [33], the author proposed a more-complex solution to rescheduling called continu-
ous enhancement (CE). In this approach, all robots start with a very low priority value, and
rescheduling will be triggered when a robot cannot find a route after updating the priority by
two possible static values (a conservative value or a large value). While still quite simple, this
was proven to work in many situations, and as the author described, “the algorithm is very
robust against dynamic changes and erroneous robot behaviour”.
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CE was later improved by [38], where maximum priorities were assigned when an
agent failed to find any route. This approach, named deterministic rescheduling, is much
simpler than its predecessor, decreasing the total number of plans in attempting to find a route.
This approach uses the intuition that, if the routing fails, this is due to the complexity of the
local environment, and this may not be resolved by moving it up one or two places. This
follows the same concept as the naive surroundings by [27].

Local Priority Adjustment

In the approach by [39], local priority adjustment (LPA) was used. When a deadlock
occurred, all agents with routes crossing within a certain radius of the deadlock were
identified, recomputing routes with all possible partial configurations of their priorities. This
method, while seemingly intensive, was able to perform similarly to the alternatives, being
effective at improving the quality of priority assignments.

Local Neighbourhood Sdjustment

Similar to LPA, in [41,42], the authors utilised local neighbourhood adjustment, to
adjust agent priorities in two manners: first, by shuffling between agents being blocked and
agents blocking and, second, by shuffling the priorities of agents utilising the most-active sections
within the topology.

Priority Tuning

A similar approach to LPA was taken in 2019, where [40] made use of a method called
priority tuning. In this approach, regardless of whether a deadlock has occurred, once
planning is completed, the agents with the least-optimal routes would have their scores swapped
with agents having slightly better scores, then the agents would all replan their routes with
the new orderings. This would continue until there was no considerable change in the
results. This approach showed a gradual improvement in scores as more time was offered
to the algorithm, enhancing towards the global optimum assignment, meaning it can also
be classified as an anytime algorithm once all deadlocks have been eliminated. The authors
also with this paper included an asynchronous approach to prioritised planning, which
was employed to accelerate the tuning process. Their results showed that the asynchronous
prioritised planning method was able to achieve higher convergence scores in a reasonable
time.

4.2. Motion-Planning Algorithms

Motion-planning algorithms describe the process in which a route through a topology,
from a start node to a goal node, is calculated. Specifically, this refers to topological routing,
rather than trajectory planning (of a mobile manipulator or of a mobile robot within a
continuous space). Motion-planning algorithms are a fundamental part of route planning
that nearly all MRPP implementations build upon. In [43], the authors put together an
assessment of the practical benefits and drawbacks of utilising various approaches of
motion-planning algorithms, assessing both their real-world applicability and contexts in
which they surpass one another.

4.2.1. Static Algorithms

Static algorithms are the most-fundamental component of motion planning. They are
named as such because, once the optimal route is identified, any changes to the environment
(e.g., a previously traversable area becomes untraversable due to the presence of another
agent) mean the search must be restarted from the beginning.

A well-known and widely used basis for many static algorithms is Dijkstra [44], which
identifies the shortest path to visit by iterating through edges connected from the start
node and, at each node, computing the distance from the start. This approach spreads out
in all directions until the target node is reached, and the path is determined by stepping
backwards from the target.
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An improvement to this was developed named A* [45], in which an additional com-
putation was included, where a heuristic estimation of the distance (usually the Euclidean
distance) to the target was added to the distance from the start node. This addition al-
lowed the algorithm to prioritise searching in the direction of the target node, leading to a
narrower search space.

These approaches can both be implemented as a forward or backward approach, by
swapping the target and start nodes.

4.2.2. Replanning Algorithms

Replanning algorithms are designed to manage and modify identified routes, to ensure
they remain optimal as the environment around the agent changes. Unlike static algorithms,
these work without the need to restart the search. The algorithms Dynamic A* (D*) [46]
and D* Lite [47] are the most-well-known replanning algorithms.

D* Lite is a modified version of a backwards A* approach. It works by performing re-
planning on small portions of the network when changes are identified, before propagating
forwards towards the agent. It is designed to improve efficiency by limiting the impact on
states not affected by the changes in the topology and restricting attention to states that
are important for repairing the current solution; essentially, it only repairs parts that have
become invalid. While D* Lite works on the entire route with global knowledge, LRA* [37]
is designed to recalculate only the remainder of its route when a collision is pre-empted
and is specifically useful for mobile platforms.

4.2.3. Anytime Algorithms

Anytime approaches aim to identify a valid solution first, then perform continuous
improvement to attain a better optimality. The anytime repairing A* (ARA*) [48] is an
effective anytime algorithm that identifies a sub-optimal route quickly using a loose bound
defined based on the search time, then repeating elements of the search, tightening the
bound, and optimising the route.

ARA* is designed to reuse sections of the results of its previous searches to decrease
the computational requirement of the algorithm. Despite having a fast optimal route
generation, implementations such as ARA* cannot respond to dynamic environments.
Even if an optimal route has been found, if the topology of the environment is updated, the
algorithm must start from scratch.

Anytime approaches work well for single-robot path planning, when there is no
coupling; however, for conditions where many robots are restricted and have to plan
around one another, this type of algorithm does not work well.

4.2.4. Replanning Anytime Algorithms

The replanning algorithm anytime dynamic A* (AD*) [49] was developed to use the
section reuse component within ARA* and the invalidated-section-repairing component
within D* Lite. The fusing of these components enables the algorithm to boast a strong
efficiency in planning around dynamic obstacles while avoiding them.

4.2.5. Space–Time Search Algorithms

Space–time algorithms estimate the possible future conflicts in space and time and
utilise both movements and waiting as viable actions to resolve those conflicts. CA* [37] is
a prime example of this, in which the navigable space is a three-dimensional reservation
table, in which the first two dimensions represent a 2D map and the third dimension
is mono-directional, representing time. Here, waiting is considered a valid movement
strategy for any time step, and reservation tables are used to mark off impassable regions.
This is further extended in HCA* [37], which improves efficiency using search trees, and in
CRH* [10], where the concept of waiting is combined with replanning strategies beginning
at multiple time steps.
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5. Discussion

In the literature analysed, there are a few key areas that affect the efficiency of the
MRPP algorithms and need to be addressed. While the research as a whole is quite broad, in
scope and evaluation, most work makes two key assumptions that define their algorithmic
approach. The first assumption (which we named batch assignment) is that the planning is
carried out in batches. At the point of planning, every agent is considered to be idle, and
this could lead to unnecessary delays or route replanning for agents that are still in motion.
The second assumption (which we named static scoring) is that the priority for each point
along a reserved route is homogeneous, meaning a priority defined at the start of the route
determines every point along it.

These assumptions have led to much of the existing research lacking accurate transfer-
ability when taken out of a single-route-planning instance and into practice in a physical
deployment. Additionally, we identified a broader weakness in heuristic research as a
whole (which we named context generality), in which the published works rarely tie the
developed heuristics into the contextual domain directly. We also identified a shortcoming
in the area of heuristic research, where only a fraction of papers actually had the developed
heuristic as the focus of the paper.

Finally, we found a shortcoming in the exploration of cross-approach optimisations,
where there has been little exploration in evaluating the utility of combining other ap-
proaches from the areas of topological manipulation, which should have a clear improve-
ment on scalability for larger environments (due to the discretisation of the environment)
and work well alongside prioritised planning.

5.1. Batch Assignment

The key concept here is that route planning is performed in batches. In a classical
prioritised MRPP scenario, a system will start with all robots idle. Each robot will be
assigned a priority, and they will plan their motion accordingly. Each robot would execute
its navigation route by navigating to the goal. There are four different scenarios depending
on how many goals are assigned to each robot and how the routes are planned for each
goal:

• Scenario 1: All robots have only one target, so they will stop at goal1. This approach is
very broadly used [11,23,27,30,33,34].

• Scenario 2: Robots wait at goaln till all other robots have completed goaln before
planning routes and starting to move to goaln+1.

• Scenario 3: Each robot completes its goaln and receives a new, smaller priority, so as
not to disrupt existing routes when moving to goaln+1.

• Scenario 4: All robots that complete goaln receive goaln+1. All robots delete existing
routes, and planning restarts with one robot planning to its goaln+1 and others still
replanning to their goaln.

Due to the efficacy in evaluating the quality of single-instance plans, Scenario 1 is used
often. However, this has led to approaches not fully exploring the viability for practical
deployments. As discussed in [32], minimising the flow-time can be thought of as trying to
get agents to an idle state as quickly as possible so that they can take on new tasks; however,
this does not fully resolve the underlying issues.

Scenario 2 is an extrapolation of how subsequent uses of Scenario 1 would result. It
does not fully utilise the available resources, but does remove the likelihood of livelocks in
the rescheduling phase.

For Scenario 3, the only way to guarantee a non-disruptive route is to utilise a priority
value below the robots that already have routes; for any knowledge-based heuristics, this
weakens their intended meaning.

Scenario 4 is a disruptive form of Scenario 2, where all resources are used, but with
significantly increased processing due to unnecessary replanning. Routes being blocked
can result in livelocked agents.
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5.2. Static Scoring

Another issue identified here with the heuristics occurs when planning or replanning
is carried out only for some robots while others are in motion (similar to Scenario 3 in batch
processing). Once planning is completed for a robot, using a knowledge-based heuristic
for the planning schema, every edge in the route can be thought of as being reserved with
the score given by this heuristic. Although a robot moves through its reserved route, the
score that had been calculated to reserve the edges in the route remains the same as when
the routing began. This leads to inconsistencies with the results of replanning, where the
robots that replanned their routes may have new scores computed, but these new accurate
scores are being compared against historical existing scores to decide the winner to reserve
the routes. As the purpose of knowledge-based heuristics is to bring relevant knowledge of
the system into the planning schema, this is only partially achieved when the information
being applied is historical and inaccurate for the new state of the robot.

It is only when priorities are integrated into live motion planning such as in [28,29,34],
utilise reassignment as in [32,33], or apply to individual edges as in [10] that the scoring
becomes reliable at all instances. For most approaches, however, this is not the case.

5.3. Context Generality

Prioritisation schema heuristics can be categorised into four levels based on their
relation to context dependence and use. Abstract heuristics take no information from the
state of the system, relying only on meta information such as what would be found in a
configuration file. System-based heuristics can be categorised as taking general information
from the system, applicable in nearly any context. Context-based heuristics can be described
as taking information directly relevant to the deployed domain. Combined heuristics are
simply the combination of multiple independent heuristics to improve assignments.

Due to the wide applicability of system-based heuristics, most research neglects
potentially useful context information in favour of more-widely applicable approaches.
It is understandable that applications using these types of prioritisation schema are less
likely to garner wider attention due to their limited use cases. However, it is still worth
noting their absence and potential. For example, in a warehouse environment, the payload
weight/size could be a contributing factor to a viable heuristic due to the instability of the
load if encountering many starts and stops during transit; in a horticultural fruit logistics
setting, the time since the harvest could be a deciding factor as the shelf life of the fruit
will be reduced if left in the heat after being harvested from the plant; in the domain of
autonomous vehicles, an increase in the number of pedestrians in an area near school zones
may work as a good prioritisation consideration. Table 3 shows how some of the heuristics
discussed in Section 4.1.1 may be categorised based on the descriptions above.

Table 3. Examples and concepts of heuristics based on context generality.

Generality Name/Description

Abstract Random Ordering [27]

Static Ordering [23]

System-Dependent

Road-Map Distance [30]

Planning Time [34]

Path Prospects [11]

Combined Task-Priority Grading + Navigation Distance [10]

5.4. Heuristic Focus

Throughout this review, it is evident that there is relatively little active research in
prioritised MRPP focusing on improving the heuristics. The majority of the MRS research
focused on optimising rescheduling for distributed fleet management. Of the heuristics
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discussed within this survey alone, only around half of the novel heuristics were developed
as the sole focus of the paper.

5.5. Topology Manipulation

In order to reduce the MRPP problem’s complexity, topology manipulation works by
modifying the structure of the environment considered for planning. This can be performed
in one of two ways.

Topology generation (generating internal structures within the topology) has been
used in approaches like probabilistic road-maps [50], rapidly expanding random trees [51],
and sub-dimensional expansion [20] to great effect, but have not been explored alongside
prioritised planning.

Topology decomposition (decreasing the state space by combining components to-
gether) has been used in approaches such as road-map decomposition [52], component-
based map decomposition [53], and junction-based map decomposition [24] to improve
on scalability, with [53] being one of the very few works to utilise prioritised planning
alongside topology manipulation to great effect.

6. Conclusions

As evidenced through this literature review, despite its general applicability and rapid
conflict-resolution speed, prioritised MRPP is not under much active research. However, as
shown in [10] and here, there is still potential for improving the generalised efficiency of pri-
oritised MRPP approaches by focused research on heuristic developments and rescheduling
approaches and framework developments to improve generalised efficiency.

Prioritised planning has been well explored on the surface in both the topological
domain, in the form of online and offline path planning, and in the continuous domain, in
the form of online motion planning. Due to the simple frameworks supporting heuristics
and rescheduling, these are able to be applied quite broadly across many domains, which
has undoubtedly helped in facilitating their interoperability. While they have been well
explored over varying decision-making topologies, systems utilising dynamic coupling
inter-agent communication have not received the same attention.

There is also much potential for developments in enhancing the global optimality in
heterogeneous systems and new domains with combined heuristic research. Given the rela-
tively small selection of available heuristics, the exploration of context-based heuristics may
spark more creative solutions to system-based heuristics so the usefulness of context-based
heuristics must not be understated. Further, rescheduling approaches have been generally
limited to works utilising coupled and dynamic coupling inter-agent communications;
however, they have not widely considered the impacts on communication challenges in
this process, despite being a critical restriction on their utility.

Approaches have shown much potential when utilised alongside other innovations
in the problem specifications such as the topological representations. However, further
innovations such as topology manipulations are under-explored, although their combined
utility seems to be an area for scalability optimisation.

Prioritised planning is a powerful architecture, with concepts applicable in both
online and offline planning, and able to be utilised in both the topological and continuous
domains. Yet, despite its conceptual simplicity, its potential is under-explored in a number
of directions.
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