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Abstract: Weak magnetic flux leak detection is one of the most important non-destructive testing and
measurement methods for pipelines. Since different defects cause different damage, it is necessary
to classify the different types of defects. Traditional machine learning methods of defect type
identification mainly use feature analysis methods and rely on expert a priori knowledge and the
ability of designers. These methods have the following weaknesses: a priori knowledge needs
to be designed iteratively, and a priori knowledge design relies on expert experience. In recent
years, the rapid development of deep learning methods in the field of machine vision has led to
the development of defect analysis in the industry. However, most deep learning methods lack the
ability to analyze both detailed information and the overall structure. In this paper, we propose graph
convolution networks for splitting and fusing multiple graphs of detail graphs and a root graph.
Detail information (detail graphs) provides detailed information for the detection of WMFLs. The
structure information (root graph) provides structural information for the detection of WMFLs. This
paper uses simulation data and experimental data to verify that the proposed method can identify
stress defects and corrosion defects well. The paper explains the experimental results in detail to
demonstrate the superiority of the method in industrial methods.

Keywords: graph convolutional networks (GCNs); stress defects of corrosion defects; weak magnetic
flux leakages; non-destructive testing

1. Introduction

The weak magnetic flux leakages (WMFLs) detection [1] method is a novel pipelines
non-destructive detection method. Pipeline corrosion (corrosion defects) [2] can lead to
pipeline ruptures and oil and gas leaks [3,4]. Pipeline stress imbalances (stress defects) [5]
can lead to ruptures, excessive deformation and pipeline buckling [6,7]. The magnetic
distribution of stress defects and corrosion defects is recorded as the internal detector
passes through the pipelines being inspected [8]. Different types of defects require different
defect assessment methods and different engineering maintenance methods. Therefore, it
is necessary to identify different defects in engineering and treat each separately. Misidenti-
fication of the WMFLs signals caused by stress defects and corrosion defects may lead to
serious engineering consequences.

The identification of stress and corrosion defects is an important process. If a stress
defect is incorrectly identified as a corrosion defect, the pipelines may deform excessively
and rupture. Conversely, if the corrosion lack of corrosion is identified as stress defects, the
worst case may result in pipelines destroyed because of corrosion. Identification problems
can be divided into two categories, including the use of detailed information and the use of
structural information.

Figure 1 shows an example of real WMFLs signals. Figure 1a shows a chemically
corroded corrosion defect and its corresponding WMFLs. The length and width of the defect
are 10 mm and 20 mm, respectively, and the depth is about 50% of the wall of the pipeline.
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Figure 1b shows a production environment with stress defects and its corresponding
WMFLs. It can be seen that the WMFL signals of stress defects and WMFL signals of
corrosion defects are very similar.

(a) (b)

Figure 1. WFML measurements for stress defects and corrosion defects: (a) stress defect, (b) corrosion
defect.

In order to identify defect types from complex WMFL detection signals, many identi-
fication methods based on detailed information have been developed, such as statistical
analysis [9], convolutional neural networks [10], and wavelet transforms [11]. Detail infor-
mation is a different feature extracted multiple times from one WMFL detection signal. For
example, the convolutional kernel of a convolutional neural network [12] can extract differ-
ent detail information at different locations of the WMFL detection signals. Identification
methods that use structural information are identified by analyzing non-repetitive features
in the same WMFL detection signals, such as the results of physical models or features
extracted based on expert experience [13]. It can be a physical model or feature-based
machine learning methods [14].

Detail information includes the effect of details caused by the magnetic flux leakage
mechanism and the effect of useless details caused by noise. The structure information
is the profile information of WMFL signals, which can reflect the underlying structure of
the magnetic leakage detection information. If only detail information is used to identify
corrosion defects and stress defects, noise may affect identification. If only structural infor-
mation is used to identify corrosion defects and stress defects, the difference in structural
information may not be sufficient to complete the identification. Neither detail information
nor structural information is sufficient to analyze defect types alone.

In this paper, our goal is to develop a method for the identification of stress defects
and corrosion defects using detail information and structural information. The main
difference between WMFL signals of stress defects [15] and WMFL signals of corrosion
defects [16] is the difference in the weak magnetic flux leakage mechanism. The most critical
differences between WMFLs signals of stress defects and WMFLs signals of corrosion
defects include detail differences and structural differences. In this paper, a new detail-
based and structure-based graph method is proposed, which improves the feature-based
information identification. Graph convolutional networks (GCNs) are used for the analysis
and identification of relational information. The method proposed in this paper can use
both detail information and structure information as input.

The main contributions are summarized as follows:
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1. A multi-graph splitting and fusion of detail graphs and the root graph are proposed to
change the deficiency that graph convolutional networks cannot cope with both detail
and structure information. The root graph can capture the structure relationship of
the WMFLs detection information. The detail graphs can capture the detailed features
of the WMFLs detection information. By using the fusion of multiple root graph and
detail graphs, the method proposed in this paper can analyze both the structure and
detailed features of the detection information.

2. Compared with the typical GCNs method, the multi-graph splitting and fusion
GCNs method can transform more detection details by splitting and more overall
information by fusion. Although multi-graph splitting and fusion GCNs have the
limitation of increasing training costs, the method uses larger-scale spatial information
for analysis and to some extent extracts information from smaller-scale information
re-fusion methods.

3. We used two experiments to verify the effectiveness of our proposed method. First,
this paper compares the detection results of multi-graph splitting and fusion GCNs
and typical GCNs. Secondly, this paper compares traditional machine learning meth-
ods based on expert experience and feature engineering with our proposed method.
The results show that the multi-graph splitting and fusion graph GCNs method is
better than the typical GCNs method. Meanwhile, compared with traditional machine
learning methods, multi-graph splitting and fusion GCNs can identify defects better.

The rest of this paper is organized as follows. In Section 2, the basic mechanism
and structure of weak flux leakage detection are presented. In Section 3, we describe the
proposed multi-graph splitting and fusion graph method for identifying stress defects
and corrosion defects. In Section 4, the validation dataset including simulation data and
experimental data is described. In Section 5, we validate the superiority and practicality
of the multi-graph splitting and fusion graph method proposed in this paper. Finally,
conclusions are given in Section 6.

2. Principle of WMFLs Testing

As shown in Figure 2, the mechanical structure of the WMFLs detector is a plurality
of individual cylinders connected to each other. The whole WMFLs detector is divided
into three parts: the battery part, detection part and recording part [4,17]. In contrast to
saturated excitation [18] of the internal WMFLs detectors, the weak excitation method
requires the use of weak excitation [19] or geomagnetic excitation [8] to excite the WMFLs
signals. Weak permanent [20] magnets magnetize the corrosion defects and stress defects in
the pipeline’s wall. The magnetic field at the defect location is leaked. Hall sensors detect
the magnetic field and then record the part to save the magnetic field and the corresponding
location. WMFLs internal detectors detect the pipelines while being pushed by pressure
inside the pipelines. After the inspection at the end of the pipelines is completed, it is
removed from the end of the pipelines and taken back to the laboratory. After filtering and
pre-processing, WMFLs data are obtained.

Many factors such as excitation [21], magnetic circuit [22], detection method [8,23],
material characteristics [24], etc. directly affect the WMFLs signals. In actual industrial
inspection, various uncontrollable field conditions (e.g., internal detector lift-off values [25]
in the pipelines, excitation, magnetic circuit, material properties) affect the WMFLs signals.
In detection pipelines where WMFLs detectors are pushed, small vibrational displacements
can cause lift-off value variation problems at the sensor level. A discrete sampling of
continuous WMFLs signals can change the representation of WMFLs information. There-
fore, WMFLs signals of stress defects and WMFLs signals of corrosion defects require
spatially-based analysis methods.

Traditional feature extraction methods lack intelligent methods based on data iden-
tification. The use of deep learning as a basic method cannot handle spatial information.
From the above analysis, it can be seen that the existing methods cannot solve the problem
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of classifying WMFLs signals of stress defects and corrosion defects. A new distance-based
method should be found to solve the problem and improve the accuracy of estimation.

Figure 2. Typical structure of the WMFLs inspection tool.

3. Architecture of the Proposed Model

Information in the real world is mainly unstructured information, and graphs are the
most intuitive way to express it. Compared to Euclidean structured data (image), graphs
can provide more information [26]. Graph convolutional networks were first proposed by
the literature [27]. Typical GCNs can analyze more non-neighborhood information than
convolutional methods that use only convolutional kernels. This method is probably one
of the most effective methods for analyzing WMFLs signals caused by stress imbalance
changes and corrosion-induced WMFLs signals.

The organization of WMFLs data as structured data and not unstructured data is the
reason why typical GCNs cannot be directly used for identification. In pipeline WMFLs
detection, a sensor mounted on an internal detector passes through the area where the
WMFLs signals change. These signals are recorded in the computer memory as structural
data based on the distance traveled and the pipeline angle. Some studies directly apply
deep learning methods by converting WMFLs data into gray or pseudo-color images,
but such images are still structural data [3,4]. These methods also cause a loss of spatial
information of the signals. For example, the trend of small amplitude variation of WMFLs
signals for stress defects and corrosion defects is directly related to the spatial distance.
Deep learning methods that convert WFLs signals to grayscale and pseudo-color images
typically ignore these details.

To solve the above problem, a new method is proposed in this paper. We use
superpixel-like information fusion to convert structured WMFLs signals into unstruc-
tured graphs. A multi-level graph convolutional network is proposed based on splitting
and fused graph convolution. The structure of the new method includes splitting and
multilevel graph convolution, and the overall result is shown in Figure 3.
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Figure 3. Architecture of the proposed multi-graph splitting and fusion graph convolution networks.
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3.1. First Split, Re-Split and Graph Fusion Convolution
3.1.1. Twice-Split

The graph multi-graph splitting and fusion is a novel graph convolution networks
structure. This method changes the scale characteristics of the information fusion graph
convolution. As shown in Figure 4, the first-split is the step of abstraction of structured
data into an unstructured root graph. Re-split is the step of transforming the unstructured
root graph into unstructured detail graphs. It can maintain a similar number of parameters
and computational cost as high-level information fusion. The graph twice-split consists of
two parts, the first-split and the re-split. The result of the multi-graph splitting and fusion
unstructured detail graphs is a sub-part of the unstructured root graph.
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Figure 4. Example of the root graph of WMFLs signals: (a) The root graph of WMFLs signals, with
the graph superimposed on top (b) Graph adjacency matrix.

The first-split is the conversion of the WMFLs signals’ structured data into the root
graph using the superpixel method [28]. Then, the sub-nodes of the root graph are con-
verted to unstructured detail graphs by the maskSLIC method [29]. The first-split and
re-split method changes the scale characteristics of the graph convolution. It allows the
unstructured detail graphs to maintain a similar number of parameters and computational
cost as the unstructured root graph. The first-split and re-split are very flexible and scal-
able. As show in Figure 5, each detail graph is a sub-node of the graph node in Figure 4.
Unstructured detail graphs can better describe the detection details, and the root graph can
better describe the overall detection.
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Figure 5. Cont.
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Figure 5. (a–i) Example of the detail graphs of WMFLs signals with the graph superimposed on top;
the graph adjacency matrix is in the lower left and upper right corners.

3.1.2. Graph Fusion Convolution

The input of the graph fusion is divided into two parts. The first part is the analysis
result of the last graph convolution operation. The second part of the graph fusion is
unstructured detail graphs. The result of the graph fusion is the fusion of the two parts of
information. The first part of the graph fusion graph convolution result can be seen as a
valid but complex information derivation.

concat(•) is the method of joining two graphs:

X̄ = concat(X, B) (1)

where X is the root graph and input of the graph convolutional first layer of multi-graph
splitting and fusion GCNs, and X is the output of the graph convolution, where B is the
unstructured detail graphs.

As shown in Figure 3, these results can be considered as a new graph. concat(•) is a
simple method, but this method changes the overall structure of the multi-graph splitting
and fusion GCNs networks. Both the adjacency matrix A and the degree matrix D are
simultaneously inflated with concat(•), which is equivalent to the expansion of the graph
structure.

X0 = R
Xk−1 = concat(Xk−1, Bk−1), ∀i ∈ [1, M]

Xk = σk−1

(
D−

1
2 AD−

1
2 Xk−1Wk

)
Y = f f c(Xm)

(2)

where R is the root graph and input of the graph convolutional first layer of multi-graph
splitting and fusion GCNs, Wk represents the weights that can be trained in the k − th
layer, and σk and f f c are the activation functions and fully connected layer. The method
used by σk in this paper is RELU(•) function, where D is the degree matrix, and A is the
adjacent matrix.
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It should be noted that this paper still uses the results of the transformation of two
fully connected layers, which can be considered as concatenation and projection [30].
The previous assumption was that each graph corresponds to an adjacency matrix. The
correspondence between this graph and the adjacency matrix is implicit in the precondi-
tioner. It is important to know that the assumption is based on the premise that the space
corresponding to the features is constant.

Each graph convolution is followed by an insertion graph fusion structure. The graph
convolution after each inserted detail graph transforms the inserted detail graphs and
the original graph into a new graph. These information fusion results are analyzed by
graph convolution for the types of defects. In the whole structure, this paper uses nine
convolutions and nine fusions. The input of the first nine convolutions and interpolations
is unstructured detail graphs. At the end of the networks, this paper uses a fully connected
layer to transform elements and results.

3.2. Graph Convolution

Although the deep learning method ignores the location relationship of actual spatial
information, the biggest advantage of multi-graph splitting and fusion GCNs is that it
can extract non-expert and non-visual experience features by convolutional operations.
In graph convolution theory, the graph convolution method can extract and analyze the
relationship between unstructured data. The graph convolution method is also an essential
and important step. The fundamental purpose of multi-graph splitting and fusion GCNs is
to extract the features of unstructured data. Another advantage of multi-graph splitting
and fusion GCNs is the naturalness of relationships in modeling. Each node in the graph
changes the convolution kernel by the relationship between neighbor nodes and non-
neighbor nodes during the training process. The measurement of this relationship is
completed by the convolution kernel.

3.3. Global Pooling and Fully Connected Layer

The large number of parameters of deep learning methods leads to computational
difficulties and memory explosions. This problem is alleviated by graph pooling methods,
which are an integral part of the graph convolution networks method. In image data, the
pooling method is very attractive. The biggest feature of the pooling method is a large
number of parameter inputs and parameter downsampling. Generally, the pooling method
of graph convolutional networks is mainly through clustering methods, which are very
computationally intensive. Second, the information fusion method of the root and detail
graphs split method proposed in this paper completes partial information downsampling.
At the same time, the existing research lacks the analysis of clustering advantages. We use
a gPool method [31] at the last layer to pool the information.

The last pooling layer is mainly completed by the graph pooling operator of the graph
Fourier transform. The advantages and disadvantages of the method in the algorithm
are also obvious. The main method and rule structure for clustering pooling is to run
the clustering algorithm on each graph individually. This approach narrows the field of
acceptance and extracts more accurate information.

yi = xip/‖p‖ (3)

After completing the convolution of the child graph, we directly connect the fully
connected networks and the RELU(•) activation function to convert the convolution result.

Z = f f c (yi) (4)
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The structural framework of the networks is shown in the Figure 3. Multi-graph
splitting and fusion GCNs creates a multi-graph convolution and fusion structure. The
overall structure can also be considered as a multi-graph convolution with continuous
fusion. The input of multi-graph splitting and fusion GCNs is the root graph, and the
graph fused with the graph convolution result is the detail graphs. Each graph convolution
is followed by an expansion structure, and the result of graph convolution is merged
by expansion and new graph convolution. After each expanded structure, a new graph
will be obtained, and we will set the expansion result as the expansion of the number of
nodes in the graph. The result of multiple expansions is to complete all the transformed
non-structural information that expresses the transformation of all structural information
through the networks. In the whole structure, we used nine times of convolution and nine
times of dilation. At the end of the networks, we use a fully connected layer to transform
features and results.

4. Dataset Details
4.1. Simulation Dataset

The dataset is necessary to analyze the model. The simulation dataset includes the
WMFLs dataset of stress defects and WMFLs dataset of corrosion defects. The WMFLs
dataset of stress defects is composed of 15,000 simulated WMFLs signals; the WMFLs
dataset of corrosion defects is composed of 15,000 simulated WMFLs signals.

4.1.1. Stress Defect

The phenomenon of mechanical degradation of non-linear magnetic detection ferro-
magnetic elements conforms to the villari effect [32]:

Heff = H + 3λs
µ0 M2

s
SedM, Sed = dev(cH : εel) (5)

where the hysteresis magnetization strength Man is

Man(H, σ) = Ms

(
coth

(He f f
a

)
− a

He f f

)
(6)

where Ms is the saturation magnetization strength, H is the external magnetic field, M is
the magnetization strength, cH is the stiffness matrix measured under a constant magnetic
field, λs is the saturation magnetostriction, and εel is the material strain.

As shown in Figure 6, the types of stress defects include the simulation of eight contact
situations between objects and pipelines. These contact conditions include: the mutual
extrusion of the pipeline and spheres, the mutual extrusion of the pipeline and the cone,
the mutual extrusion of the pipeline and cubes, the mutual extrusion between the pipeline
and a coarse cylinder, and the mutual extrusion between a pipe and a fine cylinder. The
displacement direction is the direction perpendicular to the surface of the pipeline’s wall
that the object touches. It is possible to simulate the extrusion of the contact object on the
wall of the pipelines. The randomly emulated squeeze is randomly generated for less than
1 cm.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. The FE simulated stress defect: (a) The source of the stress defect is a spherical structure,
(b) The source of the stress defect is a conical structure, (c) The source of the stress defect is cubic
structure1, (d) The source of the stress defect is cubic structure 2, (e) The source of the stress defect is
cylindrical structure 1, (f) The source of the stress defect is cylindrical structure 2, (g) The source of
the stress defect is cylindrical structure 3, (h) The source of the stress defect is cylindrical structure 4.

4.1.2. Corrosion Defect

The WMFLs signals of corrosion defects is usually calculated mathematically using a
magnetic dipole. Feng [4] proposed a method to simulate corrosion defects at arbitrarily
different depths. The magnetic field dH generated at distance r by each element of charge
dp = σdydz is given in:

dH(x, y, z) = dp
4πr3 r (7)

As shown in Figure 7, corrosion defects are classified as rectangular defects and
elliptical defects. The first part of the simulated dataset is regular rectangular corrosion.
The length and width of the defect are randomly selected between 1 and 10 cm. The depth
of the defect is also randomly selected between 0.1 mm and 0.9 cm. The second part is
irregular defects. Irregular defects can be divided into multiple independent defects of
different depths. The sum of the magnetic response H at each different depth is calculated
cumulatively at each given point Hind.

H =∑
i

∑
j

Hind (8)

where n and m represent the size of the mesh. The length and width of the defect are
randomly selected between 1 and 10 cm. The deepest depth of the irregular defect is chosen
randomly between 0.1 and 1 cm.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. Examples of corrosion defects simulated by FE: (a) Depth 0.1 cm, length 10 cm, width 3
cm; (b) Depth 0.2 cm, length 10 cm, width 2 cm; (c) Depth 0.3 cm, length 10 cm, width 2 cm; (d)
Depth 0.5 cm, length 10 cm, width 2 cm; (e) Depth 0.7 cm, length 10 cm, width 3 cm; (f) Depth 0.8 cm,
length 10 cm, width 4 cm; (g) Depth 0.8 cm, length 10 cm, width 7 cm; (h) Depth 0.9 cm, length 10 cm,
width 9 cm.
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4.2. Experimental Dataset

In order to obtain the experimental dataset, the pipeline experiment platform and the
production environment are used to obtain the data. The pipeline experiment platform is
shown in Figure 8a. It has 67 pipelines of X65 steel with a diameter of 8 inches. There are a
total of 150 stress defects in the pipeline. The experimental dataset has 300 WMFLs signals
of stress defects and 700 WMFLs signals of corrosion defects. As shown in Figure 8b–d,
there are a total of 300 stress defects, 30 of which come from the pipeline experiment
platform and the rest come from the production environment. The stress defects generated
in the production environment are mainly caused by geological movements [33]. It includes
changes in the stress state of pipelines caused by earthquakes [33], landslides [34], loess
collapse [35], thawing and settling of permafrost [36]. Half of the corrosion defects WMFLs
signals came from the production environment (350), and the other half came from the
experimental platform (350). As shown in Figure 8e, part of the signals caused by corrosion
was obtained by chemical etching at the experimental platform, and its length and width
ranged from 10 to 60 mm. The depth varies between 0.1 and 0.9 cm. As shown in Figure 8d,
the corrosion is uniformly distributed, but in reality, it is randomly distributed. We also
selected some of the corrosion signals collected during the actual inspection.

(a)

(b) (c)

(d) (e)

Figure 8. Corrosion defects and stress defects in production environment and pipeline experimental
platform: (a) pipeline experiment platform, (b) stress defects in pipelines in the production environ-
ment, (c) stress defects in pipelines in the pipeline experiment platform, (d) stress defects in pipelines
of the production environment, (e) corrosion defects of pipelines in the pipeline experiment platform.

5. Experiment

We designed some comparative experiments to verify the ability of the proposed
method in this paper to identify WMFLs signals of stress defects and WMFLs signals of
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corrosion defects. First, we analyzed the defect identification ability of multi-graph splitting
and fusion GCNs and typical GCNs. Then, traditional machine learning methods based
on expert experience and feature engineering are compared with our proposed approach.
These experiments demonstrate the advanced performance of our proposed method.

5.1. Analysis of the Validity of Our Proposed Method

In Section 3.1, this paper introduces a graph fusion convolution algorithm based on
two splits. In order to illustrate the advantages of our proposed multi-graph splitting and
fusion GCNs, the proposed algorithm in this paper is compared with typical GCNs for
experiments. Since the detection results of WMFLs signals are structured data, the detection
data are converted to unstructured data by a super-pixel method, and the defect type is
used as the output. The data used for training and testing are the simulation datasets
suggested in Section 4.1. We randomly allocate 80% of the dataset to training and randomly
assign 20% of the dataset to testing. The average result of all five experiments is shown in
Figure 9.
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Figure 9. Confusion matrix showing identification results: (a) Our proposed method (b) Typical
GCNs.

In order to verify that our proposed method can be better applied in a practical
detection environment, the experimental data in Section 4.2 and the simulation data in
Section 4.1 are used for the comparison experiments. The training dataset consists of the
simulation data and the experimental data, and the test dataset consists of the experimental
dataset. The specific training datasets and test datasets are described by Table 1.

Table 1. Statistics of the detailed dataset in the practical experiment.

Train Dataset Test Dataset

Experimental
data

Simulation
data

Experimental
data

Production
environment

Experimental
platform

Production
environment

Experimental
platform

Corrosion
defect 175 175 15,000 175 175

Stress
defect 15 135 15,000 15 135

In Figure 9a,b, the identification accuracy of our proposed method is better than the
accuracy of typical GCNs. In industrial applications, the identification accuracy is the most
important aspect. It can be seen that the identification accuracy of the proposed method
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in this paper is 95.12% on average in real industrial applications. Compared with the
identification accuracy of the proposed method in the simulation data, the identification
accuracy in the actual industrial application is only reduced by 1%. Therefore, the method
proposed in this paper can solve real industrial problems.

In Section 3, multi-graph splitting and fusion GCNs are proposed. Information split-
ting and information multiple fusion are used to illustrate the advantages of the structure
of our proposed networks. We compare our proposed method with a typical GCNs method.
For typical GCNs, the structural magnetic flux leakage signals are converted to unstruc-
tured data by an information fusion method with the defect type as the output. The dataset
used for training and testing is the simulated dataset described by Section 5. Five five-fold
crossover experiments have been completed. The average accuracy of each test is shown in
Figure 10.

0 10 20 30 40
Test time
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82%

85%

88%

90%

92%

95%

98%

100%

Accuracy of identification
 of stress defects (PM)
Accuracy of identification
 of corrosion defects (PM)
Overall accuracy of
 identification (PM)
Accuracy of identification
 of stress defects (GCNs)
Accuracy of identification
 of corrosion defects (GCNs)
Overall accuracy of
 identification (GCNs)

Figure 10. Accuracy of each defect identification for 40 test experiments.

5.2. Comparison of Different Method

In order to prove that our proposed method is more effective than the traditional
machine learning method, some experiments on different methods are conducted in this
paper. A CNN method [3] is used for identifying injurious and non-injurious defects, which
can be used to identify stress defects and corrosion defects. Method A is the original CNNs
method [3]. The proposed method in this paper is mismatched compared to CNNs of this
scale. Method B is an extension of the networks proposed [3]. The structure of two-layer
CNNs was changed to five-layer CNNs. In order to demonstrate the superiority of the
method, a comparison between the method and the traditional method is completed in
this paper. Conventional methods are usually based on the feature [14,37] of the measured
WMFLs signals to identify stress defects and corrosion defects. These conventional methods
usually require expert experience to determine the selection of features and calculate
hyperparameters. The proposed method in this paper has been compared with method
C (support vector machine) [38], method D (back-propagation neural networks) [39], and
method E (randomized decision trees) [40]. Method C is a support vector machine method
that uses radial basis functions as kernel functions. Method D is back-propagation neural
networks that uses a grid search to determine the parameters. Method E is a randomized
decision trees method. This is an identification method by pruning the branches of a
decision tree. Its parameters are also determined by a grid search method.
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We first select the simulation data to test. 80% of the simulation data was made as the
training dataset. 20% of the simulation data was used as the test dataset. All experiments
were performed five times, and the results are shown in Figure 11a.

Then, we randomly select half of the experimental dataset as the test dataset. The full
simulation dataset and the other experimental datasets were used as the training dataset.
The results of all experiments were carried out five times, and the results are shown in
Figure 11b.
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Figure 11. The bar chart of the overall accuracy of different models in five simulation and
experiment tests. (a) simulation data training as well as simulation data testing; (b) simulation
data training as well as experimental data training, experimental data testing.

6. Conclusions

In order to solve the problem of identifying corrosion defects and stress defects, a
novel method of GCNs is proposed. The typical GCNs method can only identify using
detail information or structural information. In this paper, a multi-graph splitting and
fusion GCNs method is designed, and the proposed method utilizes both structural and
detail information to identify defect types. The experimental results show that the method
proposed in this paper is prospective for identifying WMFLs signals of stress defects and
corrosion defects. Compared with the typical GCNs method, the identification accuracy
of the proposed method in this paper is greatly improved. Compared with the traditional
defect identification methods, the identification accuracy of the multi-graph splitting and
fusion GCNs method proposed in this paper has been greatly improved.
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