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Abstract: Background: Exploring the impact of combining Industry 4.0 technologies and Lean
Manufacturing tools on organizational performance has been a popular topic in recent years. De-
sign/Methodology/Approach: We propose a novel Smart and Sustainable Manufacturing System
(SSMS) to provide management insights related to social impact, economic performance, and environ-
mental impact. Some tools called Dynamic Lean 4.0 tools, such as Sustainable Value Steam Mapping
(VSM), Extended Single Minute Exchange of Die (SMED), and Digital Poka-Yoke, are presented as
outputs of synergistic relationships that optimize production processes. Originality/Research gap:
There are few studies on the application of SSMS. This work presents a case study, aiming to fill
this gap. A case study of vacuum degassing equipment fabrication is presented to demonstrate
the improvement of utilizing the Define-Measure-Analyze-Improve-Control (DMAIC) method with
Digital Poka-Yoke. Key statistical results: The implementation of this project increased the process
capability index, Cpk, from 1.278 to 2. Practical Implications: It was concluded that the company
successfully implemented a smart and sustainable manufacturing system, and created a safer working
environment and new job opportunities, while increasing production yield from 99.44% to 100%,
improving worker utilization, and directly saving NT$68,000. Limitations of the investigation: This
paper is the use of a single case study. More applications of Dynamic Lean 4.0 tools in SSMS should
be explored.

Keywords: industry 4.0; smart and sustainable manufacturing system; dynamic lean 4.0 tools

1. Introduction

Lean Manufacturing (LM) refers to a set of management techniques and principles
designed to eliminate waste and simplify activities that add value to products from a
customer perspective. By optimizing process steps and eliminating waste, only useful
value is added at each production stage. LM principles are now applied across industries,
and these tools are recognized worldwide as a successful operational framework for
reducing waste, increasing productivity, and continuously improving organizations [1].
Due to LM, waste and costs are minimized, thereby increasing productivity and profit [2].
From an economic point of view, LM reduces waste, which in turn increases market share
and profits [3]. In terms of social impact, LM improves occupational health and safety,
thereby improving the quality of life in society [4]. The LM concept has been shown to be
critical to achieving sustainability in any organization [5]. On the environmental front, LM
can lead to lower levels of pollutants and slower resource consumption due to improved
products and reduced storage materials. Lean culture has shown a significant impact on
the sustainability performance of different industries, including plastics manufacturing,
and lean culture has a moderating effect [6]. Several industries have benefited from the
implementation of LM and resulted in better organizational performance [7–9].

Industry 4.0 offers organizations the opportunity to improve their current manufactur-
ing operations and practices to a more advanced level by leveraging emerging technologies.
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As the global market continues to evolve, manufacturing systems become smarter, more
flexible, digital, agile, and are able to keep pace with market volatility [10]. Industry 4.0
drives smart manufacturing, enabling manufactures to maximize output from existing
production capacities and develop next generation production capabilities necessary to
compete in the digital economy. Manufacturers around the world are experiencing dramatic
changes by leveraging Industry 4.0 technologies, such as cloud computing, big data analyt-
ics, robotics, and the Internet of Things (IoT). Industry 4.0 technologies have a significant
impact on the sustainability performance of the manufacturing industry as they produce
better machines, enhanced communications, improved working conditions, and product
quality [11]. IoT, sensors, and big data can enhance the environmental, social, and economic
aspects of the Brazilian plastics industry [12]. Through digitalization, Industry 4.0 tech-
nologies can reduce production and transportation costs and lead times, thereby increasing
customer satisfaction and organization’s profits [13]. With respect to the environmental
aspect, data sharing among supply chain stakeholders, and the availability of real-time data
facilitate the efficient allocation of raw materials, water, energy, and labor time, thereby
reducing resource consumption and waste generation [14]. As a social concept, Industry 4.0
offers people with new technologies to improve motivation and morale by providing safe
working conditions [15].

The importance of combining LM and Industry 4.0 has become as a hot topic [16].
Integrating LM into Industry 4.0 requires more research, although it is considered an
enabler of Industry 4.0 or a pre-requisite for its introduction [17]. A systematic review
of the literature found that they have many symbioses and synergies [18]. Organizations
are expected to benefit greatly from Industry 4.0 technologies and LM together. Their
combination can also reduce waste and cost in areas where LM alone is not feasible [19].
Additionally, Industry 4.0 technologies are more expensive to implement without LM
principles, so further integration of them is expected to reduce implementation costs.
Although these two factors are important in different manufacturing industries, few studies
have examined their relationship [20]. Furthermore, there are few real case studies on
LM and Industry 4.0 applications and their impact on organizational performance [21].
Organizations can benefit from new innovative and automated manufacturing techniques,
namely lean digital transformation [22].

The work involved in LM and Industry 4.0 can be divided into two categories:
(i) conceptual and theoretical discussions [11]; and (ii) application-oriented use case
study [23]. This paper covers both categories. First, there is a lack of research on
the combined impact of Industry 4.0 and LM principles on corporate performance.
In this regard, the novelty of this study lies in the in-depth exploration of possible
relationships between Industry 4.0 technologies and useful LM tools. We propose a
Smart and Sustainable Manufacturing System (SSMS) with Dynamic Lean 4.0 tools as
the outputs of synergistic relationships for optimized production processes. Second, as
a validation of the proposed framework and integrated tools, a case study of vacuum
degassing equipment fabrication is presented. The need to improve process capability
and production yield became the background for the selection of the case study. The
rest of the paper is organized as follows: the related work on lean tools, followed
by Industry 4.0 technologies. In Section 3, we describe a SSMS framework and some
Dynamic Lean 4.0 tools. Section 4 presents the implementation of the proposed method
for a real case study. The final section draws the conclusion.

2. Related Work
2.1. Lean Manufacturing Tools

LM aims at producing products and services at the lowest cost and as fast as required
by the customer. Various lean tools effectively eliminate the organization’s waste. In
the context of Industry 4.0, Value Stream Mapping (VSM) 4.0 is recently developed as
collaborative value stream tool for lean management. By utilizing VSM 4.0, companies
can map flow components and process boundaries, and plan full-scale implementation
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digitally [24]. Single Minute Exchange of Die (SMED) describes the activities necessary to
prepare a production line for manufacturing a product, while setup time refers to the time
spent between the end of a previous process and the beginning of the next process [25].
Poka-Yoke devices prevent errors from occurring or make them apparent [26]. The Poka-
Yoke system can be used to identify any errors, prevent them from moving to the next
process, and manage the identification of the causes of any errors occurring [27].

2.2. Industry 4.0 Technologies

Industry 4.0 refers to a new stage of industrialization in which companies can achieve
greater industrial performance by integrating vertical and horizontal manufacturing pro-
cesses. A key feature of Industry 4.0 is to enable regular machines to become self-aware
and self-learning so they can perform better and monitor their maintenance more efficiently.
Industry 4.0 mainly focuses on real-time monitoring of data, tracking the status and location
of products, and controlling production processes [28]. A number of digital technologies
have become enablers of Industry 4.0. The use of autonomous robots allows for more
precise execution of autonomous production methods and operations where the work of
human workers is limited [29]. In the context of Industry 4.0, simulation reaches the next
frontier, known as the digital twin, which is a virtual representation of a physical object
using digital data. To create higher quality products, digital simulation tools can enable
faster, more flexible and efficient processes by integrating with production systems. Using
sensory data in digital simulation can improve the efficiency of production planning and
execution by increasing the credibility of production system [30]. IoT includes the dynamic
management of complex systems through the real-time interaction of people, machines,
objects, and information and communication technology systems. The growth of cyber-
physical systems within Industry 4.0 means that a cybersecurity market is emerging [31].
A key component of Industry 4.0 is additive manufacturing, as it reduces the complexity
of manufacturing and saves time and money. This allows rapid prototyping and highly
decentralized production processes [32]. In a digitalized and easily comprehensible manner,
Augmented Reality (AR) provides remote maintenance support through numerous appli-
cations for technical knowledge dissemination [33]. An important aspect of Industry 4.0
is the application of big data, which can examine enormous quantities of information to
discover hidden patterns and correlations [34].

3. Smart and Sustainable Manufacturing System

This section presents a novel SSMS framework and provides managerial insights about
organizational performance with social impact, economic performance, and environmen-
tal impact. The SSMS framework adopted the concept of the Define-Measure-Analyze-
Improve-Control (DMAIC) methodology and some tools called Dynamic Lean 4.0 tools as
the outputs of synergistic relationships for optimized production processes.

3.1. SSMS Framework

In the Industry 4.0 digital environment, smart factories play an important role in ma-
chines and devices can automate and optimize processes. Real-time data and connections
between machines support automated and analytical manufacturing. By combining power-
ful, in-depth and accurate analytics, manufacturers will be able to unlock new possibilities
and business advantages by leveraging the autonomous smart manufacturing capabilities
of Industry 4.0.

From an economic point of view, smart factories have a direct impact on production,
services, and final products. The concept of the smart factory involves the use of smart
devices, such as smart machines, robots and workpieces, that communicate in a continu-
ous manner during the production process. Integrated production optimizes operations
through self-organization and adaptation, resulting in smart products that can be easily
tracked using Radio-Frequency Identification (RFID) tags. In addition, smart production
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ensures customer satisfaction by producing high-quality products, custom designs, and
short production lead times and lead times.

From a societal perspective, smart factories affect a wide range of issues, including the
job market, worker safety, and labor laws. Using the smart factory model, the company
is able to automate and optimize its operations. With the development of smart devices,
certain tasks and functions are being replaced by smart devices, thereby changing the job
market and reducing the number of low-skilled workers. Additionally, as smart devices
become more commonplace, more skilled workers are required to operate them. When
factories become smart factories, workers will face another job hazard. Therefore, it is
important to improve worker safety at work and ensure compliance with human rights
while reducing workplace risks.

Sustainable manufacturing is the responsibility of the manufacturer, both in terms of
operations and product design. As a result of industrial operations, it is clear that industry
contributes to the overuse of the earth’s resources. In addition, pollution, excessive waste,
and improper disposal can lead to further environmental damage. When the industry is
under pressure to reduce its environmental footprint, ignoring environmental concerns
represents a huge risk. As climate change and environmental concerns increase, the need
for sustainable manufacturing will increase. Manufacturers must make meaningful changes
to meet local and government needs. As a result of these changes, people are turning to
smart factories, and digital transformation is becoming more common.

Creating value in manufacturing is enabled by smart and sustainable operations that
reduce waste and improve the environment. Enabling lean techniques in Industry 4.0 helps
organizations achieve more smart and sustainable operations with data-driven decision
making and optimizing manufacturing and operations, as depicted in Figure 1.
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3.2. DMAIC Methodology on SSMS Framework

A standard improvement model, such as DMAIC, is very helpful for deploying im-
provements in a company because it provides an improvement roadmap. Project definition
leads to the identification of key process characteristics and the benchmarking of these
characteristics during the measure and analyze phase. In the improve phase, a process is
transformed for better performance, while in the control phase, gains are monitored and
maintained. Therefore, we propose a DMAIC model based on SSMS framework and Dy-
namic Lean 4.0 tools to improve organizational performance. The DMAIC model consists
of the following basic elements and key tools.

During the define phase, the goal is to identify opportunities for the project and verify
or confirm their viability. The project must have a significant impact on both the customer
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and the business. Potential uses of the project require consent from stakeholders and down-
stream customers. The define phase can also be aided by graphical aids, such as process
maps and SIPOC diagrams. A flowchart describes an overview of a company’s approach
to meeting customer requirements. The SIPOC diagram consists of Supplier, Input, Process,
Output, and Customer, and is used to refine the project scope and boundaries. It can help
visualize and understand the essential elements of a process: Supplier—an entity that
provides any information, material, or item processes in a process. Input—information
or material provided. Process—the steps required to transform an input into an output.
Output—the product or service that is sent to the customer, considering the critical quality
attributes. Customer—the next step or end customer of the business.

The measure phase evaluates and understands the current process state. It involves
gathering information on quality, cost, and timeliness from various sources. In order to
be able to analyze and understand current process performance in relation to key metrics,
sufficient data is required. Observational studies are often necessary to collect current data.
Process data can be collected over a period of time using continuous data collection or
sampling methods. The collected data is used to determine the baseline performance of the
current process. A run chart can be used to display observed data in chronological order. In
addition, the capability of the process should be assessed. This can be done using process
capability analysis, such as Process Capability Ratio (PCR), to measure the actual capability
of the process.

Data collected during the measure phase is used in the analyze phase to begin to
identify causal relationships in the process and understand the different sources of vari-
ability. Specifically, the analyze phase aims to identify potential causes of defects, quality
issues, customer issues, cycle time, and throughput issues, waste, and inefficiencies leading
to the project. Various tools are available during the analyze phase, such as Five Whys
and Quality Function Development (QFD). Five Whys is a problem-solving approach that
explores the underlying cause-and-effect relationships of a particular problem. QFD is a
structured method for defining customer requirements and translating design specifica-
tions or product control characteristics in the form of a planning matrix. The House of
Quality (HOQ) matrix involves collecting and analyzing the voice of customer to define
the relationship between customer needs and product or company capabilities.

The improve phase should identify specific opportunities and root causes for improve-
ment. As part of the improve phase, improvement strategies are developed and tested in
practice. At this phase, think creatively about what can be changed and how the perfor-
mance of the process can be improved to achieve the desired effect. Digital transformation
is essential for manufacturers to evolve into smart and sustainable businesses. We introduce
some novel tools such as an integration of lean tools and Industry 4.0 technologies, called
Dynamic Lean 4.0, including Sustainable VSM, Extended SMED, and Digital Poka-Yoke.
The three steps to apply Dynamic Lean 4.0 tools are as follows:

Step 1: Technology roadmaps describe related technologies to help organizations plan
and implement technology development. In addition, it can be used as a forecasting tool
for technical trends. By analyzing the current state of technology, customer needs, and
expected market entry strategies, technology roadmaps can be used to identify alternative
technologies, competitors, and market entry opportunities. Additionally, it can help under-
stand how organizational goals, organizational technology resources, and rapidly changing
market conditions relate to each other.

Step 2: Technology classification is conducted by evaluating the technology’s main
functions. Due to advances in operations and information technology, a well-established
sequence of layers has been established. There are four levels, including sensors, manufac-
turing data acquisition, monitoring and control, and operations management.

Step 3: As shown in Table 1, the application of Dynamic Lean 4.0 tools is expected to
help manufacturers solve certain problems. By separating the elements of production that
are actively involved in the manufacturing process from those that are passive, Lean 4.0
tools can evolve into an intelligent and adaptable Industry 4.0 production system. An active
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asset system can be viewed as a dynamic, manageable resource system for digital control,
real-time tracking, and processes transparency. Manufacturing cells are transformed into
Lean-Industry 4.0 by updating specific active physical components, corresponding digital
components and activating Lean 4.0 tools. It allows Lean 4.0 tools to interact with man-
ufacturing cloud databases, customize according to manufacturing scenarios, integrate
with applications, or implement different algorithms. The transition from lean to smart,
adaptable Industry 4.0 production systems makes Lean 4.0 tools dynamic, flexible and
intelligent. Ejsmont et al. [35] pointed out several Industry 4.0 technologies such as digital
twin, big data, IoT and how they interact with lean tools. However, not all authors agree
on which are the main Industry 4.0 technologies affecting lean [36]. Langlotz et al. [37] em-
phasized that these digital technologies, when properly integrated into a lean environment,
can improve processes of a pulled nature to increase efficiency. Thus, Dynamic Lean 4.0
tools perform the interaction of Industry 4.0 technologies with lean tools. Sustainable
VSM enables the management and control of the daily operations of the production line
facilitate the integration of the entire value stream in the organization chain and its related
dependents. Digital Poka-Yoke uses digital data from digital technologies to facilitate
error-proofing processes by integrating employees and Industry 4.0. Combining advanced
technology and lean tools, smart and autonomous production systems are possible, and
are in line with the dynamic demands of the global economy. Companies will benefit from
lower production costs, improved regulatory compliance, and long-term resilience, while
better connections to target customers will yield better growth opportunities.

Table 1. Dynamic Lean 4.0 tools and its function.

Industry 4.0 Technologies
Dynamic Lean 4.0 Tools

Sustainable VSM Extended SMED Digital Poka-Yoke

Digital twin

Provide greater visibility for all
stakeholders in a digital twin project
by generating a comparison of reliable
results for future scenarios.

Analysis of collected data and
comparison of improved process.

• Identify faults more accurately
and improve manufacturing
intelligence.

• Enhance the production quality
by effectively monitoring
equipment in workshops.

Augmented reality -

• Make simple the complicated
elements of the manual
changeover.

• Improve workers
understanding of each step of
the changeover process.

Design the parts that suggest to the
operator how to assemble the product.

Additive manufacturing Provide the overview for derivation of
improvement measures.

• Produce varying workpieces
with minimum setup time.

• Omit times for selection, search
tools, and work-pieces
adjustment.

Get the visually impaired into work
by embedding blind-friendly fixtures
for assemblies.

System integration

• Strategy development for
sustainability of production
systems or supply chains.

• Broader knowledge concerning
the manufacturing line
performance indicators.

- -

Autonomous robots - -
Ensure safety can create superior
conditions for elimination of human
errors through advanced automation.

Big data analytics

Use of operational intelligence to see
possible process improvement and
performance metrics through data
collection and analysis.

Use RFID to recognize each die and
know their storage address.

Produce enriched data sets to
optimize efficiencies in an automated
process, increase productivity and
minimize errors by connecting to the
traceability system.

Cyber security - -
• Detect breach before it occurs.
• Explain the data and IP will be

locked once a breach is detected.

Internet of things

Smart real-time monitoring IT
solution with intelligent aspects
concerning lean targets to build an
action plan with stakeholders.

Speed up the process become more
efficient, reduce human errors, and
organize complex system.

Enable immediate control of
error-proofing devices.
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The goal of the control phase is to complete all remaining work on the project, ensuring
that the benefits of the project contribute to the tracking of the process and subsequent
improvements. Before and after data on key process indicators should be provided and a
validation check after project completion is recommended. Data needs to be collected to
compare and demonstrate that improvements achieve better results. Preliminary results
must remain stable to continue to have a positive financial impact. Keeping a good list of
items is essential to keep the process improving.

4. Case Study

The case company, called Company-T, is located in Taiwan. The company manufac-
tures vacuum degassing equipment (see Figure 2), where its key function is to support in
several systems, such as vacuum, ice water, hydraulic, air pressure, and electrical system.
This company faces a problem that the storage volume in this equipment does not reach the
target, therefore causing an anomaly status. The tube with fault label judged by the machine
will be removed, and the storage volume value will be abnormal. A clear roadmap can be
achieved through the use of the DMAIC process, which provides a useful framework for
running selected projects. An explanation of the DMAIC method for problem solving and
the importance of achieving SSMS is provided in this case study. The following explains
how DMAIC works in this case study.
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4.1. Define

During the define phase, product design and development process issues are identified.
Subsequently, the results of product construction and trial operation were reviewed. As
part of this process improvement project, the project team used SIPOC-related activities
(see Table 2) to identify all relevant elements. It helps define a complex project that may
not have a good scope and provides additional detail. The operation process of heat pipe
water injection is shown in Figure 3.
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Table 2. SIPOC diagram.

Supplier Input Process Output Customer

• Customer discussion
• Processor
• Off-the-shelf

manufacturer
• Design surface
• Power distribution

drawing
• Design program
• Program test

• Designer
• Purchasing and

processing manufacturer
• Purchasing off-the-shelf

manufacturer
• Assembler
• Distribution staff
• Programmer
• Testers

• Design
• Outsourcing

manufacturer
• Procurement
• Assemble
• Power distribution
• Program
• Test

• Heat pipe filling
and vacuuming
machine

• Vacuum
degasser (yield
test and
improvement)
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4.2. Measure

At this phase, customer specifications are confirmed and current performance
is assessed. A total of 1810 samples were collected, and the production yield was
99.44%. Table 3 provides the initial state of the machine. It showed that the short-
term capability PCR-Cpk of MA whole line was 1.278. Therefore, the current process
capability is not that good compared to the guideline for minimum value, which is
1.33. Note: Cpk = min{(Process mean − LSL)/3s, (USL-process mean)/3s}, LSL = lower
specification limit, and USL = upper specification limit. The storage data for each
machine is shown in Figure 4. It shows that the amount of storage is significantly from
the target value of 0.82. Therefore, it is impossible to meet the customer’s specification
requirements for production.

Table 3. The performance of initial state of the machine.

Storage Volume Ma
Whole Line MA-1 MA-2 MA-3 MA-4

Specification limits 0.82 ± 0.03 0.82 ± 0.03 0.82 ± 0.03 0.82 ± 0.03 0.82 ± 0.03
USL 0.85 0.85 0.85 0.85 0.85
LSL 0.79 0.79 0.79 0.79 0.79
Process means 0.827 0.826 0.824 0.827 0.83
Standard deviation 0.006 0.007 0.007 0.006 0.005
Cpk 1.278 1.143 1.238 1.278 1.333



Machines 2023, 11, 72 9 of 17

Machines 2023, 11, x FOR PEER REVIEW 10 of 20 
 

 

Table 3. The performance of initial state of the machine. 

Storage Volume 
Ma 

Whole Line 
MA-1 MA-2 MA-3 MA-4 

Specification limits 0.82 ± 0.03 0.82 ± 0.03 0.82 ± 0.03 0.82 ± 0.03 0.82 ± 0.03 

USL 0.85 0.85 0.85 0.85 0.85 

LSL 0.79 0.79 0.79 0.79 0.79 

Process means 0.827 0.826 0.824 0.827 0.83 

Standard deviation 0.006 0.007 0.007 0.006 0.005 

Cpk 1.278 1.143 1.238 1.278 1.333 

 

(a) 

 

(b) 

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86

1
5

3
1

0
5

1
5

7
2

0
9

2
6

1
3

1
3

3
6

5
4

1
7

4
6

9
5

2
1

5
7

3
6

2
5

6
7

7
7

2
9

7
8

1
8

3
3

8
8

5
9

3
7

9
8

9
1

0
4

1
1

0
9

3
1

1
4

5
1

1
9

7
1

2
4

9
1

3
0

1
1

3
5

3
1

4
0

5
1

4
5

7
1

5
0

9
1

5
6

1
1

6
1

3
1

6
6

5
1

7
1

7
1

7
6

9

MA whole line

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86

1

1
4

2
7

4
0

5
3

6
6

7
9

9
2

1
0

5

1
1

8

1
3

1

1
4

4

1
5

7

1
7

0

1
8

3

1
9

6

2
0

9

2
2

2

2
3

5

2
4

8

2
6

1

2
7

4

2
8

7

3
0

0

3
1

3

3
2

6

3
3

9

3
5

2

3
6

5

3
7

8

3
9

1

4
0

4

4
1

7

4
3

0

4
4

3

MA-1

Machines 2023, 11, x FOR PEER REVIEW 11 of 20 
 

 

 

(c) 

 

(d) 

 

(e) 

Figure 4. Initial state-run chart of storage volume on machines (a) MA whole line, (b) MA-1, (c) MA-2, (d) MA-3, and (e) 

MA-4. 

  

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86

1

1
5

2
9

4
3

5
7

7
1

8
5

9
9

1
1

3

1
2

7

1
4

1

1
5

5

1
6

9

1
8

3

1
9

7

2
1

1

2
2

5

2
3

9

2
5

3

2
6

7

2
8

1

2
9

5

3
0

9

3
2

3

3
3

7

3
5

1

3
6

5

3
7

9

3
9

3

4
0

7

4
2

1

4
3

5

4
4

9

MA-2

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

1

1
4

2
7

4
0

5
3

6
6

7
9

9
2

1
0

5

1
1

8

1
3

1

1
4

4

1
5

7

1
7

0

1
8

3

1
9

6

2
0

9

2
2

2

2
3

5

2
4

8

2
6

1

2
7

4

2
8

7

3
0

0

3
1

3

3
2

6

3
3

9

3
5

2

3
6

5

3
7

8

3
9

1

4
0

4

4
1

7

4
3

0

4
4

3

MA-3

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

1

1
5

2
9

4
3

5
7

7
1

8
5

9
9

1
1

3

1
2

7

1
4

1

1
5

5

1
6

9

1
8

3

1
9

7

2
1

1

2
2

5

2
3

9

2
5

3

2
6

7

2
8

1

2
9

5

3
0

9

3
2

3

3
3

7

3
5

1

3
6

5

3
7

9

3
9

3

4
0

7

4
2

1

4
3

5

4
4

9

MA-4

Figure 4. Initial state-run chart of storage volume on machines (a) MA whole line, (b) MA-1,
(c) MA-2, (d) MA-3, and (e) MA-4.
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4.3. Analyze

At this phase, the specifications and product characteristics are analyzed. The two
steps involved in the phase are as follows:

Step 1: Identify root cause—The root cause of the vacuum system abnormal problem
is determined by using the Five Whys tool, as shown in Figure 5.
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Step 2: Planning process—QFD is used to define and translate customer requirements
into specific plans to produce a product that meets the voice of the customer. As shown in
Figure 6, a summary of customer requirements is described in the house of quality matrix.
Among the design factors, vacuum has the largest weight at 35.2%.
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1. Air humidity 1 0 0 5 0 0 0 5 4 5 3 4 4 1 1.2 6 21

2. Body temperature 3 0 0 3 0 1 3 5 3 4 3 3 4 1.30 1 6.67 24

3. Sintered copper powder 0 1 5 5 0 3 1 4 4 3 3 3 5 1.30 1.5 7.5 27

4. Back speed 1 1 1 5 3 3 1 3 4 3 3 3 4 1.00 1 3 11

5. Back pressure 0 3 1 3 0 3 5 4 4 4 2 3 4 1.00 1.2 4.8 17

Importance 104 89 162 418 32.2 188 195 1188 Total 28 100

% Weights 8.73 7.5 13.6 35.2 2.71 15.8 16.4

Important items 1 3 2

Company-T 4 3 4 5 3 3 5 Independent configuration

Company-A 3 4 4 3 4 3 3 Related USA Japan other

Company-B 3 3 3 3 2 3 2 Strong 9 4 5

Company-C 3 3 2 3 3 4 3 Middle 3 2 3

Design quality 13 13 13 14 12 13 13 Weak 1 1 1

Quality planning

Comparative analysis Planning Weights

Quality factor 

Com-

para-

tive

Figure 6. House of quality matrix.
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4.4. Improve

During the improve phase, we applied a Dynamic Lean 4.0 tools called Digital Poka-Yoke
to improve the process performance. The three steps involved in the phase are as follows:

Step 1: Technology roadmap, which is based on the root causes and customer needs
identified during the analysis phase, we identified five Industry 4.0 technologies that are a
foolproof match. The five technologies are autonomous robotics, digital twins, IoT, big data
analytics, and additive manufacturing to reduce process variation.

Step 2: Technology classification, which is based on technical relevance to Poka-Yoke.
The technology architecture is divided into four layers: sensor, integration, intelligence,
and response (see Figure 7). At the sensor layer, physical and environmental data are
monitored locally. Once the sensor layer collects data, it is passed to the integration
layer for processing. The intelligence layer uses data analytics and algorithms to make
predictions based on aggregated information. The response layer then develops various
applications and services on top of the other three layers.
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Step 3: Digital Poka-Yoke application—Autonomous robots make a significant con-
tribution to increasing productivity and streamlining processes by integrating automated
intelligent systems into transportation and handling operations. They facilitate continuous
flow and improve operator performance through standardized processes. The role of
worker just input the material to the machine, then the robots do all the process operations
until vacuum degassing equipment can run well. Using high-volume, interconnected, or
even integrated robots with sensors to ensure job safety can eliminate human error through
advanced automation that eliminates the need for human intervention. This means the
worker has no longer exist on the production floor.

In the context of current applications of Digital Poka-Yoke, this company realizes a
manufacturing production system based on digital twins. An innovative concept of digital
twin is introduced into equipment fault diagnosis and trend prediction as a means of
improving fault identification accuracy and increasing manufacturing intelligence. Pro-
duction quality can be effectively improved and production efficiency can be increased
through the application of the digital twin to error-proofing management. An integrated
manufacturing workshop management and control system with digital twin technology
and IT is designed to optimize manufacturing equipment monitoring so that errors do not
occur in production. In addition to the digital twin, data transmission and workshop data
collection are used to predict equipment faults. Real-time machine status data is captured
by a factory-level digital twin model that enables virtual and real-time interaction feedback.
In spite of the fact that error-proofing sensors have been existed, IoT advancements have
made them easier to install and maintain. With the advent of IoT, error-proofing relies
less on manual mechanisms and more on IoT-enabled sensors interconnected across all
devices in the shop floor (see Figure 8). In Figure 8, it indicates that the current process
is out of control because the metric is greater than the specification limit. An IoT-enabled
sensor can send this false alarm information automatically. Initially, the machine runs
under the operator’s control. By applying Digital Poka-Yoke, the machine no longer needs
to be manually controlled by the operator. The operator does not need to wait and pay
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attention to the machine status. On the other hand, the operator can do other added-value
work to improve utilization. If the measured value is greater than the nominal value, the
machine will automatically stop and an alarm will be issued to inform the operator. After
that, the operator will check and eliminate the anomaly. Using IoT, error-proofing devices
can be controlled immediately. With such immediacy, error-proofing devices are less likely
to be bypassed. As the company next improvement in the future, sensors will be able to
be adjusted remotely from any location at any time. Through the integration of sensors
directly into processes, error detection has been greatly improved. Flexible manufacturing
involves Digital Poka-Yoke devices based on specific product versions. Sensors provide
true data to the control system or offer remote programming capabilities. Traceability is
also integrated into the system, so they know exactly what version of the product is being
manufactured. By using digital and wireless industrial communication network, sensors
can capture and process enriched data. The data then is used to increase productivity,
optimize efficiency and minimize errors in automated processes.
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An autonomous inspection has also been implemented in this company. This helps
worker to do the monitoring, and in case there is a problem happened, the machine can be
shut down automatically. Additive manufacturing process involves the creation of solid
three-dimensional objects based on digital models. This company has developed various 3D
printing technologies, which the common feature is to create layers by layers of a physical
model. Making mistake-proof fixtures for the visually impaired is an innovative application
of 3D printing technologies. A Digital Poka-Yoke and 3D printing system is used for blind-
friendly fixtures that ensure the correct positioning of the assembly components. As a
result, a person with visual impairments is now able to perform jobs that before were not
available to them. Additionally, it improves the capability of autonomous inspection.

Figure 9 depicts the results of before and after the improvement of the water vapor
residue in vacuum degassing equipment using Digital Poka-Yoke.
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4.5. Control

During the control phase, the process capability index for new data is measured. After
applying Digital Poka-Yoke, project team members collect up-to-date samples to identify
new process capabilities and monitor improvements. A total of 1282 samples were collected,
and the production yield was 100%. As shown in Figure 10, the process average improved
significantly and moved closer to the specification target. The process proven to have a
higher capability to meet customer specifications. The results of the analysis showed that
the process average of the MA line decreased from 0.827 to 0.820. In addition, the process
variation is also significantly reduced, especially for the MA-3 line, from 0.007 to 0.004.
Consequently, PCR-Cpk was enhanced for all MA lines (whole and 1–4 lines) and was
greater than the recommended minimum value of 1.33 (see Table 4). This means improved
processes to meet customer requirements.

Table 4. Improved condition.

Storage Volume MA Whole
Line MA-1 MA-2 MA-3 MA-4

Specification limits 0.82 ± 0.03 0.82 ± 0.03 0.82 ± 0.03 0.82 ± 0.03 0.82 ± 0.03
USL 0.85 0.85 0.85 0.85 0.85
LSL 0.79 0.79 0.79 0.79 0.79
Process mean 0.82 0.822 0.818 0.818 0.822
Standard deviation 0.005 0.006 0.004 0.005 0.004
Cpk 2 1.556 2.333 1.867 2.333

Furthermore, the adaptation of the Digital Poka-Yoke tool realizes this company
achieve the SSMS that can be seen from three aspects. In relation to social impact, the
working environment become safer with the presence of autonomous robots. The worker’s
load has decreased due to autonomous inspection. Additionally, the company has suc-
cessfully created new job opportunity for visually impaired and involved them into work
through the aid of additive manufacturing technology. From the economic perspective, the
production yield rate has improved from 99.44% to 100% with the existence of IoT-enabled
error-proofing devices. The direct savings of the project amounted to NT$68,000, mainly
due to the high worker utilization rate and less rework process. Thus, it leads to high
efficiency and increase profitability of this company. Lastly, the high level of operational
efficiency has successfully reduced the excessive of material waste. This means that the
Company-T contributes to the environmental sustainability.
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5. Contribution and Practical Implications

This study offers valuable insights for scholars and practitioners. Similar to
Antony et al.’s [16] studies on the integration of Lean Six Sigma and Industry 4.0, this
paper discusses the development of lean principles in the digital environment of In-
dustry 4.0 for the interest of researchers. More research is needed to understand the
relationship of LM to Industry 4.0 technologies [17]. Therefore, this study aims to in-
troduce a possible integration between several lean tools and emerging technologies,
called Dynamic Lean 4.0 tools.

Although their relationship is still in its infancy, the literature review [18] found a
synergistic need for each other. Cost competitiveness [19] and waste reduction [20] are
expected to be the result of Industry 4.0 combined with lean. Furthermore, the impact
of LM and Industry 4.0 on organizational performance is rarely investigated in real case
studies [21]. Therefore, this paper fills the gap by introducing an SSMS framework that
employs the concept of DMAIC methodology for continuous improvement of social impact,
economic performance and environmental impact. It is worth noting that DMAIC provides
an improvement roadmap. We modified the improvement phase by applying Dynamic
Lean 4.0 tools and verify their effectiveness on organizational performance during the
Control phase.

From a practical standpoint, this study provides valuable insights for all managers
and leaders to better understand the application of lean tools in Industry 4.0. LM have been
prominent manufacturing paradigms over the past decades, with the respective aim of
reducing waste to achieve low cost in production processes. Industry 4.0 is transforming tra-
ditional manufacturing systems into smart ones. The current competitive market requires
manufacturing companies to improve cost-efficiency with the application of Industry 4.0
technologies. LM implementation integrated with Industry 4.0 adoption leads to high
operational performance improvement. Therefore, we introduce some novel tools, called
Sustainable VSM, Extended SMED, and Digital Poka-Yoke, as extensions to popular lean
tools combined with proper Industry 4.0 technologies. A case study is presented to verify
the effectiveness of Digital Poka-Yoke tool. As a result, this novel tool successfully im-
proves the process capability and production yield, resulting in a smart and sustainable
manufacturing system.

6. Conclusions

This work aims to explore the possible relationship between Industry 4.0 technologies
and useful LM tools on business performance. We propose a novel SSMS framework
and some tools called Dynamic Lean 4.0 tools as an output of synergistic relationships to
optimize production processes. In-depth exploration through project planning has been
conducted to provide management insights into organizational performance and social,
economic, and environmental impact.

In addition, this paper fills a gap in the literature on the combined impact of Industry 4.0
and LM principles on corporate performance, and the case study validating these impacts.
A conceptual and theoretical discussion about LM and Industry 4.0 has been refined in this
study to meet the research needs discussed in [11]. An application-oriented use case study is
also presented to satisfy the shortfall of work described in [23]. Therefore, this study provides
further advantages for researchers and practitioners.

We have demonstrated the improved effect of using the DMAIC method with Digital
Poka-Yoke in the fabrication of vacuum degassing equipment. This project improvement
program helped company-T successfully eliminate wasteful variations and improve busi-
ness performance, increasing the process capability index, Cpk, from 1.278 Cpk to 2 Cpk
and increasing the production yield from 99.44% to 100%. The direct savings of the project
amounted to NTD 68,000, mainly due to the higher worker utilization rate. Additionally,
safer working environments, new job opportunities, and excessive material waste are all
improved to implement smart and sustainable manufacturing systems.
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This paper is limited by the use of a single case study. More applications of Dynamic
Lean 4.0 tools in SSMS should be explored. Future research may include implementing
other Dynamic Lean 4.0 tools, such as Sustainable VSM and Extended SMED for SSMS
framework. However, our approach provides a general learning perspective. A means of
continuous improvement is demonstrated through the effective application of the DMAIC
process. Therefore, this paper can serve as a unique roadmap for practitioners and academia
to improve process capability to meet customer specifications, especially to improve social,
economic, and environmental performance.

Author Contributions: Conceptualization, B.R. and F.-K.W.; methodology, B.R., F.-K.W. and Y.-P.C.;
software, B.R.; validation, F.-K.W. and R.-H.Y.; resources, F.-K.W. and R.-H.Y.; data curation, Y.-P.C.;
writing—original draft preparation, B.R. and F.-K.W.; writing—review and editing, F.-K.W. and
R.-H.Y.; visualization, B.R. and Y.-P.C.; supervision, F.-K.W. and R.-H.Y.; project administration,
F.-K.W. and R.-H.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Santos, A.C.O.; da Silva, C.E.S.; Braga, R.A.D.S.; Corrêa, J.É.; de Almeida, F.A. Customer value in lean product development:

Conceptual model for incremental innovations. Syst. Eng. 2020, 23, 281–293. [CrossRef]
2. McDermott, O.; Antony, J.; Sony, M.; Healy, T. Critical Failure Factors for Continuous Improvement Methodologies in the Irish

MedTech Industry. TQM J. 2022, 34, 18–38. [CrossRef]
3. Ratnayake, R.C.; Chaudry, O. Maintaining sustainable performance in operating petroleum assets via a lean-six-sigma approach:

A case study from engineering support services. Int. J. Lean Six Sigma 2017, 8, 33–52. [CrossRef]
4. De Souza, J.P.E.; Alves, J.M. Lean-integrated management system: A model for sustainability improvement. J. Clean. Prod. 2018,

172, 2667–2682. [CrossRef]
5. Mathiyazhagan, K.; Gnanavelbabu, A.; Kumar, N.; Agarwal, V. A framework for implementing sustainable lean manufacturing

in the electrical and electronics component manufacturing industry: An emerging economies country perspective. J. Clean. Prod.
2022, 334, 130169. [CrossRef]

6. Iranmanesh, M.; Zailani, S.; Hyun, S.S.; Ali, M.H.; Kim, K. Impact of lean manufacturing practices on firms’ sustainable
performance: Lean culture as a moderator. Sustainability 2019, 11, 1112. [CrossRef]

7. Maware, C.; Adetunji, O. Lean manufacturing implementation in Zimbabwean industries: Impact on operational performance.
Int. J. Eng. Bus. Manag. 2019, 11, 1–12. [CrossRef]

8. Byrne, B.; McDermott, O.; Noonan, J. Applying lean six sigma methodology to a pharmaceutical manufacturing facility: A case
study. Processes 2021, 9, 550. [CrossRef]

9. Trakulsunti, Y.; Antony, J.; Edgeman, R.; Cudney, B.; Dempsey, M.; Brennan, A. Reducing pharmacy medication errors using lean
six sigma: A Thai hospital case study. Total Qual. Manag. Bus. Excell. 2022, 33, 664–682. [CrossRef]

10. Zhong, R.Y.; Xu, X.; Klotz, E.; Newman, S.T. Intelligent manufacturing in the context of industry 4.0: A review. Engineering 2017,
3, 616–630. [CrossRef]

11. Jamwal, A.; Agrawal, R.; Sharma, M.; Giallanza, A. Industry 4.0 technologies for manufacturing sustainability: A systematic
review and future research directions. Appl. Sci. 2021, 11, 5725. [CrossRef]

12. Nara, E.O.B.; da Costa, M.B.; Baierle, I.C.; Schaefer, J.L.; Benitez, G.; do Santos, L.M.A.L.; Benitez, L.B. Expected impact of industry
4.0 technologies on sustainable development: A study in the context of Brazil’s plastic industry. Sustain. Prod. Consum. 2021, 25,
102–122. [CrossRef]

13. Sony, M.; Antony, J.; Mc Dermott, O.; Garza-Reyes, J.A. An empirical examination of benefits, challenges, and critical success
factors of industry 4.0 in manufacturing and service sector. Technol. Soc. 2021, 67, 101754. [CrossRef]

14. De Sousa Jabbour, A.B.L.; Jabbour, C.J.C.; Foropon, C.; Godinho Filho, M. When titans meet—Can industry 4.0 revolutionise
the environmentally-sustainable manufacturing wave? the role of critical success factors. Technol. Forecast. Soc. Chang. 2018,
132, 18–25. [CrossRef]

15. Kamble, S.S.; Gunasekaran, A.; Sharma, R. Analysis of the driving and dependence power of barriers to adopt industry 4.0 in
Indian manufacturing industry. Comput. Ind. 2018, 101, 107–119. [CrossRef]

16. Antony, J.; McDermott, O.; Powell, D.; Sony, M. The evolution and future of lean six sigma 4.0. TQM J. 2022. ahead-of-print.
[CrossRef]

17. Buer, S.-V.; Semini, M.; Strandhagen, J.O.; Sgarbossa, F. The complementary effect of lean manufacturing and digitalisation on
operational performance. Int. J. Prod. Res. 2021, 59, 1976–1992. [CrossRef]

http://doi.org/10.1002/sys.21514
http://doi.org/10.1108/TQM-10-2021-0289
http://doi.org/10.1108/IJLSS-11-2015-0042
http://doi.org/10.1016/j.jclepro.2017.11.144
http://doi.org/10.1016/j.jclepro.2021.130169
http://doi.org/10.3390/su11041112
http://doi.org/10.1177/1847979019859790
http://doi.org/10.3390/pr9030550
http://doi.org/10.1080/14783363.2021.1885292
http://doi.org/10.1016/J.ENG.2017.05.015
http://doi.org/10.3390/app11125725
http://doi.org/10.1016/j.spc.2020.07.018
http://doi.org/10.1016/j.techsoc.2021.101754
http://doi.org/10.1016/j.techfore.2018.01.017
http://doi.org/10.1016/j.compind.2018.06.004
http://doi.org/10.1108/TQM-04-2022-0135
http://doi.org/10.1080/00207543.2020.1790684


Machines 2023, 11, 72 17 of 17

18. Felsberger, A.; Qaiser, F.H.; Choudhary, A.; Reiner, G. The impact of Industry 4.0 on the reconciliation of dynamic capabilities:
Evidence from the European manufacturing industries. Prod. Plan. Control 2022, 33, 277–300. [CrossRef]

19. Ding, B.; Hernandez, X.; Jane, N. Combining lean and agile manufacturing competitive advantages through Industry 4.0
technologies: An integrative approach. Prod. Plan. Control 2023. [CrossRef]

20. Tortorella, G.L.; Fettermann, D.C. Implementation of Industry 4.0 and lean production in Brazilian manufacturing companies. Int.
J. Prod. Res. 2018, 56, 2975–2987. [CrossRef]

21. Vlachos, I.P.; Pascazzi, R.M.; Zobolas, G.; Repoussis, P.; Giannakis, M. Lean manufacturing systems in the area of industry 4.0: A
lean automation plan of AGVs/IoT integration. Prod. Plan. Control 2023. [CrossRef]

22. Calabrese, A.; Dora, M.; Ghiron, N.L.; Tiburzi, L. Industry’s 4.0 transformation process: How to start, where to aim, what to be
aware of. Prod. Plan. Control 2022, 33, 492–512. [CrossRef]

23. Ciano, M.P.; Dallasega, P.; Orzes, G.; Rossi, T. One-to-one relationships between Industry 4.0 technologies and lean production
techniques: A multiple case study. Int. J. Prod. Res. 2021, 59, 1386–1410. [CrossRef]

24. Wang, F.-K.; Rahardjo, B.; Rovira, P.R. Lean six sigma with value stream mapping in industry 4.0 for human-centered workstation
design. Sustainability 2022, 14, 11020. [CrossRef]

25. Ribeiro, M.A.S.; Santos, A.C.O.; de Amorim, G.D.F.; de Oliveira, C.H.; da Silva Braga, R.A.; Netto, R.S. Analysis of the
implementation of the single minute exchange of die methodology in an agroindustry through action research. Machines 2022,
10, 287. [CrossRef]

26. Sundaramali, G.; Shankar, S.A.; Kummar, M.M. Non-conformity recovery and safe disposal by Poka Yoke and hallmarking in a
piston unit. Int. J. Product. Qual. Manag. 2018, 24, 460–474. [CrossRef]

27. Haddud, A.; Khare, A. Digitalizing supply chains potential benefits and impact on lean operations. Int. J. Lean Six Sigma 2020, 11,
731–765. [CrossRef]

28. Borowski, P.F. Digitization, digital twins, blockchain, and industry 4.0 as elements of management process in enterprises in the
energy sector. Energies 2021, 14, 1885. [CrossRef]

29. Vaidya, S.; Ambad, P.; Bhosle, S. Industry 4.0—A glimpse. Procedia Manuf. 2018, 20, 233–238. [CrossRef]
30. Guerra-Zubiaga, D.; Kuts, V.; Mahmood, K.; Bondar, A.; Nasajpour-Esfahani, N.; Otto, T. An approach to develop a digital twin

for industry 4.0 systems: Manufacturing automation case studies. Int. J. Comput. Integr. Manuf. 2021, 34, 933–949. [CrossRef]
31. Ing, T.S.; Lee, T.C.; Chan, S.W.; Alipal, J.; Hamid, N.A. An overview of the rising challenges in implementing industry 4.0. Int. J.

Supply Chain. Manag. 2019, 8, 1181–1188.
32. Horst, D.J.; Duvoisin, C.A.; de Almeida Vieira, R. Additive manufacturing at industry 4.0: A review. Int. J. Eng. Tech. Res.

2018, 8, 3–8.
33. Mourtzis, D.; Vlachou, E.; Zogopoulos, V.; Fotini, X. Integrated production and maintenance scheduling through machine

monitoring and augmented reality: An industry 4.0 approach. In IFIP International Conference on Advances in Production Management
Systems; Springer: Cham, Switzerland, 2017; pp. 354–362.

34. Park, J.; Bae, H. Big data and AI for process innovation in the industry 4.0 era. Appl. Sci. 2022, 12, 6346. [CrossRef]
35. Ejsmont, K.; Gladysz, B.; Corti, D.; Castaño, F.; Mohammed, W.M.; Lastra, J.L.M. Towards ‘lean industry 4.0’—Current trends and

future perspectives. Cogent Bus. Manag. 2020, 7, 1781995. [CrossRef]
36. Gallo, T.; Cagnetti, C.; Silvestri, C.; Ruggieri, A. Industry 4.0 tools in lean production: A systematic literature review. Procedia

Comput. Sci. 2021, 180, 394–403. [CrossRef]
37. Langlotz, P.; Siedler, C.; Aurich, J.C. Unification of lean production and industry 4.0. Procedia CIRP 2021, 99, 15–20. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1080/09537287.2020.1810765
http://doi.org/10.1080/09537287.2021.1934587
http://doi.org/10.1080/00207543.2017.1391420
http://doi.org/10.1080/09537287.2021.1917720
http://doi.org/10.1080/09537287.2020.1830315
http://doi.org/10.1080/00207543.2020.1821119
http://doi.org/10.3390/su141711020
http://doi.org/10.3390/machines10050287
http://doi.org/10.1504/IJPQM.2018.093445
http://doi.org/10.1108/IJLSS-03-2019-0026
http://doi.org/10.3390/en14071885
http://doi.org/10.1016/j.promfg.2018.02.034
http://doi.org/10.1080/0951192X.2021.1946857
http://doi.org/10.3390/app12136346
http://doi.org/10.1080/23311975.2020.1781995
http://doi.org/10.1016/j.procs.2021.01.255
http://doi.org/10.1016/j.procir.2021.03.003

	Introduction 
	Related Work 
	Lean Manufacturing Tools 
	Industry 4.0 Technologies 

	Smart and Sustainable Manufacturing System 
	SSMS Framework 
	DMAIC Methodology on SSMS Framework 

	Case Study 
	Define 
	Measure 
	Analyze 
	Improve 
	Control 

	Contribution and Practical Implications 
	Conclusions 
	References

