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Abstract: At present, deep learning technology shows great market potential in broaching tool wear
state recognition based on vibration signals. However, traditional single neural network structure
is difficult to extract a variety of different features simultaneously and has low robustness, so the
accuracy of wear status recognition is not high. In view of the above problems, a broaching tool
wear recognition model based on ShuffleNet v2.3-StackedBiLSTM is proposed in this paper. The
model integrates ShuffleNet v2.3, which has been channel shuffling, and StackedBiLSTM, a long
and short-term memory network, to effectively extract spatial and temporal features for tool wear
state recognition. Based on the innovative recognition model, the turbine disc fir-tree slot broaching
experiment is designed, and the performance index system based on confusion matrix is adopted.
The experimental research and results show that the model has outstanding accuracy, precision, recall,
and F1 value, and the accuracy rate reaches 99.37%, which is significantly better than ShuffleNet v2.3
and StackedBiLSTM models. The recognition speed of a single sample was improved to 8.67 ms,
which is 90.32% less than that of the StackedBiLSTM model.

Keywords: deep learning; vibration signal characteristics; broaching; channel shuffling; tool state recognition

1. Introduction

Turbine disk is the most important rotating part of aero-engine, and its performance is
related to the safety and reliability of various high-end equipment. The fir-tree slot joint
is widely used in the installation of turbine disc and blade due to the advantages of less
processing materials and convenient disassembly and assembly. The fir-tree slot joint has
high machining precision, complex structure, and strict surface quality requirements [1].
Broaching is usually used to improve the efficiency of fir-tree slot processing. The fir-tree
slot broaches have calibration part and finishing edges in addition to the roughing, semi-
finishing, and finishing segments, with excellent surface finish on the workpiece. If broach
damage (wear, tooth breakage, etc.) occurs during machining, it will scratch the workpiece
and lead to additional manufacturing cost [2]. Therefore, in order to ensure the machining
quality of the workpiece and the stability of the running process of the machine tool, the
intelligent monitoring of the tool wear state of the machine tool has become a research
hotspot in recent years, which has been widely concerned by the industry.

The wear failure and remaining useful life (RUL) of turbine disc fir-tree slot broach of
aero-engine have attracted much attention in recent years. The monitoring of tool wear can
generally be divided into direct monitoring method and indirect monitoring method [3].
However, direct monitoring has obvious drawbacks. First, it is necessary to stop the
machine for inspection. Second, it is impossible to estimate the sudden damage during
processing, which limits its application. Therefore, indirect monitoring method has become
the research focus. In recent years, researchers in various countries have used various
sensors to collect various process monitoring signals (such as vibration [4,5], acoustic
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emission (AE) [6], cutting force [7], current and power [8], etc.) and applied support
vector machines (SVM) [9,10], random forest (RF), hidden Markov algorithms [11,12] and
Naive Bayesian [13,14] algorithms and other methods to monitor tool wear status and life.
Machine learning has become a major research direction for tool condition monitoring with
its advantages of efficiency and high accuracy. Axinte et al. [15] used sensors to extract
effective perception signals and used them for training and testing probabilistic neural
networks (PNN). Broaching test results show that the states of broaching tool such as wear,
fracture and chipping can be automatically classified by the network. Kong et al. [16,17]
proposed a tool wear estimation model based on Gaussian Mixed Hidden Markov Model
(GMHMM) and Hidden Semi-Markov Model (HSMM). Based on verification, GMHMM
tool wear state recognition model can effectively recognize tool wear state, and is superior
to back propagation neural network (BPNN) model in accuracy and stability, which also
lays a foundation for future industrial applications. Shi et al. [18] combined the least square
support vector machine (LS-SVM) and principal component analysis (PCA) technology
to propose a broaching tool wear state prediction model. Broaching experiments show
that principal component analysis uses multi-sensor fusion technology to dig deeper
into the characteristics related to tool wear. In addition, the tool wear prediction value
constructed by LS-SVM is in good agreement with the tool wear value measured by optical
scanning microscope. Axinte et al. [19] studied broaching tools under various conditions,
namely freshly ground teeth, chipped teeth, weakened teeth, and overall uniformly worn
cutters. The broaching experiments show that different sensor signals in the time or
frequency domain have different recognition effects on the tool condition. And the cutting
force signal, AE signal, and vibration signal are very sensitive to the change of tool state.
Although some of the above research methods using machine learning have yielded good
results in some areas. However, machine learning is difficult to model nonlinear data
correlation polynomial regression, and heavily depend on the type of data and learning
models. Second, machine learning is difficult to express highly complex data, and thus not
easily generalizable.

With the continuous development of intelligent manufacturing, deep learning has
gained widespread attention in the field of machine tool monitoring using excellent adap-
tive feature learning capability and excellent portability. Deep learning algorithms such
as convolutional neural networks (CNN) [20,21], sparse autoencoder, recurrent neural
networks (RNN), and deep belief networks (DBN) [22] have made significant progress in
the field of tool wear and life prediction. Ma et al. [23] established a tool wear prediction
model based on convolutional bidirectional long short-term memory (LSTM) network
for milling force signals. The results show that the errors of the predicted values are all
within 8%, which provides a new method for on-line monitoring of tool wear. Li et al. [24]
proposed a deep CNN model for predicting the remaining life of equipment adopting
a time window approach to extract features, and achieved good results and has good
advantages. Kothuru et al. [25] established a depth model of tool condition monitoring
based on CNN to monitor tool wear by analyzing the spectral features of sound signals
in the machining process. Finally, the test and visual analysis are carried out to lay the
foundation for industrial application. Chen et al. [22] established a four-layer DBN to
train the time-domain characteristics and calibrated tool wear degree of various signal
data sets collected, and compared them with support vector regression (SVR) and artificial
neural network (ANN) models. The results show that the training time of SVR model is
relatively long, and the stability of ANN model is poor, while the accuracy and stability
of DBN model is the best, and the running time is short. Although the tool wear state
recognition technology based on deep learning has received widespread attention, it rarely
involves considering the multi-scale features of sensor signals (i.e., the multi-dimension of
signals, such as space and timing), which leads to incomplete feature extraction. In addition,
most of the above studies focus on turning, milling processing. The tool wear monitoring
technology based on deep learning for fir-tree slot broaching is still in the verification stage
both theoretically and technically. There is still a long way to go to recognize the state of
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broaching tool in different broaching stages, where the cutting edges are distributed in
different positions and directions.

This paper aims at the problems of recognition accuracy and speed of wear state
caused by complex geometric shape and different spatial distribution of existing fir-tree
slot broaching tools. A new method of tool wear state model based on ShuffleNet v2.3 and
StackedBiLSTM is proposed. Based on the existing theory, it can simultaneously extract
spatial features and time series data, which solves some problems of single recognition and
low accuracy in the current tool wear state methods. The main chapters of this paper are
arranged as follows: The introduction section reviews the current the research status of
cutting tool wear state recognition and conventional method. The second section proposes
a new deep learning model, which combines ShuffleNet v2.3 using channel shuffling and
long short term memory network to obtain rich wear signal features. In the third section, the
ShuffleNet v2.3-StackedBiLSTM is verified by the turbine disc fir-tree slot broach machining
experimental platform. The experimental results show that ShuffleNet v2.3-StackedBiLSTM
has better accuracy, precision, recall and recognition speed.

2. Tool Wear Recognition Method Theory of Fir-Tree Slot Broaching
2.1. Spatial Feature Extraction Based on ShuffleNet v2.3

In high performance networks such as ResNeXt [26,27] and MobileNet [28,29],
1 × 1 pointwise convolution occupy a large amount of computational resources. Based on
this problem, ShuffleNet [30,31] uses channel shuffling operation to effectively reduce the
calculation of 1 × 1 pointwise convolution and fuses the information between channels,
which makes it an extremely efficient lightweight network.

Convolution layer and pooling layer usually can deepen the network by stacking,
which can greatly promote the recognition accuracy. However, as the number of layers in a
neural network increase, on the one hand the problem of gradient disappearance becomes
more apparent and gradient updates decay exponentially. On the other hand, the model
is over-fitted, which makes the model less accurate. However, ResNet enhances the flow
of information between the front and back layers by ‘shortcut’ the connections between
the front and back layers, which to a certain extent alleviates the gradient disappearance
phenomenon to some extent [32,33].

ShuffleNet v2 further reduces the amount of computation on the basis of clever using
channel shuffling and ‘shortcut’. The model makes the best in the balance of speed and
accuracy, performs far better than networks like ResNet and Xception, and is very suitable
for the application of mobile models.

Drawing on the ShuffleNet v2 neural network, the ShuffleNet v2.3 network structure
is designed in this paper as an adaptive feature extractor for tool states. Compared with
the original ShuffleNet v2-0.5x, the network has been significantly adjusted as shown in
Table 1. Compared to ShuffleNet v2-0.5x, ShuffleNet v2.3 has changed the number of block
modules in the 3 stages to a total of 13. The number of convolutional channels in the block
modules has been adjusted. The maximum number of convolutional output channels has
changed from 192 to 144. The more channels in the convolutional layer, the richer the
features that can be learned, but the larger the number of parameters and the size of the
model. Therefore, the number of convolutional channels should be reduced when it is
possible to achieve the required accuracy of the model output. At the same time, part of
the ShuffleNet v2.3 structure undergoes depthwise separable convolution, the obtained
features correspond to low-dimensional space with fewer features, which makes the effect
of the model worse. To address this problem, ShuffleNet v2.3 directly removes the last
ReLU in each block, reducing the loss of features and obtaining better accuracy. Finally,
dropout is used to prevent overfitting.

Figure 1 shows the ShuffleNet v2.3 network structure. In the ShuffleNet v2.3 network
structure, each block module contains at least three convolutional layers and three Batch
Normalization, 1 ReLU activation function. Among them, the 1 × 1 convolutional layer is
used to reduce the number of channel dimensions and reduce the number of parameters,
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increasing the nonlinearity and the ability to interact with information across channels,
thus improving the expressiveness of the network. The batch normalization layer is used
to solve the problem of internal covariate shifts during network updates.

Table 1. Comparison of ShuffleNet v2-0.5x and ShuffleNet v2.3 parameters.

ShuffleNet
v2-0.5x Ksize Stride Repeat Output

Channels
ShuffleNet

v2.3 Ksize Stride Repeat Output
Channels

Conv1d 3 2 1 24 Conv1d 3 2 1 24
BatchNorm1d - - 1 24 BatchNorm1d - - 1 24

Maxpool 3 2 1 24 Maxpool 3 2 1 24
Stage2 3,1;1,3,1;1,3,1 2 1

48
Stage2 3,1;1,3,1;1,3,1 2 1

36Stage2 1 3 Stage2 1 2
Stage3 3,1;1,3,1;1,3,1 2 1

96
Stage3 3,1;1,3,1;1,3,1 2 1

72Stage3 1 7 Stage3 1 6
Stage4 3,1;1,3,1;1,3,1 2 1

192
Stage4 3,1;1,3,1;1,3,1 2 1

144Stage4 1 3 Stage4 1 2
Conv1d 1 1 - 1024 Conv1d 1 1 - 576

GlobalAvgPool 7 1 - 1024 AvgPool1d 3 1 - 576
FC - - - 1000 Dropout - - - 576

Total params 335,168 Total params 148,182
Total mult-adds(M) 378.59 Total mult-adds(M) 173.06

Params size(MB) 1.34 Params size(MB) 0.59
Estimated Total 104.92 Estimated Total 67.56

Note: Stride = 2 for the 3 × 3 convolution of the first block of each Stage, and Stride = 1 for the 3 × 3 convolution
of the rest of the blocks, and repeat.
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2.2. Temporal Feature Extraction Based on StackedBiLSTM Unit Network

The conventional recurrent neural network RNN mainly uses historical information
to assist in current decision making, and in theory it can remember the information seen
in many time steps ago, but in practice it cannot obtain such long-term dependence in-
formation. The reason for this lies in problems such as gradient disappearance, gradient
explosion. In order to solve problems such as gradient disappearance, gradient explosion,
and so on, LSTM [34] networks are often used. The LSTM model structure not only captures
longer dependencies, but also has better representation performance and better learning
ability for neural networks with larger data sets.

The LSTM has the same inputs and outputs as the RNN, but the special feature of the
LSTM is the introduction of gating units. For each moment t, the LSTM is divided into a
total of three gating units such as input gate it, forget gate ft, output gate ot, etc. The specific
formula is as follows:

it = σ(Wi · [ht−1, xt] + bi) (1)

ft = σ(W f · [ht−1, xt] + b f ) (2)

C̃t = tanh(Wc · [ht−1, xt] + bc) (3)
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Ct = ft · Ct−1 + it · C̃t (4)

ot = σ(Wo · [ht−1, xt] + bo) (5)

ht = ot · tanh(Ct) (6)

where σ is a sigmoid function that specifies the value of the update gate between 0 and 1.
Wi, Wf, Wc, Wo represent the cyclic weight matrix of the LSTM unit, bi, bf, bc, bo represent the
bias of the LSTM unit. ht−1 represents the previous moment hidden layer state, xt represents
the current moment input, C̃t represents the temporary unit state, and Ct represents the
unit state at the current time.

The RNN not only needs to forget the previous part of the memory, but also needs
to input the latest memory, which is determined by the input gate. The forget gate jointly
decides how much historical information to retain based on the current time input, the
output of the previous moment, and the bias term of the forget gate. The output gate
determines the output value by sigmoid function and tanh function according to the
unit state.

The single-layer LSTM neural networks are weak in extracting data features and
inadequate in representation capability. In this paper, we design stacking multiple LSTM
layers to form a deep LSTM neural network, which enhances the feature representation
capability of the neural network model and makes the prediction of the network more
accurate. However, in the tool wear state prediction, the output of the current moment
depends not only on the information of the previous moment, but also relates to the
information of the subsequent moment. The bidirectional long and short term memory
neural network contains two LSTM network layers which can capture both forward and
reverse dependencies, thus learning more features of the temporal data. Therefore, in this
paper, a bidirectional LSTM model is used to enhance the network capability and obtain a
richer feature representation.

Existing deep learning frameworks can arbitrarily build neural network models and
fuse the above two LSTM models to obtain a stacked bidirectional LSTM model, which
integrally improves the representation capability of the network.

So far, this paper has proposed a new model for broaching tool wear recognition
based on ShuffleNet v2.3 and StackedBiLSTM for the problem of turbine disc fir-tree slot
broaching tool wear recognition. Figure 2 shows the StackedBiLSTM structure.
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Therefore, in this paper, a ShuffleNet v2.3-StackedBiLSTM broach tool wear state
recognition model is finally proposed for the problem of turbine disc fir-tree slot broach
tool wear recognition.

2.3. Classification Mechanism

The CNN and RNN are used as feature extractors of vibration signals. However, the
fully connected neural network with Softmax should be used to classify the tool wear.
Its input and output satisfy a specific mapping relationship. The calculation process is
stacked together by fully connected dense layers, and each layer (except the output layer)
is connected to the next layer, which is the key of the fully connected layer architecture.
The formula is as follows:

yi = f (WT
i xi + bi) (7)

where WT
i and bi respectively represent the weight matrix and bias matrix, xi and yi

respectively represent the input and output of layer i. The activation function f () is the
ReLU function. Finally, the tool wear states are classified by Softmax function.

3. Broaching Tool Wear State Recognition Model
3.1. Model Construction

Based on the ShuffleNet v2.3-StackedBiLSTM neural network structure, the broaching
tool wear state recognition model is established as shown in Figure 3. Table 2 shows the
details of each layer of the broaching tool wear state recognition neural network. First, the
vibration signal is normalized and then fed into the lightweight ShuffleNet v2.3 neural
network to extract spatial features and keep the size output small. Then, the StackedBiLSTM
neural network is used to extract the time series information, thus compensating for the lack
of only spatial feature information extracted by the ShuffleNet v2.3 network. A maximum
pooling layer is added after the StackedBiLSTM network structure to allow the network
to reduce parameters and computation while retaining the main feature information,
preventing overfitting, and improving the model generalization capability. In addition, two
fully connected layers were used to add nonlinear outputs. Finally, the successfully trained
high-level form was used with Softmax to estimate the tool wear state.

Table 2. Broaching tool state recognition model details.

Neural Network Network Layer Output Layer Details

Input - - -

ShuffleNet v2.3

Conv-1 1 × 24 × 15,000 Conv1D; 24; Kernel size = 3;
Stride = 2

MaxPool1d 1 × 24 × 7500 Kernel size = 3; Stride = 2
Stage 2 1 × 36 × 3750

Table 1, Figure 2Stage 3 1 × 72 × 1875
Stage 4 1 × 144 × 938

Conv-2 1 × 576 × 938 Conv1D; 576; Kernel size = 1;
Stride = 1

AvgPool1d 1 × 576 × 938 Kernel size = 3; Stride = 1
Dropout 1 × 576 × 938 p = 0.2, inplace = False

StackedBiLSTM
BiLSTM 1 × 938 × 128 bidirectional = True
BiLSTM 1 × 938 × 256 bidirectional = True

MaxPool1d 1 × 938 × 128 Kernel size = 3; Stride = 2

FNN
Fc-1 1 × 64 in_features = 128, out features = 64

Linear 1 × 3 in_features = 64, out features = 3
Classification 1 × 3 Softmax(dim = 1)

Note: Inputs is 1 × 3 × 30,000 (3 represents x, y and z directions); Conv stands for Conv1d-BatchNorm-ReLU; Fc
stands for Linear-BatchNorm1d-ReLU-Dropout.
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3.2. Model Training

As the collected vibration signals have different value ranges, data normalization is
necessary to enable features to have the same metric scale. The original vibration signal is
normalized according to Equation (8):

x =

∣∣∣∣ x
xmax

∣∣∣∣ (8)

where xmax indicates the maximum value of the signal. Both the training and test set signals
must be uniformly transformed (normalized) in order not to affect the ability of the signal
to characterize the tool wear state, and the signals before and after normalization are shown
in Figure 4.
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The model in this paper will use a cross-entropy loss function in the training process for
the broaching tool wear state recognition classification problem, as defined in Equation (9):

L = − 1
N ∑

j

M

∑
c=1

yjc log(pjc) (9)

where M represents the number of categories, yjc represents the sign function (0 or 1),
taking 1 if the true category of sample j is equal to c and 0 otherwise, and pjc represents the
predicted probability that the observed sample j belongs to category c.

The main processes for training and testing the ShuffleNet v2.3-StackedBiLSTM model
are as follows:

1. The original vibration signals were obtained on the fir-tree slot broaching platform,
and the original signals were normalized and the vibration signal samples were
marked with wear labels. 80% of the vibration signal samples were randomly selected
as the training set to train the model, and the remaining 20% were used as the test set
to evaluate the trained and optimized model;

2. The training set was put into the ShuffleNet v2.3-StackedBiLSTM tool wear state model
for training, and the model selects the adaptive moment estimation optimization algo-
rithm to perform the weight update using the back propagation technique. When the
pre-defined maximum number of iterations or loss value is reached, the weight update
is terminated and the training model with optimal parameters is obtained;

3. The test set was put into the ShuffleNet v2.3-StackedBiLSTM model for evaluation testing.

During the training process, if the loss function does not show a decreasing trend, the
model is overfitted and the model structure is adjusted for training. Conversely, the model
converges, the model parameters are adjusted until they have a high accuracy, and the
model structure and parameters are saved for the industrial process.

4. Experimental Validation and Analysis of Results
4.1. Eperimental Setup and Procedure

Figure 5 shows the experimental platform. The machine tool is a high-speed horizontal
side broaching machine (model: LG6516zx-2800) with the main parameters shown in
Table 3. The workpiece is an aircraft turbine disc of a certain type and the workpiece
material is the high temperature nickel-based powder alloy FH97. The tool used in this test
is a coated carbide broach.
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Table 3. Main parameters of horizontal broaching machine LG6516zx-2800.

LG6516zx-2800 Main Parameters

Main motor power 51 kW Rated broaching force 160 kN
Broaching stroke 2800 mm Broaching speed 4 m/min

The vibration signal acquisition system uses the IFM vibration monitor VSE150,
4 channels, communication interface Profinet, and supports Ethernet and OPC. The ac-
celeration sensor adopts IFM capacitive MEMS accelerometer VSA001. The vibration
measurement range is −25 g~25 g, the frequency range is 0–6000 Hz, the measurement
principle is capacitive, the sensitivity is 142 µA/g.

A high-performance server was used for the experimental training deep learning
hardware platform, and the relevant specifications of the server are shown in Table 4.

Table 4. Server specifications.

Server Specifications

Central processing unit 9th Gen Intel(R) Core(TM) i7-9700 3.00 GHz
Memory Kingston DDR4 32.0 GB

Graphics processors NVIDIA GeForce RTX 2070 Super
Operating systems Windows 10 Enterprise Edition

Deep learning frameworks Pytorch 1.10.2
Unified Computing Architecture CUDA 11.3

The tool wear is measured by digital microscope system: Keyence VHX-970FN, camera
lens: VH-Z250R, RZ × 250 −× 2500, contour measuring unit: VHX-S15.

Four vibration pick-up points are arranged in the middle and on both sides of the
cutter box, two in the x direction and one each in the y and z directions.

In the experiment, seven broaching tools were used to complete the broaching opera-
tion, and a total of 790 sets of original signal samples under different wear conditions of
broaching tools were obtained. The fir-tree slot broaching tool processes the workpiece
once, which is recorded as a broaching stroke. At the end of each broaching stroke, the
fir-tree slot broach is observed and measured by a Keyence camera lens assembled to the
tripod head. Measure and record the average tool wear at 1/2 of the tool face after the first
tooth of rough, semi-fine, and fine process.

According to the tool wear process and combined with the actual experimental situa-
tion, when the rear tool face wear is 0~0.05 mm, the broaching tool wears rapidly in a short
period of time, the stage is classified as the initial wear stage. When the rear tool face wear
is 0.05~0.2 mm, the broaching tool cutting process is stable, the stage is classified as the
middle wear stage. When the rear tool face wear is greater than 0.2 mm, the tool rapidly
reaches a failure state, the stage is classified as the severe wear stage. At the same time, the
tool wear state is recorded as three data tags, and the tool wear state was coded using a
one-bit effective encoding form.

4.2. Eperimental Setup and Procedure

To further verify the generalization capability, superiority, and reliability in the Shuf-
fleNet v2.3-StackedBiLSTM tool wear state recognition model, the ShuffleNet v2.3 model and
StackedBiLSTM model were experimentally compared with the ShuffleNet v2.3-StackedBiLSTM
model. The parameters of the three models were set the same in the process of experimental
training. The model specific parameter settings are shown in Table 5.

After the different classification models were trained and tested, different loss values
and accuracy rates were obtained, and their loss value and accuracy rate change curves
are shown in Figure 6. As can be seen from Figure 6, with the increase of the number of
iterations epoch, the loss function value of each model showed a significant decreasing
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trend, and the accuracy rate gradually increased and fluctuated in a small range, and no
gradient explosion occurred, and the model finally reached convergence.

Table 5. Model specific parameters.

Parameters

Model

ShuffleNet v2.3-
StackedBiLSTM ShuffleNet v2.3 StackedBiLSTM

Learning rates 0.001 0.001 0.001
Weight decay 0.01 0.01 0.01

Momentum factor 0.99 0.99 0.99
Epochs 200 200 200

Number of batches 16 16 16
Dropout 0.5 0.5 0.5

Optimization algorithm Adam Adam Adam
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The total number of test set samples was 158, and the test sets were put into the
converged and saved ShuffleNet v2.3-StackedBiLSTM, ShuffleNet v2.3, and StackedBiLSTM
models for test evaluation respectively. The results of the test evaluation through the
confusion matrix are shown in Figure 7.

From the recognition results in Figure 7 and Table 6, the accuracy of ShuffleNet v2.3
model, which focuses only on spatial feature information, is 94.93%. The accuracy of
StackedBiLSTM model, which focuses only on temporal feature information, is 80.37%.
Although the ShuffleNet v2.3 model has a low number of parameters, low computational
cost, and takes up less memory, the precision rate is 85.71% for severe tool wear and the
recall rate is only 89.74% for initial tool wear, which is not enough to meet the requirements
of industry. However, the StackedBiLSTM neural network does not have a convolutional
layer to reduce the dimension of the original vibration signal, which results in a large
number of model parameters and huge computational costs. Moreover, since only the time
feature sequence of tool wear state is extracted, both the average precision and the average
recall rate are low. In terms of the single precision rate, the tool only achieves 44.12% in
the severe wear condition, which can be said that the recognition effect of the model is less
than ideal.
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Figure 7. Confusion matrix for different models:(a) ShuffleNet v2.3-StackedBiLSTM classification
model confusion matrix test results; (b) ShuffleNet v2.3 classification model confusion matrix test
results; (c) StackedBiLSTM classification model confusion matrix test results.

Table 6. Comparison of experimental results of different models.

Models Single Test
Time/ms Accuracy/% Precision/% Recall/% F1 Value/% Number of Model

References/pc

ShuffleNet v2.3-
StackedBiLSTM 8.67 99.37 99.38 99.37 99.37 1,244,249

ShuffleNet v2.3 6.45 94.93 95.09 94.94 94.95 208,601
StackedBiLSTM 89.59 80.37 84.79 80.38 81.75 16,161,155

F1 is a comprehensive metric that aims to better balance the impact of precision and
recall and evaluate a classifier comprehensively, with a higher value indicating a higher
quality model. The ShuffleNet v2.3-StackedBiLSTMm model achieves a good balance of
both F1 values and model parametric numbers.
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The accuracy of the ShuffleNet v2.3-StackedBiLSTM model was 99.37%, which was
4.44% and 19% higher than ShuffleNet v2.3 and StackedBiLSTM models respectively.
This indicates that using both spatial feature extraction and temporal feature extraction
can capture deeper hidden features in broaching vibration signals. The ShuffleNet v2.3-
StackedBiLSTM model increased the single test time by 2.22 ms compared to the ShuffleNet
v2.3 model. Although ShuffleNet v2.3 used channel shuffling to effectively reduces the com-
putational effort of 1 × 1 pointwise convolution, making the network extremely lightweight
and efficient. However, because of the large number of StackedBiLSTM parameters, the
computational inference time increases, thus increasing the single test time. Although
StackedBiLSTM model takes advantage of stacked bidirectional to improve the expressive
power of the network and alleviate the forgetting problem. However, the StackedBiLSTM
model does not extract spatial features, making it unable to meet industrial requirements in
terms of both single test time and accuracy. ShuffleNet v2.3 model has the fastest time in a
single test, but its accuracy cannot meet the requirements. In summary, the ShuffleNet v2.3-
StackedBiLSTM neural network has higher recognition accuracy and shorter recognition
time, and is more suitable for industrial applications.

5. Conclusions

Because of the special characteristics of turbine disc fir-tree slot broaching tool in
geometry and space position, this paper proposes an improved deep learning model
combining the advantages of ShuffleNet v2.3 and StackedBiLSTM models to recognize tool
wear in broaching. The ShuffleNet v2.3 network is used to mine spatial correlation features
of vibration signals, while StackedBiLSTM makes up for the deficiency of spatial features
by acquiring temporal correlation features. The experimental results show that ShuffleNet
v2.3-StackedBiLSTM neural network has deeper network structure, and its classification
accuracy, precision, and recall rate are 4.44%, 4.29%, and 4.43% higher than ShuffleNet v2.3.
Compared with StackedBiLSTM, the classification accuracy rate, precision rate and recall
rate are increased by 19.00%, 14.59%, and 19.32%, and the single test time is optimized by
90.32%. Almost all the different performance indicators are better than ShuffleNet v2.3 and
StackedBiLSTM models, which are more suitable for online recognition and monitoring of
tool wear status in industrial sites.

Deep learning requires a large amount of data for model training, and the tool state
recognition model also needs to be dynamically adjusted with the change of broaching
system parameters. Therefore, the types of sensors will be further increased in the future,
more data will be obtained, and more comprehensive state features will be extracted for
tool wear state. The model used this time is a lightweight model, which lays a foundation
for its deployment to the mobile terminal in the future.
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Nomenclature
σ Sigmoid function
Wi Cyclic weight matrix
Wf Cyclic weight matrix
Wc Cyclic weight matrix
Wo Cyclic weight matrix
bi Bias
bf Bias
bc Bias
bo Bias
ht−1 Previous moment hidden layer state
xt Current moment input
C̃t Temporary unit state
Ct The unit state at the current time
it Input gate
ft Forget gate
ot Output gate
WT

i Weight matrix
bi Bias matrix
xi Input of layer i
yi Output of layer i
x Normalization
xmax Maximum value of vibration signal
yjc The sign function (0 or 1)
M The number of categories
pjc The predicted probability
j The observed sample
C Category

Abbreviations
RUL Remaining Useful Life
AE Acoustic Emission
SVM Support Vector Machine
RF Random Forest
PNN Probabilistic Neural Network
GMHMM Gaussian Mixed Hidden Markov Model
HSMM Hidden Semi-Markov Model
BPNN Back Propagation Neural Network
LS-SVM Least Square Support Vector Machine
PCA Principal Component Analysis
CNN Convolutional Neural Network
RNN Recurrent Neural Network
DBN Deep Belief Network
LSTM Long Short Term Memory
SVR Support Vector Regression
ANN Artificial Neural Network
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