
Citation: Yu, Z.; Liu, N.; Wang, K.;

Sun, X.; Sheng, X. Design of Fuzzy

PID Controller Based on Sparse

Fuzzy Rule Base for CNC Machine

Tools. Machines 2023, 11, 81. https://

doi.org/10.3390/machines11010081

Academic Editor: Stefan Palis

Received: 22 November 2022

Revised: 24 December 2022

Accepted: 3 January 2023

Published: 9 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

Design of Fuzzy PID Controller Based on Sparse Fuzzy Rule
Base for CNC Machine Tools
Zaiqi Yu 1 , Ning Liu 1,* , Kexin Wang 2, Xianghan Sun 1 and Xianjun Sheng 1

1 School of Electrical Engineering, Dalian University of Technology, Dalian 116024, China
2 School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
* Correspondence: liun@dlut.edu.cn; Tel.: +86-152-4260-2608

Abstract: The robustness of the control algorithm plays a crucial role in the precision manufacturing
and measurement of the CNC machine tool. This paper proposes a fuzzy PID controller based on
a sparse fuzzy rule base (S-FPID), which can effectively control the position of a nonlinear CNC
machine tool servo system consisting of a rotating motor and ball screw. In order to deal with the
influences of both the internal and external uncertainties in the servo system, fuzzy logic is used to
adjust the proportion, and integral and differential parameters in real-time to improve the robustness
of the system. In the fuzzy inference engine of FPID, a sparse fuzzy rule base is used instead of a
full-order fuzzy rule base, which significantly improves the computational efficiency of FPID and
saves a lot of RAM storage space. The sensitivity analysis of S-FPID verifies the self-tuning ability of
its parameters. Furthermore, the proposed S-FPID has been compared with the PID and FPID via
simulation and experiment. The results show that compared with the classical PID controller, the
overshoot of the S-FPID controller is reduced by 74.29%, and the anti-interference ability is increased
by 62.43%; compared with FPID algorithm, the efficiency of the SPID is improved by 87.25% on the
premise of a slight loss in robustness.

Keywords: CNC machine tool; fuzzy PID control; nonlinear control; adaptive control

1. Introduction

With the development of a computer numerical control (CNC) system, precision
machining and measurement have become a pervasive technology today [1]. In order to
ensure the quality of products, the research of its control algorithm has important theoretical
significance and practical value. The factors that affect the precision of CNC equipment
include tracking error and multi-axis coupling error [2]. Due to the uncertainty of internal
parameters and the disturbances of the external environment, the tracking control in the
servo system is a nonlinear problem [3] that will decrease the robustness of the system.

The classical PID controller is still the most widely used control method in motion
control systems due to its mature theory, high reliability, high control accuracy, and simple
structure [4]. However, the PID controller designed using traditional typical methods
needs an accurate linear mode, which is difficult to apply in a nonlinear systems [5]. A
big disadvantage of PID consists of the computing of the controller gains [6]. In order to
achieve a quick dynamic response, the nonlinear dynamic model must be considered in
the design of the controller [7]. Modern control and other techniques such as adaptive
and artificial intelligence control for changing gains are currently used as alternatives for
adaptation mechanisms to system changes in time [8]. Numerous approaches are proposed
in the literature to solve the dynamic response and robust problem of nonlinear systems
based on various control schemes, including nonlinear disturbance observer-based control
algorithm (NDOBC), nonlinear PID, sliding mode controller, fuzzy control algorithm, and
so on. The NDOBC presented in [9] estimates the fast time-varying disturbances of the
spacecraft system, and attenuates its influence on the control system through feedforward
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compensation, which improves the robust dynamic performance and attitude tracking
accuracy. Furthermore, considering the high degree of iteration, complex structure, and
high dependence on the accuracy of the control system modeling, the observer-based
disturbance prediction algorithm is difficult to apply. The nonlinear PID controller is
the earliest discovered and most commonly used method to solve nonlinear problems.
However, due to the use of the nonlinear PID controller, most of them have increased
numbers of turning parameters, and this will impose a burden on industrial operators
for their tuning [10]. Although some scholars have proposed better adaptive parameter
adjustment methods, such as the adaptive adjustment of nonlinear parameters through
fuzzy logic [11] and the application of saturation function to nonlinear PID control law [12],
they also bring extremely high complexity to the controller algorithm. The sliding mode
controller makes the system have an invariance that is superior to the robustness when
it moves on the sliding mode surface. However, it has a chattering phenomenon in the
steady state because of the variable structure [13]. The fuzzy logic system is an inference
system to mimic human thinking, and the experience of human engineers is implemented
in the control algorithm in the form of IF-THEN rule statements through a fuzzy inference
engine [14]. Common fuzzy controller structures are as follows: traditional fuzzy controller,
adaptive fuzzy controller, fuzzy control combined with other control algorithms [15], etc.
Fuzzy control combined with other control algorithms includes fuzzy PID (FPID), fuzzy
sliding mode control (FSMC), neuro-fuzzy Control (NFLC), and so on, and especially, FPID
is usually used. For example, the fuzzy self-turning PID controller proposed in [16] was
used to control the temperature in the waste heat recovery system, based on the Rankine
cycle. A novel adaptive FPID controller is designed in [17] for geostationary satellite
attitude control. The model predictive and fuzzy logic control theory proposed in [18]
is used to study the optimal control of the pumped storage unit (PSU) under a no-load
start-up condition at a low head area. However, the above FPID controllers based on the
full order fuzzy rule base not only need a large amount of RAM storage space in the fuzzy
logic operation, but they also have multiple cycle operations with a fast frequency in the
motion control application, which requires a harsh performance of the CPU.

This paper proposes a kind of FPID based on sparse fuzzy rule base (S-FPID), which
has the following advantages: (1) Compared with the classical PID controller, S-FPID has
a higher robustness for the servo system, with both internal and external disturbances.
(2) Due to the use of a sparse fuzzy rule base instead of a full-order fuzzy rule base in the
fuzzy inference engine, it can obviously improve the operation efficiency at the cost of a
less robust performance loss. (3) It can make the application of the micro CPU with weak
performance possible, which will not only save the cost, but also reduce the quality of the
equipment. (4) It can also improve the smoothness of the operating system.

The rest of the paper is organized as follows. The dynamic model of the servo system
is presented, and the uncertainty and control problems of the system are analyzed in the
next section. In Section 3, the S-FPID controller is designed, and its self-tuning sensitivity
of the control parameters is analyzed. In Section 4, the performance of S-FPID is verified
via simulation and experiment. A summary of the work is given in Section 5.

2. Servo System Dynamics Model

In order to analyze the robust tracking control problem of the servo system affected
by both the internal and external disturbance uncertainties, the dynamic modeling of the
servo system is carried out in this section.

2.1. Servo System Reference Model

The servo system is mainly composed of a servo motor and ball screw. The encoder
feeds the speed and angle information of the servo motor to the servo driver in real-time,
and the servo driver controls the output torque of the motor by controlling the supply of
power. The ball screw converts the rotational motion of the motor into the linear motion of
the platform. Because of the high manufacturing precision of the ball screw, the servo motor
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encoder can be used as the position feedback sensor, and the semi-closed-loop control
method is adopted. Supplemented with an effective control algorithm, the control precision
of the servo system can be satisfied.

As shown in Figure 1, in order to describe the dynamic model of the servo system
explicitly, the mechanical structure and physical parameter symbols of the servo system
are presented.

Tm

θ(t) Td

x(t)

Je, Be

rg, 6

1 2 3

4 5

7

 1 - Encoder 2 - Power supply 3 - Motor

 4 - Coupling 5 - Screw 6 - Nut

 7 - Platform

Figure 1. Servo system reference platform.

Tm is the output torque of the servo; Td is the equivalent disturbance torque of the
servo system, which is mainly affected by the friction between the platform and guide; x(t)
and θ(t) are expressed as the displacement of the platform and the angular displacement of
the ball screw, respectively; Je is the equivalent moment of the inertia of the servo system;
Be is the equivalent rotational damping of the system; and rg is the transmission ratio of
the ball screw.

2.2. Servo System Modeling

The output torque Tm of the three-phase motor is approximately proportional to its
supply voltage u in the low-frequency domain, which can be expressed as:

Tm = KaKtu (1)

where Ka is the gain constant of the current amplifier and Kt is the torque constant.
Km = KaKt can be approximated as the gain of the servo motor output torque Tm with
respect to the input voltage u.

Due to the high mechanical precision of the servo system, the displacement x(t) of
the platform and the equivalent displacement θ(t) of the angular displacement of the ball
screw can be expressed as follows:

x(t) = rgθ(t) (2)
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where the transmission ratio rg of the ball screw pair represents the lead h corresponding
to one rotation of the screw (2π), that is, h

2π . According to the conservation of torque, the
dynamic equation of the screw drive mechanism can be obtained as follows:

Je θ̈(t) = Tm − Td − Be θ̇(t) (3)

By synthesizing Equations (1) and (3), the differential equation between the input u(t)
and output x(t) of the servo system can be obtained. The transfer function expression of
the servo system can be obtained via Laplace transform:

X(s) =
rg

(Jes + Be)s
(KmU(s)− Td) (4)

where the transfer function of the servo system is rgKm
Jes2+Bes , which is a typical seconder-

order system.

2.3. Uncertainty and Control Problem Analysis

The uncertainty of the servo system comes from the internal parameters and the
environmental disturbances. Taking the equivalent moment of inertia Je and the equivalent
disturbance torque Td of the servo system as an example, their parameter values are no
longer of fixed value, but they fluctuate in an interval, such as:{

J∗e = Je0 ±4Je
T∗d = Te0 ±4Te

(5)

where J∗e and T∗d denote the actual values of the moment of inertia and the disturbance
torque, respectively; Je0 and Td0 denote the initial estimates of them, respectively. ∆Je and
∆Td denote the fluctuation interval of them, respectively. Substituting Equation (5) into
Equation (4), we can obtain:[

(Je0 ± ∆Je)s2 + Bes
]

X(s) = rg[KmU(s)− (Td0 ± ∆Td)] (6)

It can be seen that the uncertainty of the moment of inertia acts on the quadratic term
of the platform displacement, and the uncertainty of the interference torque directly acts
on the input voltage. Under the accumulation of time, the control performance of the servo
system will be adversely affected.

The control problem of the servo system can be summarized as follows: A prede-
termined platform trajectory xr(t) is given, and a robust tracking controller is designed
for the servo system with a nonlinear problem, which can ensure that the position error
of the platform xe = xr(t)− x(t) can converge to zero quickly and stably asymptotically
with time.

3. Servo Control Algorithm Design

At present, most motion control systems still use a PID controller. Furthermore, the
PID controller cannot adjust the nonlinear system adaptively in real-time, which will cause
a reduction in the dynamic response ability, and the stability of the system. Fuzzy logic
control can be applied to the controller with the accumulated experience of human beings,
which is an effective mathematical method for dealing with nonlinear problems [3]. FPID
is a controller that combines fuzzy logic with the classical PID method, which not only has
the robustness of the classical PID controller, but it also can solve the control problem of
the servo system with uncertain factors in this paper [14].

3.1. FPID Controller for the Servo System

Figure 2 shows the overall structure of the FPID controller. The servo motor encoder
feeds the displacement information of the platform, which forms a semi-closed loop struc-
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ture, and it can track the given value in real-time. The current position error xe and its
increment xec are used as the input of fuzzy logic, and the PID controller parameter gains
∆Kp, ∆Ki, and ∆Kd are used as the output to adjust the PID controller parameters adaptively
online. Finally, the motor voltage u is outputted from the PID controller.

Fuzzification

Inference

Defuzzification

PID controller

Disturbance

FPID controller

Fuzzy logic

u
ΔKp, ΔKi, ΔKdxr

xf

xe

xec

xe xec

Figure 2. The structure of FPID.

Firstly, it is known that the discrete expression of the traditional PID controller is: u(k) = Kpe(k) + Ki
k
∑

n=0
e(n) + Kd(e(k)− e(k− 1))

Ki =
Kp×T

Ti
, Kd =

Kp×Td
T

(7)

where T represents the sampling time, Ti represents the integration time, Td represents the
differential time, and e(k) represents the deviation of the kth sampling period. For the set
value xr and feedback value x f , the error and error increments are expressed as follows:{

xe(k) = xr(k)− x f (k)
xec(k) =

xe(k)−xe(k−1)
T

(8)

In order to overcome the influences of both internal and external disturbance uncertain
parameters in the servo system adaptively, the fuzzy logic output parameter gains ∆Kp,
∆Ki, and ∆Kd in real-time to adjust the proportional, integral, and differential parameters
in Equation (7), which has the same update frequency as xe and xec in Equation (8), such as:

Kp(k) = ∆Kp(k) + Kp0
Ki(k) = ∆Ki(k) + Ki0

Kd(k) = ∆Kd(k) + Kd0

(9)

where Kp0, Ki0, and Kd0 indicate the initial PID parameters; ∆Kp, ∆Ki, and ∆Kd represent
the PID parameter gains of fuzzy logic output in the current sampling period; Kp(k), Ki(k),
and Kd(k) indicate the value of the PID parameter after adjusting adaptively. It can be seen
in Equation (7) that Kp, Ki, and Kd affect the voltage output value u from three aspects:
error response, steady-state error, and error prediction. The adaptive PID parameter values
participate in the discrete PID operation, which brings stronger robustness to the controller.

3.2. Implementation of the S-FPID Controller
3.2.1. FPID Structure

Fuzzy logic can use mathematical methods to realize people’s reasoning thinking.
As shown in Figure 2, it consists of three parts: fuzzifier, a fuzzy inference engine, and
a defuzzifier [14]. Fuzzifier converts the input variables into fuzzy sets to be reasoned
with via membership function; In fuzzy inference engines, IF–THEN rules follow max–min
composition to transform input fuzzy sets into output fuzzy sets, which are saved in the
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form of a fuzzy rule base; The defuzzifier converts the inference fuzzy set into real numbers
through the centroid method, and outputs them.

For IF–THEN rules Based On max–min Composition [19]: Let A, A′, and B be fuzzy
sets of X, X, and Y, respectively. Assume that the fuzzy implication A→ B is expressed as
a fuzzy relation R on X×Y. Then, the fuzzy set B′ induced by “x is A′”, and the fuzzy rule
“if x is A, then y is B” is defined by:

µB′(y) = max
x

min[µA′(x), µR(x, y)]

= ∨x[µA′(x) ∧ µR(x, y)]
(10)

or, equivalently:
B′ = A′ ◦ R = A′ ◦ (A→ B) (11)

Defuzzification using the centroid strategy [16]:

Y =

∫
V µδ′(y) · ydy∫

V µδ′(y)dy
(12)

where Y is the defuzzified real value, µ is the membership degree of fuzzy grade, y is the
fuzzy level, and V is all of the fuzzy grade intervals.

3.2.2. Fuzzification

In order to simplify the operation and to shorten the control cycle, the membership
function of the input variables is in a relatively simple form. As shown in Figure 3, the
input variables error xe and error increment xec are fuzzified into seven types of fuzzy sets
through the triangle membership function. They are NB, NM, NS, ZE, PS, PM, and PB,
respectively. These seven sets represent the magnitude of input variables, and the specific
meanings are shown in Table 1. The independent variable interval of membership function
is selected through experience according to the characteristics of the experimental object.
Taking error e as an example, when the error value is greater than the upper limit of 1000,
the Kp gain will not change any more, but it will maintain the maximum value to track the
position at the fastest speed.

NB NM NS ZE PS PM PB NB NM NS ZE PS PM PB

- -
-----

Figure 3. Membership function of input variables e and ec.
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Table 1. Meanings of fuzzy subsets.

Abbreviation Meaning

NB Negative large
NM Negative medium
NS Negative small
ZE Zero
PS Positive small
PM Positive medium
PB Positive large

3.2.3. Fuzzy Inference Using a Sparse Fuzzy Rule Base

The adaptive fuzzy rule bases of the PID parameter gains ∆Kp, ∆Ki, and ∆Kd are
shown in Tables 2–4, respectively. The first column of each table are the seven kinds of
fuzzy subsets of error xe, the first row represents the error gain xec, and the other cells
represent the PID parameter gains derived from IF-THEN reasoning. However, some
parameters in the fuzzy rule base have little effect on the servo system. For example, when
the value of error xe is very large and the value of error gain xec is also very large, the
system is in a state of serious offset and accelerating away from the set point, which is
rarely seen in the actual application of the servo system. Therefore, in order to reduce
the CPU operation pressure and to release the RAM storage space, this paper designs the
sparse fuzzy rule base instead of the original full-order fuzzy rule base, and the part with
the yellow background in the table are the non-zero cells of sparse rule bases. In addition,
some cells of the sparse rule bases are adjusted compared with those of the full-order bases,
and the values in brackets are the changed values. This kind of FPID using a sparse fuzzy
rule base in fuzzy inference engine is called S-FPID in this paper.

Table 2. Fuzzy rule base of ∆Kp (yellow background are the cells of sparse rule bases).

∆Kp NB NM NS ZE PS PM PB

ine NB 3 3 3 3 3 3 3
NM 3 3 3 3 2 2 2
NS 3 2 1 0 −1 −2 −2
ZE 3 3 3 3 3 3 3
PS −2 −2 −1 0 1 2 3
PM 2 2 2 3 3 3 3
PB 3 3 3 3 3 3 3

Table 3. Fuzzy rule base of ∆Ki (yellow background are the cells of sparse rule bases).

∆Ki NB NM NS ZE PS PM PB
ine NB −3 −3 −3 −3 −3 −3 −3

NM −3 −3 −3 −3 −3 −3 −3
NS −3 −2 −1 0 1 2 3 (0)
ZE 3 3 3 3 3 3 3
PS 3(0) 2 1 0 −1 −2 −3
PM −3 −3 −3 −3 −3 −3 −3
PB −3 −3 −3 −3 −3 −3 −3
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Table 4. Fuzzy rule base of ∆Kd (yellow background are the cells of sparse rule bases).

∆Kd NB NM NS ZE PS PM PB
ine NB 3 3 3 3 3 3 3 (−3)

NM 3 3 3 2 1 1 0 (−3)
NS 2 2 1 0 −1 −2 −2 (−3)
ZE −3 1 2 3 2 1 −3
PS −2 (−3) −2 −1 0 1 2 2
PM 0 (−3) 1 1 2 3 3 3
PB 3 (−3) 3 3 3 3 3 3

The fuzzy rule base is obtained by summarizing the human experience. For example:
when the position error xe of the control system is very large and the error gain xec is small,
it proves that the system is in a state of deviation from the set value, but adjusting actively.
It is necessary to increase Kp and to decrease Ki to increase the response speed of the system
and to prevent the integral saturation of the system. When the position error xe of the
control system is small and the error gain xec is also small, the system is in a steady state. It
is necessary to increase Kp and Ki to enhance the static stability of the system, increase the
anti-interference ability of the system, and reduce the steady-state error of the system. The
formulation of inference rules in the table of the servo system control can be interpreted
as follows:

1. When the error is large: increase Kp and Kd to ensure the response speed; Ki is set to
zero to prevent integration saturation.

2. When the error is medium: reduce Kp to prevent overshoot due to mechanical inertia.
3. When the error is small: increase Kp and Ki to enhance the stability and anti-interference

ability of the system.
4. When the error gain is small: increase Kd, speed up the reaction speed of small error

and resistance to small disturbance.
5. When the error gain is large: reduce Kd to prevent the occurrence of jitter phenomenon.

3.2.4. Defuzzification

The real output value of the fuzzy controller is calculated using the centroid method.
Taking the gains of Kp as an example, Figure 4 shows its fuzzy control surface. The gain
of Kp is a nonlinear function of xe and xec, which indicates that the parameters of the PID
controller can adjust adaptively. So, human knowledge and experience are implemented in
the fuzzy rules successfully, which offers the S-FPID controller robust performance for the
servo system with the nonlinear problem.

-

- -

-

Figure 4. Fuzzy control surface of ∆Kp.
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3.3. Sensitivity Analysis

In order to verify the adaptive ability of the parameters of the S-FPID controller, a step
response simulation experiment is designed for the servo system using MATLAB. Taking the
PID parameter gains ∆Kp and ∆Ki as examples, the self-tuning process with respect to xe and xec
is observed in real-time, and the sensitivity is analyzed. Figures 5 and 6 show the curve of the
proportion and integral parameters of the S-FPID controller with respect xe and xec, respectively.
The tracking error value xe decreases from a given step of 1000 to 0, with an approximately
constant slope, and xec is the derivative of xe. As shown in Figures 5 and 6, Kp increases
when the system deviates from the set value to ensure response speed, decreases when it
approaches to the set value to prevent overshoot, and increases again when it reaches the
steady state to ensure static stability. Ki decreases when the system seriously deviates from
the set value to prevent integral saturation, and increases gradually when approaching the
set value, until it reaches the maximum in the steady state to ensure static stability. The
S-FPID parameters are adaptively adjusted with inputs xec and xe, according to the rules
in the experience base, and the self-tuning sensitivity is good, which can ensure that the
S-FPID controller is still robust to the system affected by both the internal parameters and
the external disturbance factors.

-

-

Figure 5. Adaptive sensitivity of Kp.

-

-

Figure 6. Adaptive sensitivity of Ki.
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4. Experiment and Results

In order to verify the effectiveness of the S-FPID controller proposed in this paper,
the position tracking control experiment is carried out via MATLAB simulation and servo
physical experiment, and the tracking performances and anti-interference abilities of PID
in the control card, FPID, and S-FPID control algorithms are compared and analyzed. In
addition, the operation times of SPID and S-FPID fuzzy logic are compared in MATLAB.

4.1. Simulation and Analysis

As shown in Figure 7, the FPID controller module is built using the Simulink toolbox
in MATLAB to control the speed of the servo motor. Figure 8 shows the PID controller
model for Simulink. The value of the PID controller is output after passing through a
limiting module, which can prevent the motor from burning due to excessive current. The
integral limit is also set to prevent integral saturation. In practical application, by double
clicking, the parameter values, output limits and sampling time of the PID module can be
manually set.

PID controller

Fuzzy logic

  

Z-1

Figure 7. Simulation structure of FPID controller.

Speed PID 

Controller

Three-Phase 

Converter 
Motor

+

-
xf

xr u xPhaseCurrent PID 

Controller

Ball 

screw
Platform

Figure 8. PID controller model for Simulink.

In order to verify the tracking ability and anti-interference ability of the controller, a
steep response experiment ability of the controller, and a step response experiment, was
set in simulation, and the load torque of the motor was increased at 0.6 s to imitate the
external interference. As shown in Figure 9, the experimental results show that due to
integral saturation, the step response overshoot of the traditional PID controller is the
largest, and there is a phenomenon of secondary oscillation. Furthermore, the two kinds
of fuzzy PID controller have a smaller overshoot and they eliminate the phenomenon of
secondary oscillation, which solves the problem of integral saturation to some extent. For
the sudden disturbance, the recovery times of two kinds of FPID controllers are faster, and
the maximum disturbance from the set value is smaller, which has a stronger ability to
resist external disturbance.
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Figure 9. Simulation results of step response with disturbance.

The tuning process of parameters of the above three controllers is shown in Figure 10.
First, the parameters of the PID controller are fixed, while the parameters of the FPID and
S-FPID controllers are changing. Real-time changes in the parameters of the PID controller
provide more adjustment capability, which ensures a better controlling performance. Then,
when the system is about to reach a stable state and a sudden disturbance is added,
the change of parameters of FPID is more complex than those of S-FPID. The complex
adjustment of PID parameters is mainly caused by the fuzzy rule base of FPID. Compared
with the S-FPID, the fuzzy rule base of FPID has more parameters, which stores more
information. More information means more accurate adjustment, which is suitable for
controlling the accuracy. However, as observed in Figure 10, the magnitude of the change
is very small relative to the current value. The effect of this kind of adjustment on the
controlling is limited, which can be neglected for simplification. The simplification of PID
parameter determination will improve the efficiency of the FPID controller. Finally, the
parameter values of S-FPID and FPID controller are different at the beginning, but over
time, they come closer. The similar changing process of the parameter values of the S-FPID
controller and the FPID controller, together with almost the same final values, ensures the
consistency of the performance of the S-FPID controller and the FPID controller.

(a) (b)

-

-

(c)

Figure 10. The tuning process of parameters: (a) Kp , (b) Ki, (c) Kd.

Based on the discussions above, the proposed S-FPID will have a similar controlling
performance to traditional FPID, and have a higher efficiency by neglecting the unnecessary
information in the fuzzy rule base. For verification, the performances of the proposed S-
FPID controller and the FPID controller are compared through a step response experiment.



Machines 2023, 11, 81 12 of 16

It can also be seen from Figure 9 that the performances of the two types of fuzzy controllers
are very close. Therefore, the performance of the S-FPID controller has been verified.
Compared with the FPID controller, the control effect is the same, but the efficiency has
been greatly improved.

Figure 11 shows the output value of the S-FPID (O-S-FPID) controller and the PID
controller (O-PID). In the step response, both S-FPID and PID are output with the maximum
amplitude limit. After reaching the steady state, the output value of FPID decreases faster
and reaches the stable value faster. S-FPID also gives a faster response when the disturbance
is suddenly added.

In addition, when the defuzzification algorithms of two kinds of fuzzy PID controllers
are run for 1× 107 times in MATLAB respectively, the S-FPID controller only needs 0.03 s.
Compared with 0.16 s of FPID controller, the running time is reduced by 81.25%, which
releases the computational pressure of the CPU greatly. Moreover, the non-zero elements of
the sparse fuzzy rule base can be stored using a one-dimensional array alone, and a large
amount of RAM space is also saved.

0 0.1 0.2 0.3 0.4 0.5 0.6

Time(s)

0

5

10

15

20

25

u
(V

)

Ref

S-FPID

O-PID

O-S-FPID

Figure 11. Comparison of controller output values under step response.

Compared with the FPID in references [16–18], the S-FPID proposed in this paper has
a better operation efficiency due to its structure. As shown in Figure 12, S-FPID deletes the
membership degree with weak or even no connection between two inputs, which reduces
the fuzzy IF-THEN rules from n2 to 2n− 1, where n is the number of membership degrees.
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Figure 12. Structures of FPID and S-FPID: (a) FPID structure, (b) S-FPID structure.
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In addition to the FPID controller, there are also other intelligent control algorithms
such as neural fuzzy control (NFLC) and neural PID controller (N-PID). Figure 13 presents
their structures, referring to [20,21], respectively. Compared with S-FPID, the structures of
these two controllers are more complex, but they have the ability of parameter learning. The
comparison between them is shown in Table 5. When the IF-THEN rule is easy to find and
do not require parametric learning ability, S-FPID has advantages in terms of efficiency of
operation and robustness. In addition, a simple structure means fewer parameters, which
makes it easier for the operators to adjust. An adaptive neuro-fuzzy inference system (ANFIS)
composed of such a sparse fuzzy structure and neural network will be equally efficient.

Π 
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u3

u4

Π 

Π 

w1

w2

w3

w4

f1

f2

f3

f4
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Fuzzification DefuzzificationInferenceAnd 

operation
Average

(a)

x3

x1

x2

.

.

. .

.

.

Kp

Ki

Kd

(b)

Figure 13. Structures of NFLC and neuro-PID: (a) NFLC structure, (b) N-PID structure.

Table 5. Comparison of four kinds of intelligent controller.

Ability FPID S-FPID NFLC N-PID

Inference ! ! ! %
Learning % % ! !
Structure

complexity Complex Simple More complex More complex

4.2. Experiment and Analysis

As shown in Figure 14, the physical experiment devices are mainly composed of a
servo motor and its driver, made by the Yaskawa company, ball screw, and platform, etc.
In addition, the operation unit of the numerical control system is composed of a PC and a
motion control card, in which the motion control card is DMC4080 of GALIL company.

Platform

Motor

Driver

Encoder

Figure 14. Experiment platform.
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Figure 15 shows the experimental structure. The PID controller is integrated into the
motion control card, and the parameters can be set using instruction code. The fuzzy logic
code is written in Labview software using a PC. It can collect the error information of the
machine tool in real-time from the motion control card and output the instruction code to
change the parameters of the PID controller. Therefore, the FPID controller is composed of
a PC and a motion control card, to control the position of the ball screw. The main steps of
the experiment are as follows:

1. Adjust the initial PID controller parameters.
2. Calculate the PID controller parameter gains using fuzzy rules—refer to Section 3.2.
3. Calculate Kp, Ki, Kd, and the output value of the PID controller according to

Equations (7)–(9).
4. Collect feedback and determine the position error. Then, repeat steps 2 and 3 to

calculate Kp, Ki, and Kd for the next cycle.

Servo system
Ball 

screw

+

-
xf

xr xMotion Control Card

(PID)

PC

(Fuzzy Logic)

e

Kp, Ki, Kd

Platform

Figure 15. Experimental structure.

In order to verify the tracking ability and anti-interference ability of the S-FPID con-
troller, the step response experiment was set to compare with the classical PID and FPID,
and the disturbance was manually added to the servo system in the steady state. Before
the experiment, the parameters of the PID controller need to be adjusted. The controller
parameter values are adjusted to the state with better performance, using the trial and error
method. To fairly compare the performance of the three controllers, the initial values of
their parameters are the same (Kp = 6, Ki = 0.1, Kd = 1).

As shown in Figure 16, the displacement is represented by the number of coding
pulses fed back by the motor encoder (cts). It can be seen that the classical PID controller
has the largest overshoot and the weakest anti-interference ability; the FPID controller has
the smaller overshoot and the strongest anti-interference ability. The steady-state error and
the anti-interference ability of the S-FPID controller is almost unchanged compared with
FPID. Although the overshoot is slightly increased, the operation efficiency is significantly
improved. Table 6 shows the experimental data of the three types of controllers; compared
with the classical PID controller, the overshoot of the proposed S-FPID controller is reduced
by 74.29%, and the maximum offset of the sudden increase in disturbance is reduced by
62.32%. In addition, compared with the FPID controller, the S-FPID controller loses 5.71% of
the overshoot and 1.67% of the anti-interference performance, but the operation efficiency
is improved by 81.25%. The S-FPID controller obtains significant CPU algorithm operation
efficiency at a small cost of robustness performance.

Table 6. Results.

Parameters PID FPID S-FPID

Steady-state error (cts) 0 0 0
Overshoot (cts) 70 14 18

Recovery time (0.01 s) 0.3 0.3 0.26
Offset under disturbance (cts) 69 25 26

Fuzzy logic runtime (s) / 0.16 0.03
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Figure 16. Experimental results of step response with disturbance.

5. Conclusions

In this paper, the S-FPID controller is proposed to solve the position-tracking problem
of a nonlinear servo system, which has the problem of internal parameters and external
disturbance uncertainties. The main conclusions are as follows:

1. FPID solves the integral saturation problems to a certain extent, and it has a stronger
ability to resist external disturbance.

2. The sensitivity analysis method based on MATLAB is an effective means for verifying
the adaptive ability of S-FPID controller parameters, which lays a foundation for the
success of the real experiment.

3. Replacing the full-order fuzzy rule base with a sparse rule base can significantly
improve the computational efficiency of the CPU and save a lot of RAM space.

The simulation and experimental results show that S-FPID has better tracking per-
formance and anti-interference ability than PID, and that the performance of the S-FPID
controller is basically unchanged but has a better efficiency than the FPID controller.

The proposed S-FPID controller can also be applied to other nonlinear motion control
systems with a high sampling rate, and process control with a low sampling rate, where
the integral saturation phenomenon is easy to occur.
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The following abbreviations are used in this manuscript:

S-FPID Fuzzy PID controller based on sparse fuzzy rule base
CNC Computer numerical control
PID Proportion integral differential
FPID Fuzzy PID
NDOBC Nonlinear disturbance observer-based control algorithm
FSMC Fuzzy sliding mode control
NFLC Neuro-fuzzy logic control
PSU Pumped storage unit
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