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Abstract: The heat generated by motors and bearings of machine tools has a significant impact on
machining accuracy. Error modeling and compensation has proven to be effective ways to reduce
thermal errors and improve accuracy. An improved fuzzy c-means (FCM) clustering algorithm is
proposed to determine the optimized temperature sensitive points for thermal error modeling of a
spindle on the vertical machining center. The sensors are deployed to measure the temperature of
different positions of machine tools, and the improved FCM algorithm is used to classify the measured
data. Combined with the F-test statistics of multiple linear regression, the optimal temperature points
of each group are selected. The improved FCM clustering algorithm significantly reduces the
multicollinearity problem among temperature measuring points and avoids them falling into local
optimization. The modeling method was verified through experiments on two types of vertical
machining centers. The results show that the accuracy of the spindle in Y and Z directions of the
machine tools was increased by more than 75%, and the model has good robustness, demonstrating
application prospects in the selection of temperature measuring points of the spindle system of
vertical machining centers.

Keywords: improved FCM algorithm; optimization of thermal points; multiple linear regression;
thermal error modeling of spindle; vertical machine center

1. Introduction

Thermal error has proven to be the most important factor affecting the precision
stability of machine tools [1]. Machine tools are a complicated thermal system including
internal external heat sources. There are many factors affecting the temperature field of
machine tools, such as machining conditions, the use of coolants, and the surrounding
environment, and the thermal error shows strong nonlinearity. Previous investigations
suggest that the thermal error accounts for 40–70% of the total errors in the machining
process [2]. Thermal error compensation can improve the accuracy of machine tools
effectively [3]. The accuracy of thermal error modeling will directly affect the effectiveness
of compensation in field applications, while the selection of temperature measurement
points is the basis of thermal error modeling.

In order to obtain data for error modeling, a large number of temperature sensors are
usually arranged on the machine tool, but the temperature variables need to be screened
when modeling. If there are too many temperature variables, the modeling accuracy
will be seriously decreased due to the collinearity. On the other hand, the problem of
poor robustness will be generated during compensation if the key thermal points of the
machine tool are not selected as the model variable. Scholars from all over the world have
conducted extensive research on the selection of thermal points. Many approaches have
been proposed for the selection and optimization of temperature sensor deployment in
the past decades [4]. Li et al. [5] used grey system theory to optimize the temperature
measuring points of machine tools; Miao et al. [6] obtained the key thermal points by
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using the fuzzy clustering method and grey correlation analysis; HAN et al. [7] applied
the FCM algorithm to select temperature-sensitive points. Wei et al. [8] used the fuzzy
clustering method and correlation analysis to select temperature measurement points of
the gantry machine feed system, and used the feature extraction method to obtain the
independent variables of the thermal error prediction model, which effectively eliminated
the collinearity between the temperature measurement points and determined the optimal
temperature measurement points. Ramesh et al. [9] proposed a hybrid support vector
machine (SVM) and Bayesian network (BN) model. The BN model was used first to
classify the temperature measurement points, and the SVM model was used to predict the
errors. Li et al. [10] used fuzzy clustering and grey relational analysis to screen temperature-
sensitive points. Then they used the beetle antennae search algorithm (BAS) to optimize
the weights and thresholds of the back propagation neural network (BP).

The above methods greatly simplify the selection of temperature measurement points
and achieve good modeling results. However, grey correlation only reduces the correlation
between temperature variables, and cannot overcome the multicollinearity of temperature
variables. Due to the random initialization of the membership matrix, the traditional
FCM cluster analysis will fall into the local optimal situation when selecting thermal
points. Many researchers have improved the traditional FCM algorithm for the screening
of temperature-sensitive points [11]. Hu et al. [12] constructed the hybrid AFCM algorithm
by combining the objective functions of FCM with a SA-PSO algorithm, and FCM with
a weight-assignment technique, and declared that hybrid algorithm has the significant
superiority to overcome the main deficiency caused by the initial centers and outliers.
However, the algorithm introduced many adaptive exponents to control both the convexity
of the objective function and the ambiguity of the cluster and must be optimized before-
hand. Zhao et al. [13] standardized Euclidean distance to improve the distribution of two
temperature points in each component. However, the improvement of Euclidean distance
cannot change the initial clustering center correspondingly. Liu et al. [14] suggested that
the thermal error model can be updated adaptively by supplementing new data, which
can effectively improve the prediction accuracy of thermal error at the temperature-point
selection level. However, the conflict between the collinearity and the correlation among
temperature sensitive points was ignored.

In this paper, an improved FCM clustering algorithm is used to initialize the member-
ship matrix and classify the temperature measurement points. On this basis, the progressive
regression forward screening is carried out to obtain the temperature points that have great
influence on the thermal error of the machine tool spindle, and the multiple linear regression
model is established. In addition to avoiding the multicollinearity between temperature
points, the significance of the regression model is improved. It not only simplifies the
modeling process, but also improves the accuracy and robustness of the thermal error
prediction model.

2. Improved FCM Algorithm
2.1. Traditional FCM Clustering Algorithm

Different from c-means clustering, each sample point in FCM indicates the closeness
between the sample point and each cluster through membership degree, which is the most
widely used fuzzy separation clustering method [15]. The sum of the membership degree
of each sample relative to each cluster center is 1. The result of clustering is to make the
similarity within the class as large as possible and the difference between the classes as
obvious as possible. Following the principle, the given data X = (x1, x2, · · · , xn) is divided
into c categories and the obtained clustering center minimizes the objective function. The
function [16] is defined as:

Jm(U, v) = ∑n
k=1 ∑c

i=1 (uik)
md2

ik = ∑n
k=1 ∑c

i=1 (uik)
m‖xk − vi‖ 2

A (1)

where c is the number of clusters, vi is The ith cluster center, uik is the membership degree
of the kth data in the ith cluster. m is usually taken as 2 in most cases, which defines the
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fuzziness of the resulting clusters, dik is the Euclidean distance from data xk to cluster
center vi.

In order to obtain the minimum value of the above objective function under constraints,
the Lagrange multiplier method is used:

F = ∑n
k=1 ∑c

i=1 (uik)
md2

ik + λ(∑c
i=1 uik − 1) (2)

The result of the solution is obtained as follows:

vi =
∑n

k=1 (uik)
mxk

∑n
k=1 (uik)

m (3)

uik =
1

∑c
j=1 (

dik
djk

)
2

m−1
(4)

2.2. Initializing the Membership Matrix

The multi-collinearity existing among temperature measuring points can be solved by
using the traditional FCM algorithm. However, the iteration result may fall into the local
optimal condition due to the random initialization of the membership matrix. WU et al. [17]
suggested that the clustering can be formulated as a nonlinear optimization problem with
constraints. They proved that modifying the membership matrix before the FCM algorithm
can improve the local optimal problem caused by random initialization.

In this research, the membership matrix is initialized first and then the iteration is
conducted. Taking the temperature rise stage of machine tool as an example, after the
machine tool reaches the heat balance, the data of each temperature point at this state is
sorted from high to low, and divided into two categories on average. The membership
matrix initialization is shown in Table 1.

Table 1. Initialization of membership matrix.

Temperature Measurement Points Membership Matrix

T1 1 0
T2

N−1
N

1
N

. . . . . . . . .
Tn

1
N

N−1
N

The membership matrix can be initialized as above when the temperature measure-
ment points of machine tools are divided into two categories. Compared with random
initialization, this approach has the advantage of avoiding the improper clustering center.
Although the Euclidean distance between the temperature curves of some temperature
measurement points is large, it is different from the significance of thermal error. Random
selection will cause the loss of model accuracy. The initialization membership matrix
ensures that the sum of the membership degrees of each temperature point belonging
to various types is 1. On the other hand, because the temperature points are ordered
according to temperature value, the Euclidean distance between each temperature point is
more uniform than that under random initialization. The above initial membership matrix
was substituted into Equation (3) to calculate the initial cluster center, and the obtained
cluster center was substituted into Equation (4) to update the membership matrix and
iterate repeatedly. The termination condition of the iteration is:

max
{∣∣∣u(t+1)

ik − u(t)
ik

∣∣∣} < ε (5)

where u(t+1)
ik represents the membership value of data xk in class i after the iteration of

t + 1, ε is the error which is usually taken as 10−5.
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The processing steps of the improved FCM clustering algorithm are illustrated as
show in Figure 1.
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Figure 1. Flow chart of improved FCM clustering algorithm.

3. Key Temperature Points Selection

The temperature data collected in the experiment is used to describe the temperature
distribution of the whole machine as much as possible, therefore a lot of temperature sensors
are set to collect the data. However, excessive temperature data will cause collinearity
problems in the modeling process [18]. In order to improve the accuracy of the model
and reduce the amount of calculation, it is very important to optimize the temperature
measurement points. This paper uses the above improved FCM algorithm to screen the
temperature data, and the process is shown in Figure 2.
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3.1. F-Test of Multiple Linear Regression

F-test examine that the statistical values follow the F distribution under the original
hypothesis, and it is a test for the significance difference of the overall regression equation.
For a set of characteristic data X = {x1, x2, · · · xn} and Y = {y1, y2, · · · , ym}, the variance
of these two sequences is expressed as:

S2
X =

1
n− 1

n

∑
i=1

(xi − X)
2 (6)
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S2
Y =

1
m− 1

m

∑
i=1

(yi −Y)2 (7)

Thus, the F-test statistics can be obtained:

F =
S2

X
S2

Y
(8)

3.2. F-Test for Key Thermal Points

F-test statistics indicate the extent to which independent variables explain dependent
variables in linear regression. In the thermal error modeling, a single linear regression
equation can be established between each temperature measuring point and the thermal
error. The unitary linear regression equation is described as:

Y = β0 + β jXj + ξ, j = 1, 2, · · · , p (9)

Ŷ = β0 + β jXj, j = 1, 2, · · · , p (10)

where Y represents error data and Ŷ represents the calculated thermal error data of the
empirical regression equation. Xj represents jth temperature point. β0 and β j represent the
regression coefficient of the linear regression equation of one variable. p is the number of
temperature points in a class. ξ is the error of fitting.

y =
1
n

n

∑
i

yi (11)

Fj =

n
∑

i=1
(ŷji − y)2/k

n
∑

i=1
(yi − ŷji)

2/(n− k− 1)
(12)

where ŷji represents the ith fitting thermal error data of the jth temperature point,y is the
mean value of the thermal error data. k is the degree of freedom of the linear regression
equation. Fj represents the F-test statistic value of the jth thermal point.

In summary, after obtaining the temperature data of the machine tool and the thermal
error data of the spindle, the improved FCM cluster analysis was carried out first, the
temperature measurement points were divided into several categories, and then the F-test
statistics were calculated for the progressive regression forward screening of the data.
Finally, the key temperature points of the machine tool spindles were selected in each
category according to the F-test statistics.

4. Experimental Verification on Vertical Machining Centers

The spindle is one of the most precise parts of the vertical machining center, and
its precision directly affects the machining accuracy of the vertical machining center. In
the thermal characteristic test, it is usually necessary to record the error, temperature,
and running state of the machine tool, which is the basis of thermal error modeling and
compensation [19]. Theoretically, the feed drive system generates heat in the working
process, leading to the contour error of the machined parts [20]. In order to verify the
practicability of the modeling method, this paper carried out verification tests of two
different machine tools operating in different environments.

The experiment was carried out on the vertical machining center of model µ1000/460VF.
In the experiment, pt100 temperature sensors were used to measure the temperature data
of the machine tool and the atmosphere. The thermally induced error of the machine tool
spindle was measured by DT3005 eddy current sensor. A total of 32 temperature sensors
were arranged considering the basic structural characteristics of the machine tools and
the factors that may affect the thermal error of the spindle. Since the vertical machining
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center has a certain thermal symmetry structure design in the X direction, this paper only
analyzes the thermal error modeling in the Y direction and the Z direction. The location of
the thermal sensors is shown in Figure 3.
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In addition to the thermal points shown in the Figure 3, there are additional thermal
points (30,31) for the coolant inlet and outlet, and thermal points (19,32) for ambient air
in workshop. After the improved FCM cluster analysis and F-test step-to-step regression
forward screening, 32 thermal points were divided into two categories, and each category
was sorted according to F-test statistics. The results are shown in Table 2.

Table 2. The analysis result of optimization algorithm for the first machine tool.

Class of Clustering Thermal Points Sorted by Test Statistics

Group 1 F15 > F20 > F9 > F24 > F22 > F21 > F23 > F25 > F14 > F18 > F13 > F32
Group 2 F19 > F27 > F26 > F12 > F6 > F8 > F5 > F7 > F10 > F4 > F2 > F11 > F17 > F3 > F1 > F16 > F28 > F29 > F31 > F30

Taking T20 and T27 as the key thermal points, the triple linear regression equation was
established with the remaining thermal points. By means of calculating the F-test statistics
of the regression coefficient, the ranking order from the largest to the smallest is shown as
follows:

F11 > F24 > F18 > F16 > F25 > F17 > F32 > F13 > F20 > F23 > F9 > F22 > F1
> F29 > F28 > F21> F3 > F4 > F12 > F10 > F2 > F6 > F5 > F30 > F31 > F8

> F14 > F27 > F7 > F26

Improved FCM clustering analysis and F-test analysis are conducted to determine
the input variables of the model to be T11 (the upper headstock), T15 (motorized spindle)
and T19 (workshop environment). The temperature curve of the temperature sensitive
points is plotted in Figure 4. It should be mentioned that ambient temperature is mostly
selected as the key temperature point for modeling in some of the literature. However, this
experiment was conducted in a constant-temperature plant, and the collected data shows
that the ambient temperature did not change much during the experiments. Therefore,
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combined with the clustering results, the ambient temperature was not regarded as the key
temperature.
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Figure 4. Temperature data of the selected key points for the first machine tool.

The vertical machining center is thermally symmetrical in the X direction, so the
thermal error in the X direction is relatively small. This paper only analyzes the thermal
error in the Y and Z directions of the spindle. As can be seen from Figure 4, T11 (the upper
headstock), T15 (motorized spindle), and T19 (workshop environment) are selected as the
key temperature points for modeling. The temperature rises rapidly in the initial stage
of machine operation and quickly reaches thermal equilibrium. There was a significant
difference in the temperature between the headstock and the spindle over time, which
produced an uneven temperature field and thermal deformation. The experiment was
carried out in the temperature-rising stage for 500 min, and the error of the Y direction
and Z direction reached 4.45 µm and 15.38 µm, respectively. The multiple linear regression
model was established between the temperature data of key temperature points and the
axial thermal errors. Therefore, the final thermal error compensation model of the machine
tool can be expressed as

KY = −23.3788 + 7.001× T11 − 4.5815× T15 − 1.3206× T19 (13)

KZ = −62.2603− 6.5943× T11 + 5.7578× T15 − 2.6547× T19 (14)

where KY and KZ represent the output of error model. These two values are taken as the
predicted error to implement compensation. The compensation effect is verified as shown
in Figure 5.
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According to the analysis in Figure 5, after thermal error compensation, the accuracy
in the Y direction and Z direction increased by 75% and 93%, respectively, which verifies
the effectiveness of the modeling theory.

In order to verify the universality of the modeling method, experiments were carried
out again on a larger vertical machining center. These two machine tools have a similar
structural type, and the temperature sensor layout is similar. The experiments were carried
out with the machine tool experiencing the rise and fall in temperature, lasting a total of
1000 min. After improved FCM cluster analysis and F-test step-to-step regression forward
screening, 27 thermal points were divided into two categories, and each category was
sorted according to F-test statistics. The results are shown in Table 3.

Table 3. The analysis result of optimization algorithm for the second machine tool.

Class of Clustering Thermal Points Sort by Test Statistic

Group 1 F16 > F3 > F27 > F19 > F18 > F20 > F25 > F17 > F1 > F2 > F12
Group 2 F4 > F14 > F15 > F22 > F13 > F11 > F21 > F7 > F26 > F6 > F24 > F23 > F5 > F9 > F10 > F8

Taking T4 and T16 as the key thermal points, the triple linear regression equation was
established with the remaining thermal points. By means of calculating the F-test statistics
of the regression coefficient, the ranking order from largest to smallest is as follows:

F19 > F27 > F15 > F20 > F25 > F17 > F2 > F5 > F9 > F12 > F14 > F13 > F26
> F22 > F18 > F7 > F3 > F11 > F23 > F24 > F1 > F10 > F6 > F21 > F8

Improved FCM clustering analysis and F-test analysis were conducted to determine
the input variables of the model to be T4 (column on the side of the electric cabinet),
T16 (workshop environment), and T19 (front bearing seat). The temperature curve of the
temperature sensitive points is drawn in Figure 6. As can be seen from the figure, the
temperature variation of each component of the machine tool presents hysteresis. The
workshop environment temperature changed rapidly due to air flow and other reasons.
The error of the Y direction and Z direction reached 29.12 µm and 23.7 µm, respectively.
The Y-direction error became large due to the uneven distribution of the base temperature.
The ultiple linear regression model was established between the temperature data of key
temperature points and the axial thermal errors. The final thermal error compensation
model of the machine tool can be expressed as

KY = 178.7066− 6.1153× T4 − 2.3156× T16 + 1.8812× T19 (15)

KZ = −668.3694− 14.4577× T4 + 0.8808× T16 + 38.5027× T19 (16)
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It can be seen that the modeling method has good generalization performance on the
vertical machining center with the same structure type. The error prediction result is shown
in Figure 7.
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According to the analysis in Figure 7, the accuracy in the Y direction and Z direction
increased by 85.3% and 92.2%, respectively, which verifies the effectiveness of the modeling
and prediction. It can be seen from the above analysis that the method has achieved good
error-prediction performance on two machine tools of a similar type.

5. Conclusions

This paper mainly proposed a thermal error modeling method based on improved
FCM cluster analysis and F-test statistics, which greatly reduced the temperature measure-
ment data. The following conclusions can be drawn:

(1) Using the initial membership matrix to improve FCM clustering can effectively screen
out the temperature-sensitive points and avoid collinearity between temperature
points. The key temperature variables can be screened for multiple linear regression
using the F-test.

(2) Multiple linear regression was conducted between the selected thermal points data
and thermal error data, and the obtained model has high accuracy and good robust-
ness. It indicates that the temperature variables selected with the proposed method
formulate the thermal characteristics exactly.

(3) The model can be a duplicate for the machine tool with a similar configuration
and different operating conditions to predict the thermal error successfully, and the
generalizing ability of the modeling method was verified.
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