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Abstract: The synchronization control performance of the Fieldbus control system (FCS) is an impor-
tant guarantee for the completion of multi-axis collaborative machining tasks, and its synchronization
control accuracy is one of the decisive factors for the machining quality. To improve the synchro-
nization control accuracy of FCS, this paper first makes a comprehensive analysis of the factors
affecting synchronization in FCS. Secondly, by analyzing the communication model of linear Ethernet,
a distributed clock compensation method based on timestamps is proposed to solve the asynchronous
problem of communication data transmission in the linear ethernet bus topology. Then, based on
the CANopen application layer protocol, the FCS communication and device control task collabora-
tion method is proposed to ensure the synchronous control of multiple devices by FCS. Finally, an
experimental platform is built for functional verification and performance testing of the proposed
synchronization method. The results show that the proposed synchronization method can achieve a
communication synchronization accuracy of 50 ns and a device control synchronization accuracy of
150 ns.

Keywords: fieldbus control system; synchronization control; distributed clock; ethernet fieldbus;
CANopen

1. Introduction

With the development of Industry 4.0, intelligent, Fieldbus-based, and open industrial
automation control systems have become the development direction in industrial manufac-
turing [1]. The FCS adopts industrial ethernet Fieldbus and standardized communication
protocols, which can make the central controller (master), node controllers (slave), HMI,
and other devices from a control network through a single Fieldbus. It realizes various
functions such as industrial device control, data monitoring and acquisition, and open
interconnection and is widely used in CNC processing, industrial robotics, and automatic
production lines [2–4]. However, synchronization control of multiple devices in a Fieldbus
network without a uniform time reference becomes an important challenge for the devel-
opment of FCS [5]. In high-end equipment manufacturing industries such as numerical
control processing with nano-level interpolation requirements, processing tasks need to
be completed by multi-axis collaboration. The asynchronous control time of each axis will
cause the actual machining path to deviate from the set path, which is related to the success
or failure of the machining task [6,7]. Therefore, the synchronization accuracy of device
control is the core index that determines the system’s performance. Traditional industrial
control systems mostly use centralized multi-axis motion control cards with simultaneous
axis control and signal output in the same processor, thus ensuring the synchronization
accuracy of control [8,9]. This system architecture is not in line with the development
directions of standardization, openness, and interconnection of industrial control systems.

Establishing a uniform time reference is an effective means to improve the synchro-
nization control accuracy of the system [10]. Time synchronization methods can be broadly
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classified into three types according to the principle of action: high-precision clock sources,
satellite timing services, and network time synchronization [11]. The high-precision clock
source approach is to integrate high-precision crystal oscillation circuits in each slave
station to provide additional high-precision time information [12]. However, the system
will generate unacceptable cumulative errors over long periods of operation. The satel-
lite time service method uses the high-precision clock provided by GPS satellites as the
unified time reference for the system [13]. Although the time accuracy meets the indus-
trial control requirements, the cost is too high to be suitable for industrial production
applications. The network time synchronization method, represented by the precision
network time synchronization method, represented by the precision time protocol (PTP),
achieves time synchronization by continuously correcting and compensating the time of
each slave station in the network [14]. PTP is based on a real-time ethernet Fieldbus and
requires no additional hardware, making it an effective means of achieving high-precision
synchronous control of FCS. More and more researchers have adopted the PTP method
to improve the synchronous control performance of industrial control systems [15–17].
Lam D. et al. proposed a method to eliminate the frequency drift factor of the master clock
crystal oscillator based on the PTP method, which improved the time synchronization
accuracy of industrial ethernet by 30% [18]. Chen C. et al. designed the Modbus protocol
and PTP protocol together to solve the time synchronization problem of industrial wireless
sensor actuators [19]. Seo Y. et al. conducted an adaptive estimation of network noise
and clock drift interference in the PTP-based system, which improved the robustness of
the system synchronization clock [20]. This method of recording physical layer hardware
transceiver time can obtain 100 ns level synchronization accuracy and has been widely used
in major real-time Ethernet buses, such as PROFINET IRT [21], POWERLINK [22], and
EtherCAT [23]. In addition, some scholars have further improved the time synchronization
accuracy by using clock dynamic compensation. Buhr S. et al. proposed a timestamp
measurement method combining the PI controller and PHY chip clock phase relationship,
which can achieve sub-nanosecond synchronization accuracy [24]. Gong F. et al. used the
Kalman filtering method to model the clock offset variation characteristics, which can im-
prove synchronization accuracy in a temperature-variation environment [25]. Qing L. et al.
proposed a dynamic delay-corrected clock synchronization algorithm for the transmission
delay asymmetry between the system clock and the local clock of each slave station to
improve the clock synchronization accuracy [26]. The above time synchronization methods
can establish a uniform time reference and achieve high time synchronization accuracy.
However, the synchronized control of industrial equipment by FCS is also influenced by its
system architecture, especially the timing sequence between system communication and
control behavior. For this paper, based on analyzing the factors affecting the synchroniza-
tion of FCS device control, a time reference based on distributed clocks is established, and
a collaborative method of communication scheduling and device control is designed to
achieve high-precision synchronization control of devices.

This paper is organized as follows. In Section 2, the overall architecture and working
principle of FCS are analyzed, and the influencing factors of unsynchronized control of
system equipment are obtained. In Section 3, the mechanism of real-time Ethernet bus
communication transmission delay is analyzed, and a distributed clock synchronization
method based on timestamp compensation is proposed. In Section 4, the communication
scheduling and device control timing sequence in FCS is designed based on the CANopen
application layer protocol and forms the FCS device synchronization control method. In
Section 5, a typical FCS experimental platform is built to verify the distributed clock syn-
chronization accuracy and device synchronization control accuracy. Finally, Section 6
concludes this paper and points out follow-up work. The proposed FCS device synchro-
nization control method can achieve 50 ns communication transmission synchronization
accuracy and 150 ns device synchronization control accuracy. This method can improve the
multi-axis collaborative processing accuracy of the FCS system and also provide a reference



Machines 2023, 11, 98 3 of 18

for the design of the synchronization control function of a similar industrial automation
control system.

2. Analysis of Synchronization Factors in FCS

This section analyzes the overall system architecture and communication and data
transmission principles of FCS. Then, by analyzing the timing sequence of the system
control task execution, the influencing factors that lead to the desynchronization of device
control by FCS are summarized, which provides a theoretical basis for the synchronization
method proposed subsequently.

2.1. Basics of FCS

Typical FCS adopts an architecture that separates system logic control from device
control. The master executes the user program logic and sends the control instructions to
each slave through the real-time ethernet bus, and the slaves control their connected devices
according to the control instructions. Figure 1 illustrates the principle of FCS architecture.
The integrated development environment (IDE) is a comprehensive software platform for
users to configure system hardware, edit applications, compile code, download, debug, and
perform human-machine interaction. The master receives the logic code downloaded from
the IDE, compiles it as a program organization unit (POU), and runs it periodically in a real-
time thread of the operating system. The results of the POU operation are sent to the slaves
via the real-time Ethernet bus. The slave receives the command from the master, runs the
device control algorithm to control its peripherals and uploads the sensor data and its status
parameters to the master. In addition, for application scenarios with network expansion
requirements, the OPC-UA module of the master station can be interconnected with the
cloud through the OPC-UA gateway. It is worth noting that since the master integrates
all slave databases and the real-time ethernet bus adopts standardized communication
protocols, the system function implementation does not depend on the hardware, reflecting
the standardized characteristics of FCS. This paper focuses on the synchronization problem
of FCS for device control.
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2.2. Communication and Control Principles of FCS

The control of various devices in the system by the FCS is essentially the process
of periodic data interaction between master and slave in a real-time ethernet field bus.
Ethernet buses can be divided into linear, tree, star, and other forms according to the
topology. Due to the simple structure and high real-time data transmission characteristics
of linear topology, this paper uses a linear ethernet architecture for synchronous analysis.

The communication structure and data transmission principle of FCS using linear
topology are shown in Figure 2. The FCS communication structure can be divided into a
physical layer, a data link layer, and an application layer. The functions and data transmis-
sion principles of each layer are as follows.
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• Physical layer: Provide physical media for ethernet data transmission between master
and slave, mainly including a PHY circuit, Category 5 cable (CAT-5), registered jack
45 (RJ45), etc. To ensure the independence of each slave in the linear topology, the
physical layer of the slave includes two independent network ports.

• Data link layer: primarily consists of a MAC controller that integrates a real-time data
transmission protocol. The real-time data transmission protocol processes physical
layer data and transmits it directly to the application layer, bypassing the network
layer and transport layer.

• Application layer: It mainly consists of the master runtime and the slave device
controller. Runtime consists mainly of POU, data dictionary, and an application layer
protocol stack. The POU runs the user application periodically and stores the operation
results in the master data dictionary. The application layer protocol stack updates each
slave data dictionary by sending ethernet frames according to the set communication
period, where the master data dictionary is essentially the sum of the data dictionaries
of all slaves. The slave device controller updates its own data dictionary by exchanging
communication data with the MAC controller and executes device control algorithms
to control its connected devices according to the data dictionary parameters.

According to the system communication architecture and data transmission principle,
the typical timing sequence of system control task execution is shown in Figure 3. When
the master enters cycle T, it sends one ethernet frame to obtain the status of each slave
and sensor data as the input condition for POU. Then, the application layer stack sends
the results of the POU to each slave. Each slave reads the data from the ethernet frame
and outputs the control signal to the device after processing the protocol and running the
control algorithm. The above process is repeated for each cycle until the system stops.
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2.3. Synchronization Error Analysis

Synchronous control mainly refers to the time consistency of the motion state of
the devices in the industry controlled by FCS under the same command, such as the
simultaneous action of switches and synchronous motion of motors. However, since the
response time of different hardware to the command varies, this paper only considers the
time synchronization of the control signal output from the slave. According to the task
timing sequence analysis in Figure 3, the main factors affecting system synchronization
control are as follows:

• Factor 1: Communication transmission delay. The master sends data frames containing
the control commands for this cycle to the slaves at tm2. Since the communication link
length of each slave is different, the time t1c~tnc for receiving ethernet frames from
slaves 1~N is different. This causes the start time of the slave control task to be out of
synchronization.

• Factor 2: Slave task processing time differences. After receiving the master data frame,
the slave station needs to perform data reading, protocol processing, and control
algorithm operation tasks. However, different functional types of slaves may receive
different lengths of data and experience differences in protocol processing times
and inconsistent levels of control algorithm complexity. This leads to different task
processing times (tsd1~tsdn) for slaves 1~N as well, which affects the synchronization
of the slave control signal output.

• Factor 3: Timeliness differences in slave feedback data. Due to the different sensor
sampling times of each slave, the feedback data of each slave read by the master at tm1
via Ethernet frame may not be consistent in time. This may lead to some deviation in
the POU operation results, causing the control logic to be out of synchronization.

By analyzing the above synchronization influencing factors, the main reason leading
to Factor 1 is that the communication data transmission is not synchronized, while Factor 2
and Factor 3 are mainly caused by the unreasonable coordination of system communication
and control tasks in time. Therefore, to eliminate the asynchronous factor of Factor 1~3, this
paper focuses on the synchronization of communication transmission and the coordination
of communication and device control.

3. Fieldbus Communication Synchronization Method Based on Distributed Clock
3.1. Analysis of Communication Transmission Delay

Figure 4 shows the communication delay principle between two adjacent slaves A
and B in a linear network consisting of one master and N slaves. During the forward
transmission, the Ethernet frame is received by the PHY0_rx port of slave A, then processed
by the MAC controller and sent out from the PHY1_tx port. The PHY0_rx port of slave B
receives the data sent from the PHY1_tx port of slave A and performs the same processing
as slave A. When the ethernet frame is transmitted to the slave N, it starts to be transmitted
in the reverse direction and finally returns to the master.
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During forward transmission, after the Ethernet frame arrives at slave A, the MAC
controller needs to perform data reading, feedback data uploading, and retransmission
operations. The time consumed in this process is called station processing delay, which
is represented by tdA01. The time consumed for the ethernet frame to travel between the
PHY_tx port of slave A and the PHY0_rx port of slave B is called the cable transmission
delay and is denoted by tdlAB. Therefore, the overall delay time tdAB for two adjacent slaves
A and B to receive Ethernet frames sent by the master can be expressed as follows.

tdAB = tdA01 + tdlAB (1)

Similarly, during reverse transmission, the transmission delay tdBA of slave stations A
and B can be expressed as follows:

tdBA = tdB10 + tdlBA (2)

The above analysis shows that communication frame transmission in a linear network
is mainly affected by cable transmission delay and station processing delay, resulting
in different times for each slave station to receive the same communication frame. The
phenomenon is objective and unavoidable. However, the communication data ultimately
serves the device controller. A SYNC output signal with adjustable output time is designed
in the MAC controller. The synchronization of SYNC signal generation is ensured by accu-
rately measuring the cable transmission delay and station processing delay of each slave
station and compensating for the time of the SYNC output signal. The device controller
of each slave station reads communication data from the MAC controller according to the
SYNC signal, which ensures synchronized communication.

3.2. Method of Communication Delay Measurement

Define the first slave connected to the master as the reference slave. The commu-
nication delay of each other slave is based on the reference slave. To analyze the time
consumption relationship of the communication transmission process more intuitively, a
linear network communication transmission model is established, as shown in Figure 5.
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The model describes the time relationship of the communication frame transmitted in
the Fieldbus network consisting of 1 master and N slaves. The definition of each parameter
in Figure 5 is shown in Table 1.

Table 1. Parameter definition table for communication transmission delay model.

NO. Name Definition

1 tNR0 The time the data frame arrives at port R0 of slave N.
2 tNT1 The time the data frame leaves the T1 port of slave N.
3 tNR1 The time the data frame arrives at port R1 of slave N.
4 tNT0 The time the data frame leaves the T0 port of slave N.
5 tdNP Station processing delay of slave N during forward transmission.
6 tdNR Station processing delay of slave N during reverse transmission.
7 tdN Station processing delay of the last slave.
8 tdlAB Transmission delay of communication cables between slaves A and B.

According to the model analysis, the cable transmission delay and station processing
delay are calculated as follows.

1. Cable transmission delay calculation

The connection distance between slave stations in industrial applications is generally
short, and the transmission asymmetry time of CAT-5 is about 0.1 ns/m, which can be
considered symmetrical for cable transmission delay. Therefore, for the adjacent slaves i
and j, the following relationship is satisfied.

tdlij = tdlji (3)

Considering the different time bases of each slave, let the time deviation between slave
1 and slave 2 be toffset12, and then the cable transmission delay between slave 1 and slave 2
can be represented by Equation (4).{

tdl12 = (t2R0 + toffset12)− t1T1
tdl21 = t1R1 − (t2T0 + toffset12)

(4)

Substituting Equation (3) into Equation (4), the cable transmission delay between slave
1 and slave 2 can be obtained as:

tdl12 = tdl21 = [(t1R1 − t1T1)− (t2T0 − t2R0)]/2 (5)

The time deviation toffset12 in the result of Equation (5) is counteracted. Without loss
of generality, the cable transmission delay from slave i to the reference slave is the sum of
the cable transmission delays between all neighboring slave nodes in its forward link. The
calculation method is shown in Equation (6).

tdl1i =


j=i−1,k=i

∑
j=1,k=2

[(tjR1−tjT1)−(tkT0−tkR0)]
2 , i ≥ 2

0 , i = 1
(6)

2. Station processing delay calculation

The station processing delay reflects the time that the communication frame stays
inside the slave station. It is the total time from the moment when the read signal of the
PHY chip at the receiving port is valid to the moment when the write signal of the PHY
chip at the sending port is valid. Since all station processing occurs within the slave station,
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it can be recorded directly using local time. According to the model, the station processing
delay of slave station i can be calculated as follows:{

tdiP = tiT1 − tiR0
tdiR = tiT0 − tiR1

(7)

When communication frames are transmitted in the reverse direction, the slave stations
do not exchange data. Therefore, only tdiP is considered in the station delay compensation.
All station processing delays td1i from station i to the reference slave can be expressed by
Equation (8).

td1i =
j=i−1

∑
j=1

(tjT1 − tjR0) (8)

According to the calculation results of Equations (6) and (8), it is easy to obtain the
communication delay between slave station i and the reference slave station. The master
can write the cable transmission delay and station processing delay of each slave into each
MAC controller as important parameters for slave clock synchronization.

3.3. Distributed Clock Synchronization

In the Fieldbus network, the local clock of each slave station is affected by the power-on
time, environment temperature, crystal precision, and other conditions showing dynamic
change characteristics. The distributed clock makes the system time consistent by correcting
the time of each slave to match the moment of the reference slave. Figure 6 shows the
principle of distributed clock compensation.
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In Figure 6a, the local and reference clocks exhibit dynamic changes with time. The
offset of the local and reference clocks at time t0 is Coffset. In addition, there may be a
difference between the change rate of the local clock k1 and the change rate of the reference
clock k2 at t0. The difference in the change rate of the clock will cause the clock curve to
drift and may cause Coffset to increase over time.

Although the clock curve is not an ideal straight line, it can be approximated as a
straight line over a short period, as shown in Figure 6b. Calculate the difference between the
offset value and the drift value of the local clock and the reference clock, and compensate
the local clock to synchronize the local clock with the reference clock.

1. Clock offset compensation



Machines 2023, 11, 98 9 of 18

The basic idea of clock offset compensation is to add the offset Coffset(t) of the local
clock and reference clock at time t to the local clock as the compensation value. The
expression of the local time Clocal of the slave station is as Equation (9).

Clocal(t) = kt + a (9)

where k is the initial value of the local time change rate, and a is the initial value of the
local time.

The ethernet frame containing the clock compensation message sent by the master
arrives at the reference slave at tref time. The reference slave local time, Cref(tref), is written
into the data frame as timestamp information. When the frame arrives at slave i at time
ti, the time deviation Coffset(ti) between slave i and the reference slave can be expressed as
Equation (10).

Coffset(ti) = Cref(ti)− Clocal(ti) (10)

The local time Cref(ti) of the reference slave at time ti cannot be directly obtained from
slave station i. However, Cref(ti) can be calculated using timestamp information, Cref(tref),
and Equations (6) and (8), as follows:

Cref(ti) = Cref(tref) + tdl1i + td1i (11)

where tdl1i and td1i are the cable transmission delay and station processing delay between
slave i and the reference slave, respectively.

According to Equations (9)–(11), the time deviation Coffset(ti) of slave i from the
reference slave at time ti can be obtained as follows:

Coffset(ti) = Cref(tref) + tdl1i + td1i − kti − a (12)

The value of Coffset(ti) was added to the initial value of local time and used as the new
initial synchronization time anew. In this way, the new local time can be formed as follows:

Clocal(t) = kt + a + Coffset(ti) = kt + anew (13)

2. Clock drift compensation

The clock drift phenomenon is mainly caused by the difference between the slave
local clock change rate and the reference slave change rate. Periodically calculating the
reference slave time change rate and using it as the slope of the local clock curve is an
effective method for drift compensation.

Let tk and tk+1 be the times at which the two clock compensation messages arrive at
slave i, respectively. The local time change rate ki of the slave during this period can be
expressed as follows:

ki = [Clocal(tk+1)− Clocal(tk)]/(tk+1 − tk) (14)

According to Equation (11), the reference slave time change rate kref can also be
obtained as Equation (15).

kref = [Cref(tk+1)− Cref(tk)]/(tk+1 − tk) (15)

The change rate of local time can be corrected to knew according to the relationship of
the ratio of kref and ki. The local time after drift compensation and offset compensation can
be expressed as Equation (16).

Clocal(t) = k
[Cref(tk+1)− Cref(tk)]

[Clocal(tk+1)− Clocal(tk)]
t + anew = knewt + anew (16)
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In summary, the use of time drift and offset compensation methods to establish a
system-distributed clock can make each slave and the reference slave time maintain a high
degree of synchronization and solve the bus communication transmission delay problem.

4. Collaborative Method of System Communication and Device Control

In an architecture where logic control and device control are separated, ensuring the
temporal rationality of master communication tasks and slave control tasks is the key to
synchronous control of FCS. This section proposes a system communication and device con-
trol collaboration method based on the CANopen application layer protocol. Through the
design of the system communication data transmission method, communication scheduling
behavior, and device control timing sequence, the synchronization of device control by FCS
is ensured.

4.1. CANopen Data Transmission Method over Ethernet Links

The transmission mode of the CANopen protocol is based on the CAN bus, and each
communication frame can only carry data information for one slave station. In this way,
the master station needs to send multiple communication frames at a time to complete
the command transmission within a communication cycle. There is no doubt that this
will cause the time spent acquiring communication data from each slave station to be out
of sync.

To ensure synchronous transmission of communication data, each slave’s data can
be packaged into different messages and integrated into ethernet frames. However, this
method will generate more invalid data in ethernet frames, such as message headers,
interrupt responses, etc. Therefore, this section uses the data mapping method to design
the ethernet data frame format to improve the data transmission efficiency of the commu-
nication frame and to achieve more slave data transmission in the limited Ethernet data
space. The mapping principle is shown in Figure 7.
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In Figure 7, the messages sent by the master to each slave are combined into one read
message, and the upload messages of each slave are combined into one write message. The
slave reads and writes the mapped message using the configuration information, such as
the mapping number, starting address, and data length. This data mapping transmission
method improves the data transmission efficiency of ethernet frames and allows for a larger
loading space for CANopen protocol data.

In the mapping message, the data of each slave is organized according to the standard
CANopen data frame format, which consists of 11 bytes of space for Cobid, data length,
and data information, respectively. The format of the CANopen frame transmission in the
mapping message is shown in Figure 8.
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CANopen specifies a variety of communication objects, including NMT, SDO, PDO,
etc. The number of CANopen frames required for NMT, SDO, and PDO transmission
varies, and the master needs to configure different lengths of read/write message mapping
space according to the type of frames to be sent. NMT and SDO only need one CANopen
frame space for a single transmission. However, PDO can be configured into 1–4 groups
as required, including TPDO and RPDO. When composing ethernet frames, the master
needs to reserve data space of the appropriate size according to the number of PDOs of
each slave. In this way, the CANopen application layer data can be transmitted over the
ethernet Fieldbus.

4.2. System Communication Scheduling Method

To ensure real-time communication, the answer to the current command in the linear
network can only be transmitted back through the next ethernet frame. This delayed
response mechanism is not conducive to the timely upload of slave data, which may cause
the output logic of the POU to be out of sync. To make the POU and the device control algo-
rithm time reasonable, this section designs the communication frame scheduling methods
for system initialization, pre-operation, and operation status according to CANopen.

1. Initialization state scheduling

In this stage, after the slave completes the initialization of the protocol stack, a bootup
frame containing the slave node information will be generated and written to the MAC
controller. The master sends a query frame to read the bootup information of each slave in
the bus network. If the node information conforms to the hardware configuration file, it
will enter the pre-operation state. If it does not conform, it indicates that the bus connection
or slave station is abnormal.

2. Pre-operation state scheduling

In this state, the master performs status queries, parameter configuration, PDO con-
figuration, and other operations on the slave station through SDO. Figure 9 shows the
communication timing sequence of the slave device controller, MAC controller, and POU
in the pre-operation state.
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the RSDO1 information in the MAC controller. At the end of the pre-operation state, the 
master station sends an NMT command to read back RSDOn information and switch the 
slave station to the operation state. 
3. Operation state scheduling 

The communication data on operation status is time-sensitive and closely related to 
the POU control logic. In this state, the master periodically sends a synchronization frame 

Figure 9. Schematic diagram of system communication timing sequence in the pre-operation state.

After entering the pre-operation state, the master sends the TSDO1 command to each
slave. At this time, the read-back information may still be bootup information, which
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can be ignored. After the device controller of the slave reads the TSDO1 data in the MAC
controller, it is processed by the CANopen protocol stack, and the SDO response RSDO1 is
written to the MAC controller. When the master sends the TSDO2 command, it can read
back the RSDO1 information in the MAC controller. At the end of the pre-operation state,
the master station sends an NMT command to read back RSDOn information and switch the
slave station to the operation state.

3. Operation state scheduling

The communication data on operation status is time-sensitive and closely related to
the POU control logic. In this state, the master periodically sends a synchronization frame
(syncf) to read the RPDO information of the slave and sends instructions after the POU
operation to each slave through TPDO frames. The key to system synchronization control is
to ensure that the POU input parameters are the latest data of the slave in this cycle and
that the POU output instructions can be executed by the slave in this cycle.

Figure 10 shows the system communication timing sequence in the operating state.
The communication scheduling task in a period can be divided into three stages, and
the tasks of each stage are the same. Taking communication period 1 as an example,
the communication scheduling process of master and slave at each stage is described in
detail below.
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• Stage 1: At the beginning of communication period 1, the master sends syncf1 to each
slave station, and the read-back information is ignored. After the device controller of
the slave reads syncf1, it updates the sensor data and writes it to the MAC controller
through the RPDO1 frame of CANopen, waiting for the next frame to be read back.

• Stage 2: The master sends a query frame to read back the RPDO1 information in the
MAC controller of each slave. If an SDO frame is requested to be sent during the
period, the query frame is replaced by a TSDO1 data frame. After reading back RPDO1,
the master takes the RPDO1 data as a POU input parameter and runs POU.

• Stage 3: The master sends the POU operation result through the TPDO1 frame. The
slave runs the device control algorithm according to the instructions of TPDO1 and
controls the actuator.

The above communication scheduling mechanism can ensure the logic and inde-
pendence of sensor data acquisition, POU operation, and the device control algorithm
in time.

4.3. Slave Control Timing Sequence Design

The CANopen-based communication scheduling method provides a good timing
sequence reference for the implementation of the slave control algorithm. Combined with
the distributed clock synchronization signal SYNC, the execution time of each slave task
can be unified. The timing sequence relationship between system communication and slave
station control tasks under operation status is shown in Figure 11.
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In Figure 11, the MAC controller of each slave station will generate an IRQ signal after
receiving the communication frame, informing the device controller that the communication
data can be read. Due to the communication transmission delay, the interrupt signal IRQ
time generated by each slave MAC controller after receiving the communication frame
is inconsistent. However, the distributed clock can be used to generate a SYNC signal
simultaneously after the communication frame is received by all slaves. The SYNC signal
of the synchronization frame is used as the trigger for the sensor acquisition function of
each slave, and the SYNC signal of the TPDO frame is used as the trigger for the device
control algorithm.

It is worth noting that when setting the SYNC generation time, it must be ensured
that the last slave in the Fieldbus has finished receiving the data frames. Otherwise, it will
cause some slaves to be out of synchronization with the control commands of other slaves.
According to Equations (6)–(8), the SYNC signal generation time tSYNC of any frame should
satisfy the following condition:

tSYNC > tsend + tdl1n + td1n + (tnT0 − tnR0) (17)

where n is the last slave node number, and tsend is the time when the communication frame
is received by the reference slave.

Due to the different complexity of the control algorithms of the slave, the execution
time is quite different. To have the same time for each slave to output control signals, the
control signal generated by the control algorithm in this cycle is output at the same time
as the SYNC signal in the next cycle, which can ensure output synchronization. Figure 12
shows the timing sequence principle of slave communication and control task execution.
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During period n, the slave station executes the sensor reading task in this period
according to the SYNC signal of syncf(n) and simultaneously outputs the control signal of
the previous period. When the SYNC signal of the TPDO(n) frame is valid, the slave executes
the control algorithm of this cycle and latches the output signal. The latched control signal
will be output when the SYNC signal of the syncf(n + 1) frame of the n + 1 period is valid.
The synchronous output method after the latch will generate the output delay of tsdelay.
However, the communication period of a real-time Ethernet bus-based control system is
generally in the order of milliseconds, and tsdelay does not affect the control performance of
the system.

In summary, the logical synchronization of the system and the synchronization of the
device control can be ensured by the collaborative design of the system communication
scheduling and device control tasks.

5. Experiment

In this section, an experimental platform is constructed to verify the high-precision
synchronization control method of the device proposed in this paper. Figure 13 shows the
self-developed FCS experimental platform, which consists of a power supply, a master
station, four slave stations, an HMI display, and a PC with IDE installed. The master
adopts Hi3559a as a CPU chip that integrates the Linux Ubuntu16.04 operating system
and forms a linear network with 4 slaves via ethernet. The slave uses the FPGA of HME-
P1P6060N0TF784C as the MAC controller and the Soc chip HME-M7A12N0F484I7 with the
integrated cortex-m3 core as the device controller. The clock synchronization protocol pro-
posed in this paper is designed in Verilog, and integrated in the HME-P1P60600N0TF784C
chip. It forms the Ethernet physical layer with the general-purpose 100 M PHY chip, net-
work transformer, and M12 industrial connector. The Codesys software is installed on the
PC as the system IDE. The HMI display provides the human-machine interaction interface.
The power supply provides 24 V DC power to the master station and four slave stations.
The device interface of each slave is led from the interface board to facilitate oscilloscope
observation of the distributed clock synchronization signal SYNC as well as the device
control signal.
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A multi-axis robot application scenario is simulated using the experimental platform
shown in Figure 13. The master controls each slave to generate the orthogonal pulse signal
required by the robot joint driver at the same time to control each joint axis. Set the system
communication cycle to 1 ms, and design the POU logic in the IDE to make the slave
generate 20 pulses with a frequency of 50 KHz in each communication cycle.

The SYNC signal is directly generated by the distributed clock, and the time error
of the SYNC signal of each slave directly reflects the synchronization accuracy of the
distributed clock. After the system is powered on and enters the operation state, the SYNC
signals of slave 1~4 are shown in Figure 14.
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Figure 14. System distributed clock synchronization test result diagram: (a) SYNC signal waveform
of each slave under a 400 µs time scale; (b) SYNC signal waveform of each slave under a 20 ns
time scale.

Figure 14a shows the oscilloscope waveform of the SYNC signal of each slave on a
400 µs time scale. It can be found that the SYNC signal generates two edge jumps within
1 ms, representing the synchronization frame and TPDO frame, respectively. SYNC signals
show consistency and periodicity in time. Figure 14b shows the rise edge detail of the
SYNC signal under a 20 ns time scale. The rise time of the SYNC signal of each slave has
deviation and jitter, and the jitter time error is about 36 ns. This time jitter is caused by
uncertainty factors such as timestamp measurement accuracy, data transmission delay jitter,
PHY chip data reception, transmission jitter, etc.

Time synchronization of the device control signal output of each slave is the key to
multi-axis coordinated control. Use the oscilloscope to observe the pulse output ports
of each slave station to test the synchronization performance of the equipment. The test
results are shown in Figure 15.
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When the time scale of the oscilloscope is 200 us, slave 1~4 generates pulse signals
with a total time width of 400 µs in a communication cycle. The pulse output time of each
slave is the same, and the number and frequency of pulses are the same as the logic settings
of the master station, as shown in Figure 15a. When the time scale of the oscilloscope is
amplified to 80 ns, it can be observed that there is deviation and jitter in the jumping time
of each slave station pulse signal, and the overall jitter time range is about 140 ns, as shown
in Figure 15b. According to the slave control timing sequence in Section 4, the time error of
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the output pulse of each slave shall be theoretically consistent with the SYNC signal error.
However, because the pulse output involves MCU software modules and related hardware
circuits, the synchronization error is larger than the theoretical value.

To verify the independence of system synchronization accuracy and running time, the
experimental platform in Figure 13 was tested for seven consecutive days. The synchro-
nization error of the SYNC signal and pulse output signal is tested several times a day, and
its maximum value is recorded. The experimental results are shown in Table 2.

Table 2. Synchronization performance test table during continuous system operation.

Test Time Synchronization Error of SYNC Synchronization Error of Pulse

Day 1 36 ns 140 ns
Day 2 37 ns 143 ns
Day 3 37 ns 140 ns
Day 4 35 ns 137 ns
Day 5 40 ns 146 ns
Day 6 37 ns 141 ns
Day 7 36 ns 140 ns

From the test data in Table 2, it can be seen that the system communication trans-
mission synchronization error and device control synchronization error remain stable
during the continuous operation of the system. The fluctuation range of communication
transmission synchronization error is 4 ns, and the fluctuation range of device control
synchronization error is 8 ns.

In summary, the synchronization control method proposed in this paper can ensure
that the synchronization accuracy of FCS communication transmission is less than 50 ns
and the synchronization accuracy of device control is less than 150 ns.

6. Conclusions

This paper focuses on the research of the device synchronization control method of a
Fieldbus control system. Through the analysis of the composition principle of typical FCS
and the communication control process of FCS based on a real-time ethernet field bus, it is
concluded that the main factors affecting the synchronization control of the system are the
communication transmission delay and the desynchrony of communication and control
logic. To eliminate the impact of communication transmission delay on synchronization
control, this paper analyzes the communication transmission mechanism in the linear
ethernet topology and uses timestamps to measure the cable transmission delay and static
processing delay. The distributed synchronization clock of the system is established accord-
ing to the delay measurement results, which provides a unified time benchmark for each
slave of the system. In addition, aiming at the problem that the communication tasks and
control logic of the system are not synchronized, this paper uses the CANopen application
layer protocol to design the system communication data transmission, communication
task scheduling, and device control timing, forming a collaborative method of system
communication and device control. Finally, a typical FCS experimental platform is built
to verify the synchronization control method proposed in this paper. The experimental
results show that the synchronization method proposed in this paper can make the commu-
nication transmission synchronization accuracy less than 50 ns and the equipment control
synchronization accuracy less than 150 ns. The synchronization method proposed in this
paper meets the requirements of industrial applications for the synchronization accuracy of
the control system and provides a reference for FCS synchronization-related research. In
the future, we will further study the improvement of synchronization accuracy.



Machines 2023, 11, 98 17 of 18

Author Contributions: Conceptualization, L.C. and D.F.; methodology, L.C. and D.F.; software, L.C.;
validation, L.C., J.Z. and N.C.; formal analysis, D.F.; investigation, L.C.; resources, D.F. and N.C.;
data curation, J.Z.; writing—original draft preparation, L.C.; writing—review and editing, L.C.;
visualization, N.C.; supervision, D.F.; project administration, D.F.; funding acquisition, N.C. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant
No. U19A2072).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zeng, P.; Wang, Z.; Jia, Z.; Kong, L.; Li, D.; Jin, X. Time-slotted software-defined Industrial Ethernet for real-time Quality of

Service in Industry 4.0. Futur. Gener. Comput. Syst. 2019, 99, 1–10. [CrossRef]
2. Erwinski, K.; Paprocki, M.; Grzesiak, L.M.; Karwowski, K.; Wawrzak, A. Application of Ethernet Powerlink for Communication

in a Linux RTAI Open CNC system. IEEE Trans. Ind. Electron. 2012, 60, 628–636. [CrossRef]
3. Wang, S.; Ouyang, J.; Li, D.; Liu, C. An Integrated Industrial Ethernet Solution for the Implementation of Smart Factory. IEEE

Access 2017, 5, 25455–25462. [CrossRef]
4. Danielis, P.; Skodzik, J.; Altmann, V.; Schweissguth, E.; Golatowski, F.; Timmermann, D.; Schacht, J. Survey on real-time com-

munication via ethernet in industrial automation environments. In Proceedings of the 2014 IEEE Emerging Technology and
Factory Automation, Barcelona, Spain, 16–19 September 2014.

5. Liang, G.; Li, W. Some Thoughts and Practice on Performance Improvement in Distributed Control System Based on Fieldbus
and Ethernet. Meas. Control. 2016, 49, 109–118. [CrossRef]

6. Jia, Z.-Y.; Ma, J.-W.; Song, D.-N.; Wang, F.-J.; Liu, W. A review of contouring-error reduction method in multi-axis CNC machining.
Int. J. Mach. Tools Manuf. 2018, 125, 34–54. [CrossRef]

7. Li, Y.-H.; Zheng, Q.; Yang, L. Multi Hydraulic Motors Synchronized Control Based on Field Bus with FlexRay Protocol. Adv. Sci.
Lett. 2012, 9, 603–608. [CrossRef]

8. Zhong, G.; Shao, Z.; Deng, H.; Ren, J. Precise Position Synchronous Control for Multi-Axis Servo Systems. IEEE Trans. Ind.
Electron. 2017, 64, 3707–3717. [CrossRef]

9. Shi, T.; Liu, H.; Geng, Q.; Xia, C. Improved relative coupling control structure for multi-motor speed synchronous driving system.
IET Electr. Power Appl. 2016, 10, 451–457. [CrossRef]

10. Liang, G. Control and communication co-design: Analysis and practice on performance improvement in distributed meas-urement
and control system based on fieldbus and Ethernet. ISA Trans. 2015, 54, 169–192. [CrossRef]

11. Kurata, N. Development and application of an autonomous time synchronization sensor device using a chip scale atomic clock.
Sens. Transducers 2018, 219, 17–25.

12. Chen, R.; Liu, Y.; Li, X.; Fan, D.; Yang, Y. High-precision time synchronization based on common performance clock source. In
Proceedings of the 2019 14th IEEE International Conference on Electronic Measurement & Instruments (ICEMI), Changsha, China,
1–3 November 2019.

13. Guo, H.; Crossley, P. Design of a Time Synchronization System Based on GPS and IEEE 1588 for Transmission Substations. IEEE
Trans. Power Deliv. 2016, 32, 2091–2100. [CrossRef]

14. Bello, L.L.; Steiner, W. A Perspective on IEEE Time-Sensitive Networking for Industrial Communication and Automation Systems.
Proc. IEEE 2019, 107, 1094–1120. [CrossRef]

15. Pedretti, D.; Bellato, M.; Isocrate, R.; Bergnoli, A.; Brugnera, R.; Corti, D.; Corso, F.D.; Galet, G.; Garfagnini, A.; Giaz, A.; et al.
Nanoseconds Timing System Based on IEEE 1588 FPGA Implementation. IEEE Trans. Nucl. Sci. 2019, 66, 1151–1158. [CrossRef]

16. Idrees, Z.; Granados, J.; Sun, Y.; Latif, S.; Gong, L.; Zou, Z.; Zheng, L. IEEE 1588 for Clock Synchronization in Industrial IoT and
Related Applications: A Review on Contributing Technologies, Protocols and Enhancement Methodologies. IEEE Access 2020, 8,
155660–155678. [CrossRef]

17. Popescu, D.A.; Moore, A.W. Measuring Network Conditions in Data Centers Using the Precision Time Protocol. IEEE Trans. Netw.
Serv. Manag. 2021, 18, 3753–3770. [CrossRef]

18. Lam, D.K.; Yamaguchi, K.; Nagao, Y.; Kurosaki, M.; Ochi, H. An improved precision time protocol for industrial WLAN
communication systems. In Proceedings of the 2016 IEEE International Conference on Industrial Technology (ICIT), Taipei,
Taiwan, 14–17 March 2016.

19. Chen, C.-H.; Lin, M.-Y.; Tew, W.-P. Wireless fieldbus networking with precision time synchronization for a low-power WSAN.
Microprocess. Microsyst. 2022, 90, 104509. [CrossRef]

20. Seo, Y.; Son, K.; An, G.; Nam, K.; Chang, T.; Kang, S. Improved Time-Synchronization Algorithm Based on Direct Compen-sation
of Disturbance Effects. Sensors 2019, 19, 3499. [CrossRef]

21. Gutierrez-Rivas, J.L.; Torres-Gonzalez, F.; Ros, E.; Diaz, J. Enhancing White Rabbit Synchronization Stability and Scalability Using
P2P Transparent and Hybrid Clocks. IEEE Trans. Ind. Inform. 2021, 17, 7316–7324. [CrossRef]

http://doi.org/10.1016/j.future.2019.04.009
http://doi.org/10.1109/TIE.2012.2206348
http://doi.org/10.1109/ACCESS.2017.2770180
http://doi.org/10.1177/0020294016640557
http://doi.org/10.1016/j.ijmachtools.2017.10.008
http://doi.org/10.1166/asl.2012.2586
http://doi.org/10.1109/TIE.2017.2652343
http://doi.org/10.1049/iet-epa.2015.0515
http://doi.org/10.1016/j.isatra.2014.08.012
http://doi.org/10.1109/TPWRD.2016.2600759
http://doi.org/10.1109/JPROC.2019.2905334
http://doi.org/10.1109/TNS.2019.2906045
http://doi.org/10.1109/ACCESS.2020.3013669
http://doi.org/10.1109/TNSM.2021.3081536
http://doi.org/10.1016/j.micpro.2022.104509
http://doi.org/10.3390/s19163499
http://doi.org/10.1109/TII.2021.3054365


Machines 2023, 11, 98 18 of 18

22. Romanov, A.; Slepynina, E. Real-time Ethernet POWERLINK communication for ROS. Part II. Hardware and software. In
Proceedings of the 2020 Ural Smart Energy Conference (USEC), Ekaterinburg, Russia, 13–15 November 2020.
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