
Citation: Liu, D.; Liang, D. A

Blockchain Approach of Model

Architecture for Crowdsourcing

Design Services under the Context of

Social Manufacturing. Machines 2023,

11, 69. https://doi.org/10.3390/

machines11010069

Academic Editors: Pingyu Jiang,

Ying Liu and Maolin Yang

Received: 8 December 2022

Revised: 1 January 2023

Accepted: 3 January 2023

Published: 5 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

A Blockchain Approach of Model Architecture for
Crowdsourcing Design Services under the Context of
Social Manufacturing
Dianting Liu 1,2 and Dong Liang 1,*

1 College of Mechanical and Control Engineering, Guilin University of Technology, Guilin 541004, China
2 College of Information Science and Engineering, Guilin University of Technology, Guilin 541004, China
* Correspondence: 1020211081@glut.edu.cn; Tel.: +86-19330430487

Abstract: Crowdsourcing design is generally monitored by the platform. However, the traditional
crowdsourcing platforms face problems such as centralization, lack of credibility and vulnerability to
single point of failure. Under the context of social manufacturing, how to address these potential
issues has both research and substantial value. In this paper, we introduce decentralized blockchain
technology for crowdsourcing service systems and propose a method to manage and control the
process of crowdsourcing design services. We depict complex crowdsourcing logic by smart con-
tract. The process of crowdsourcing design is not dependent on any third party. It is decentralized,
tamper-proof, traceable and protects the privacy of users to a certain extent. We implement this
crowdsourcing design system on a specific blockchain test network to experiment and test its func-
tionalities. Experiment results show the feasibility and usability of our crowdsourcing design system.
In the future, we will further improve the algorithmic logic of smart contracts so that they can run
stably and securely in a complex node network environment.

Keywords: social manufacturing; crowdsourcing design; blockchain technology; smart contract

1. Introduction

As crowdsourcing theory has matured, it has triggered a crowdsourcing design [1]
model for product development. Crowdsourcing design is based on traditional centralized
crowdsourcing platforms. However, under the context of social manufacturing, crowd-
sourcing design requires a decentralized platform and traditional crowdsourcing platforms
can hardly meet this demand.

Social manufacturing is a networking manufacturing model based on distributed,
self-organized collaboration and sharing of social resources [2]. Its decentralization is
an important feature that distinguishes it from other manufacturing models [3]. The
decentralized and traceable features of blockchain technology exactly fit the needs of
crowdsourcing design service systems under the context of social manufacturing.

Blockchain technology originated from Nakamoto’s proposal of Bitcoin [4], which
is a decentralized digital currency. Initially, this technology was mainly used in digital
cryptocurrency systems. With blockchain platforms such as Ethereum [5] supporting
smart contract [6] development and deployment, blockchain technology has shown more
possibilities, such as supply-chain traceability, data sharing and crowdsourcing [7].

The idea of combining crowdsourcing platforms with blockchain is to deploy the
crowdsourcing platform to the blockchain and replace the centralized platform of the
traditional crowdsourcing system with the blockchain platform. The introduction of
blockchain technology can bring the following advantages to crowdsourcing services [8]:
solving the problem of having a single point of failure, a certain degree of privacy protection
and eliminating subjective factors affecting the fairness of the decision.

Machines 2023, 11, 69. https://doi.org/10.3390/machines11010069 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines11010069
https://doi.org/10.3390/machines11010069
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://doi.org/10.3390/machines11010069
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines11010069?type=check_update&version=2

Machines 2023, 11, 69 2 of 16

At present, many scholars have applied the blockchain and crowdsourcing model
to their own research fields. Ding et al. combined blockchain technology with crowd-
sourcing to design credit mechanisms and arbitration mechanisms to discipline the entire
crowdsourcing process to ensure that users were serious about completing crowdsourcing
operations [9]. In response to the problems of security and reliability in the field of agricul-
tural products logistics, Wu et al. built a seven-level crowdsourcing platform architecture to
realize a crowdsourcing-based agricultural product logistics platform based on blockchain
technology [10]. In the context of crowdsourcing services, Yang et al. designed a trusted
management framework for crowdsourcing intellectual property that contains four levels
and three modules. Based on the blockchain on-chain and off-chain decomposition and
fusion technology, it realized the credible management of crowdsourced testing intellectual
property and solved the long-standing problems of irregular management and lack of
credibility of crowdsourced testing services [11]. Ghaffaripour et al. proposed a zk-SNARK
cryptographic primitive privacy-preserving method for crowdsourcing medical research
to address the fair reciprocal exchange reward problem seen in medical relationships [12].
Gao et al. presented a blockchain crowdsourcing solution for spatial crowdsourcing tasks
based on a specific rule, the Task-Select-Worker Mechanism, for sorting and assigning
spatial crowdsourcing tasks [13]. Although most of the abovementioned studies have
given corresponding blockchain-based application solutions or methods for their specific
fields with better results, crowdsourcing design differs from the abovementioned fields
in terms of business logic, task nature and worker characteristics. To accommodate these
characteristics, and in conjunction with the social manufacturing environment, specialized
research is needed on how to introduce blockchain technology into the crowdsourcing
design model.

Therefore, in this paper, according to the characteristics of the crowdsourcing design
model, we use blockchain technology, distributed memory, and the keccak256 algorithm
to implement the workflow logic of crowdsourcing design services through smart con-
tracts. A blockchain-based control method of crowdsourcing design service process in
the context of social manufacturing is proposed to realize query, tracking and traceability
of the crowdsourcing design service. Crowdsourcing design services are guaranteed to
be decentralized, fairly and equitably executed. The main contributions of this paper are
summarized as follows:

• We build a new crowdsourcing design model based on blockchain technology. Smart con-
tracts on the blockchain are used to enable interaction between users and to ensure that
the crowdsourcing design system fits into a community-based manufacturing context.

• Two types of smart contracts are designed to achieve information management and
task control of crowdsourcing design users.

• We design a task state machine model in the smart contract to describe the task state
of the crowdsourcing design service process, which is convenient for subsequent users
to query the traceability of the crowdsourcing design tasks.

• Experiments were conducted to verify that the “blockchain and crowdsourcing” model
proposed in this paper is applicable to the crowdsourcing design service process in
the context of social manufacturing.

The sections of this paper are organized as follows. Section 2 presents the background
knowledge of the study. Section 3 demonstrates the framework proposed in this paper.
Section 4 specifies the smart contract protocols in this framework. In Section 5, we conduct
an experimental analysis of the crowdsourcing design process simulation. Section 6 gives
the conclusions.

2. Background
2.1. Crowdsourcing Workflow

Traditional crowdsourcing systems consist of three roles: requester, worker and a
centralized crowdsourcing platform. As shown in Figure 1, the requester and the worker
interact through a crowdsourcing platform. The requester uses the crowdsourcing platform

Machines 2023, 11, 69 3 of 16

to publish task requirements. The worker receives rewards for completing the tasks on the
crowdsourcing platform.

Machines 2023, 11, x FOR PEER REVIEW 3 of 17

2. Background

2.1. Crowdsourcing Workflow

Traditional crowdsourcing systems consist of three roles: requester, worker and a

centralized crowdsourcing platform. As shown in Figure 1, the requester and the worker

interact through a crowdsourcing platform. The requester uses the crowdsourcing

platform to publish task requirements. The worker receives rewards for completing the

tasks on the crowdsourcing platform.

Figure 1. The workflow of traditional crowdsourcing.

Crowdsourcing platforms have a key role in the overall workflow; thus, the security

of the platform is related to the whole crowdsourcing process. The traditional centralized

crowdsourcing platform is vulnerable to the following problems: single point of failure

problem, user-privacy-protection problem and platform-fairness problem. The above

problems can discourage crowdsourcing workers and negatively affect the development

of crowdsourcing platform services.

2.2. Blockchain

A blockchain consists of blocks linked to blocks, which is essentially a decentralized,

tamper-evident, traceable and distributed database. It is maintained by each node

according to the consensus mechanism; each node records the complete ledger

information. Newly occurring transactions will only be allowed to be recorded on the

blockchain if they have the consensus of a majority of nodes. Transactions will not be

modified once they are confirmed on the chain [4]. As the data structure of the blockchain

shown in Figure 2, the block header of each block contains the hash value of the previous

block. If a user tampers with the transaction data of a block, it will affect all subsequent

blocks and will not be able to reach consensus with the ledger maintained by other nodes,

which is an important guarantee of blockchain security.

Figure 2. Data structure of the blockchain.

2.3. Smart Contract

In 1995, Szabo introduced the concept of smart contracts, a set of commitments

defined in digital form [6]. Smart contracts have been further developed with the

introduction of blockchain technology. An executable program facilitates consensus

between two or more nodes in the blockchain network. Once the contract is validated and

deployed on the blockchain, it cannot be tampered with. Subsequent on-chain operations

that meet the trigger conditions will be executed automatically, completing the predefined

transactions in the contract.

Figure 1. The workflow of traditional crowdsourcing.

Crowdsourcing platforms have a key role in the overall workflow; thus, the security
of the platform is related to the whole crowdsourcing process. The traditional centralized
crowdsourcing platform is vulnerable to the following problems: single point of failure
problem, user-privacy-protection problem and platform-fairness problem. The above
problems can discourage crowdsourcing workers and negatively affect the development of
crowdsourcing platform services.

2.2. Blockchain

A blockchain consists of blocks linked to blocks, which is essentially a decentralized,
tamper-evident, traceable and distributed database. It is maintained by each node according
to the consensus mechanism; each node records the complete ledger information. Newly
occurring transactions will only be allowed to be recorded on the blockchain if they have
the consensus of a majority of nodes. Transactions will not be modified once they are
confirmed on the chain [4]. As the data structure of the blockchain shown in Figure 2, the
block header of each block contains the hash value of the previous block. If a user tampers
with the transaction data of a block, it will affect all subsequent blocks and will not be
able to reach consensus with the ledger maintained by other nodes, which is an important
guarantee of blockchain security.

Machines 2023, 11, x FOR PEER REVIEW 3 of 17

2. Background
2.1. Crowdsourcing Workflow

Traditional crowdsourcing systems consist of three roles: requester, worker and a
centralized crowdsourcing platform. As shown in Figure 1, the requester and the worker
interact through a crowdsourcing platform. The requester uses the crowdsourcing plat-
form to publish task requirements. The worker receives rewards for completing the tasks
on the crowdsourcing platform.

Figure 1. The workflow of traditional crowdsourcing.

Crowdsourcing platforms have a key role in the overall workflow; thus, the security
of the platform is related to the whole crowdsourcing process. The traditional centralized
crowdsourcing platform is vulnerable to the following problems: single point of failure
problem, user-privacy-protection problem and platform-fairness problem. The above
problems can discourage crowdsourcing workers and negatively affect the development
of crowdsourcing platform services.

2.2. Blockchain
A blockchain consists of blocks linked to blocks, which is essentially a decentralized,

tamper-evident, traceable and distributed database. It is maintained by each node accord-
ing to the consensus mechanism; each node records the complete ledger information.
Newly occurring transactions will only be allowed to be recorded on the blockchain if
they have the consensus of a majority of nodes. Transactions will not be modified once
they are confirmed on the chain [4]. As the data structure of the blockchain shown in Fig-
ure 2, the block header of each block contains the hash value of the previous block. If a
user tampers with the transaction data of a block, it will affect all subsequent blocks and
will not be able to reach consensus with the ledger maintained by other nodes, which is
an important guarantee of blockchain security.

Figure 2. Data structure of the blockchain.

2.3. Smart Contract
In 1995, Szabo introduced the concept of smart contracts, a set of commitments de-

fined in digital form [6]. Smart contracts have been further developed with the introduc-
tion of blockchain technology. An executable program facilitates consensus between two
or more nodes in the blockchain network. Once the contract is validated and deployed on
the blockchain, it cannot be tampered with. Subsequent on-chain operations that meet the
trigger conditions will be executed automatically, completing the predefined transactions
in the contract.

Figure 2. Data structure of the blockchain.

2.3. Smart Contract

In 1995, Szabo introduced the concept of smart contracts, a set of commitments defined
in digital form [6]. Smart contracts have been further developed with the introduction
of blockchain technology. An executable program facilitates consensus between two or
more nodes in the blockchain network. Once the contract is validated and deployed on
the blockchain, it cannot be tampered with. Subsequent on-chain operations that meet the
trigger conditions will be executed automatically, completing the predefined transactions
in the contract.

The operation mechanism of smart contracts is shown in Figure 3. In Ethereum, smart
contracts encapsulate predefined variables, code execution logic and its trigger conditions,
which are filled in as executable code in a transaction on the blockchain that is distributed
to each network node through the P2P network. Contracts are subsequently triggered by
external accounts by sending transactions. The corresponding functions in the contract are
called and executed based on the relevant information of the transaction. The generated
results and variable status are updated and written into the blockchain.

Machines 2023, 11, 69 4 of 16

Machines 2023, 11, x FOR PEER REVIEW 4 of 17

The operation mechanism of smart contracts is shown in Figure 3. In Ethereum, smart
contracts encapsulate predefined variables, code execution logic and its trigger condi-
tions, which are filled in as executable code in a transaction on the blockchain that is dis-
tributed to each network node through the P2P network. Contracts are subsequently trig-
gered by external accounts by sending transactions. The corresponding functions in the
contract are called and executed based on the relevant information of the transaction. The
generated results and variable status are updated and written into the blockchain.

Figure 3. The operation mechanism of smart contracts.

Smart contracts on the blockchain have the following advantages [8]:
• The contract code is recorded and verified by the blockchain with tamper-evident

characteristics;
• Smart contracts are executed between distrustful nodes, without centralized control

and without third-party coordination, ensuring fair execution of contract content;
• Traceability of information on the chain can be achieved through function calls of

smart contracts.
The above advantages satisfy the control of the crowdsourcing service process and

ensure the fairness and safety of the process.

3. Blockchain-Based Model Architecture of Crowdsourcing Design
3.1. Overview

Blockchain-based model architecture of crowdsourcing design services refers to the
application of blockchain technology to the management and control of the process of
crowdsourcing design services. Using a blockchain-based platform instead of a traditional
centralized database to store transaction data, the whole process of crowdsourcing work
is open, transparent, tamper-proof and traceable, the current status of the crowdsourcing
design task can be viewed at any time. In this paper, combining the advantages of block-
chain to build a decentralized crowdsourcing design service system, we include all
crowdsourcing functions such as user registration, posting tasks and receiving tasks.
Crowdsourcing task requesters and workers can interact with the blockchain and reach
agreements about crowdsourcing design tasks on the chain.

Inspired by [14], the blockchain-based crowdsourcing design service framework is
divided into three layers: the application layer, the blockchain layer and the storage layer.
As shown in Figure 4, users complete the crowdsourcing process of registering, posting
tasks, receiving tasks at the application layer and reaching task agreements at the block-
chain layer with task-status changes. Due to the limited storage capacity of the blockchain,
files with large memory can seriously affect the operational efficiency of the blockchain.
This framework stores the metadata of the files (such as author, hash value, file pointer,
etc.) to the blockchain, while the detailed source files are stored to the storage layer to
improve the efficiency of the crowdsourcing service.

Figure 3. The operation mechanism of smart contracts.

Smart contracts on the blockchain have the following advantages [8]:

• The contract code is recorded and verified by the blockchain with tamper-evident
characteristics;

• Smart contracts are executed between distrustful nodes, without centralized control
and without third-party coordination, ensuring fair execution of contract content;

• Traceability of information on the chain can be achieved through function calls of
smart contracts.

The above advantages satisfy the control of the crowdsourcing service process and
ensure the fairness and safety of the process.

3. Blockchain-Based Model Architecture of Crowdsourcing Design
3.1. Overview

Blockchain-based model architecture of crowdsourcing design services refers to the
application of blockchain technology to the management and control of the process of
crowdsourcing design services. Using a blockchain-based platform instead of a traditional
centralized database to store transaction data, the whole process of crowdsourcing work is
open, transparent, tamper-proof and traceable, the current status of the crowdsourcing de-
sign task can be viewed at any time. In this paper, combining the advantages of blockchain
to build a decentralized crowdsourcing design service system, we include all crowdsourc-
ing functions such as user registration, posting tasks and receiving tasks. Crowdsourcing
task requesters and workers can interact with the blockchain and reach agreements about
crowdsourcing design tasks on the chain.

Inspired by [14], the blockchain-based crowdsourcing design service framework is
divided into three layers: the application layer, the blockchain layer and the storage layer.
As shown in Figure 4, users complete the crowdsourcing process of registering, posting
tasks, receiving tasks at the application layer and reaching task agreements at the blockchain
layer with task-status changes. Due to the limited storage capacity of the blockchain, files
with large memory can seriously affect the operational efficiency of the blockchain. This
framework stores the metadata of the files (such as author, hash value, file pointer, etc.) to
the blockchain, while the detailed source files are stored to the storage layer to improve the
efficiency of the crowdsourcing service.

In order to improve the control of crowdsourcing design services, this paper constructs
a task-state machine that describes all the states of a crowdsourcing design task. There
exist six states: Pending, Claimed, Unclaimed, Evaluating, Completed, Uncompleted. The task
state will shift according to the user’s input in the application layer or the smart contract’s
determination of the current task state, as shown in Figure 5, which illustrates the process
and reasons for the task-state change. Whenever a task publisher posts a new task in
the application layer and it is recorded on the blockchain, the system will automatically
generate a task-state machine that tracks the status of the task and can be used by all users
to query the current status of the task at any time.

Machines 2023, 11, 69 5 of 16Machines 2023, 11, x FOR PEER REVIEW 5 of 17

Figure 4. Blockchain-based Crowdsourcing Service Framework.

In order to improve the control of crowdsourcing design services, this paper con-
structs a task-state machine that describes all the states of a crowdsourcing design task.
There exist six states: Pending, Claimed, Unclaimed, Evaluating, Completed, Uncompleted. The
task state will shift according to the user’s input in the application layer or the smart con-
tract’s determination of the current task state, as shown in Figure 5, which illustrates the
process and reasons for the task-state change. Whenever a task publisher posts a new task
in the application layer and it is recorded on the blockchain, the system will automatically
generate a task-state machine that tracks the status of the task and can be used by all users
to query the current status of the task at any time.

Figure 5. Task-state machine model.

3.2. Structure
3.2.1. Application Layer

The application layer serves as a port for users to participate and complete
crowdsourcing design tasks. Its operation is completely independent of any trusted third-
party centralized servers, so that even the presence of some bad nodes will not affect the
operation of the whole system.

In the application layer, there are two main modules: user management (UM) and
task management (TM). Among them, the UM contains user registration and user infor-
mation management functions. All users can only use subsequent crowdsourcing services
after completing registration in the application layer. For each new user registration, the
system will send the corresponding transaction information to the blockchain; after the
registered transaction information is confirmed on the chain, the system will generate and
store an abbreviated information structure of the user for the subsequent management of
crowdsourcing services. Blockchain-based crowdsourcing design services can be seen as
a program deployed on the blockchain to post, receive, submit and finally distribute re-
wards for design tasks.

Figure 4. Blockchain-based Crowdsourcing Service Framework.

Machines 2023, 11, x FOR PEER REVIEW 5 of 17

Figure 4. Blockchain-based Crowdsourcing Service Framework.

In order to improve the control of crowdsourcing design services, this paper con-
structs a task-state machine that describes all the states of a crowdsourcing design task.
There exist six states: Pending, Claimed, Unclaimed, Evaluating, Completed, Uncompleted. The
task state will shift according to the user’s input in the application layer or the smart con-
tract’s determination of the current task state, as shown in Figure 5, which illustrates the
process and reasons for the task-state change. Whenever a task publisher posts a new task
in the application layer and it is recorded on the blockchain, the system will automatically
generate a task-state machine that tracks the status of the task and can be used by all users
to query the current status of the task at any time.

Figure 5. Task-state machine model.

3.2. Structure
3.2.1. Application Layer

The application layer serves as a port for users to participate and complete
crowdsourcing design tasks. Its operation is completely independent of any trusted third-
party centralized servers, so that even the presence of some bad nodes will not affect the
operation of the whole system.

In the application layer, there are two main modules: user management (UM) and
task management (TM). Among them, the UM contains user registration and user infor-
mation management functions. All users can only use subsequent crowdsourcing services
after completing registration in the application layer. For each new user registration, the
system will send the corresponding transaction information to the blockchain; after the
registered transaction information is confirmed on the chain, the system will generate and
store an abbreviated information structure of the user for the subsequent management of
crowdsourcing services. Blockchain-based crowdsourcing design services can be seen as
a program deployed on the blockchain to post, receive, submit and finally distribute re-
wards for design tasks.

Figure 5. Task-state machine model.

3.2. Structure
3.2.1. Application Layer

The application layer serves as a port for users to participate and complete crowd-
sourcing design tasks. Its operation is completely independent of any trusted third-party
centralized servers, so that even the presence of some bad nodes will not affect the operation
of the whole system.

In the application layer, there are two main modules: user management (UM) and
task management (TM). Among them, the UM contains user registration and user infor-
mation management functions. All users can only use subsequent crowdsourcing services
after completing registration in the application layer. For each new user registration, the
system will send the corresponding transaction information to the blockchain; after the
registered transaction information is confirmed on the chain, the system will generate and
store an abbreviated information structure of the user for the subsequent management of
crowdsourcing services. Blockchain-based crowdsourcing design services can be seen as a
program deployed on the blockchain to post, receive, submit and finally distribute rewards
for design tasks.

3.2.2. Blockchain Layer

The blockchain layer is located in the middle layer of the framework; its main purpose
is to receive valid input from users in the application layer, store the corresponding file
metadata to the blockchain and store the larger attachments to the storage layer. All
transaction operations of users in the application layer need to be completed on this layer
and reach consensus. The process is roughly as follows: the transaction is sent to the
blockchain layer; triggering the corresponding smart contract to reach an agreement; the
program is compiled and finally confirmed by the miner to be recorded on the blockchain;
the miner receives the corresponding incentive. Another purpose of the blockchain layer is
to run the task-state machine, where valid user’s inputs at the application layer change the
task state of the blockchain layer synchronously.

Generally, blocks in blockchain layer cannot hold large file data, which will consume a
lot of local disk space and affect the operational efficiency of the blockchain. To reduce the

Machines 2023, 11, 69 6 of 16

amount of data stored in the blockchain, the source-file information is split into metadata
and source data in this system framework. Source data refers to those attachments with
large amounts of data that are kept in the storage layer—the distributed database under
the blockchain. Following this, a unique file query string is generated. While metadata
only retains basic information about the file, such as owner name, timestamp, file hash
pointer, query string, etc., this information, with small amount of data, can be stored on the
blockchain. Users can find the source file through the query pointer on the blockchain, they
can also confirm whether the data stored in the storage layer has been tampered with using
the file hash value.

3.2.3. Storage Layer

The storage layer, as the last layer of the framework, mainly uses distributed databases
such as IPFS [15] to keep the original large files of tasks or solutions. The data uploaded by
a user should be signed with his/her private key; other users can use his/her public key to
verify the authenticity and integrity of the file at the blockchain layer. In particular, before
workers submit their solutions to the storage layer, they need to be encrypted with the
requester’s public key to prevent data leakage. After the requester finds the corresponding
solution file through the data pointer, he/she should first decrypt it with his/her private
key, then verify the digital signature with the worker’s public key to ensure the reliability
and authenticity of the file. With this method, arbitrary crowdsourcing design services can
be achieved, ensuring the security and confidentiality of the entire process.

3.3. Process of Crowdsourcing Design

Step 1: The user completes registration. The system records the valid information
entered by the user as a transaction to the blockchain.

Step 2: Transaction information is confirmed by miners and permanently recorded on
the blockchain

Step 3: The task requester posts tasks. The requester can set the task conditions; only
workers who meet the requirements can receive this task. Moreover, the requester needs to
pay a certain task deposit in advance as a deposit for this crowdsourcing design act.

Step 4: Workers receive crowdsourcing design tasks that meet their requirements.
Similar to requesters, workers are required to pay a deposit for each task they receive to
ensure the quality of their completed task.

Step 5: Worker completes the crowdsourcing design task and submits it before the task
deadline. They first sign a digital signature using their private key, then encrypt it using
the requester’s public key, then upload the encrypted file to the storage layer, a distributed
database. Finally, they store the file’s hash and retrieval pointer to the blockchain.

Step 6: The requester should complete the task evaluation before the task evaluation
deadline. The system will automatically issue rewards and reputation value to the worker
according to the task evaluation level. Completing high-quality crowdsourcing design
tasks will result in more rewards and increased reputation value.

4. Smart Contracts and Algorithm Protocols
4.1. Notations

Before detailing the smart contracts in the framework proposed in this paper, the nota-
tions used in smart contracts are shown and explained in Table 1. When the corresponding
symbols are used subsequently, they are further explained.

4.2. Smart Contract

Two types of smart contracts are implemented to complete the above crowdsourcing
design service process and realize the control of the service process. They are: user register
and summary contracts (URSs) and relationship contracts (RCs). The general structure of
the contract is shown in Figure 6.

Machines 2023, 11, 69 7 of 16

Table 1. The notations of explanation.

Natation Explanation

βW The reputation value of workers
addrUser, addrContract The user’s address and the address of smart contract

θ The reward of the crowdsourcing design task
δ The deposit of posting and receiving task
λ The number of workers required for the task
dl The task deadline, which refers to the future block height

pointer The hash pointer of the attachment of task or solution
coins(v) The virtual coin of value v

Machines 2023, 11, x FOR PEER REVIEW 7 of 17

Step 6: The requester should complete the task evaluation before the task evaluation
deadline. The system will automatically issue rewards and reputation value to the worker
according to the task evaluation level. Completing high-quality crowdsourcing design
tasks will result in more rewards and increased reputation value.

4. Smart Contracts and Algorithm Protocols
4.1. Notations

Before detailing the smart contracts in the framework proposed in this paper, the
notations used in smart contracts are shown and explained in Table 1. When the corre-
sponding symbols are used subsequently, they are further explained.

Table 1. The notations of explanation.

Natation Explanation
 The reputation value of workers

addrUser, addrContract The user’s address and the address of smart contract
 The reward of the crowdsourcing design task
 The deposit of posting and receiving task
 The number of workers required for the task

dl The task deadline, which refers to the future block height
pointer The hash pointer of the attachment of task or solution
coins(v) The virtual coin of value v

4.2. Smart Contract
Two types of smart contracts are implemented to complete the above crowdsourcing

design service process and realize the control of the service process. They are: user register
and summary contracts (URSs) and relationship contracts (RCs). The general structure of
the contract is shown in Figure 6.

Figure 6. The structure of smart contracts.

After the user completes the registration, URS will record all the information of the
user, such as the user’s address, name and resume information. The task information of
the crowdsourcing design will be updated as the user completes the task in the system,
such as the reputation value of the worker and the address of the task received. RC mainly
records the interaction information between users, such as the details of the posted task
and the completion status of the worker after receiving the task. The worker and the pub-
lisher reach a crowdsourcing design service agreement in RC.

The contract contains an important protocol: the reputation value update protocol
updateReputation(), which is used to manage the user’s reputation. It automatically

Figure 6. The structure of smart contracts.

After the user completes the registration, URS will record all the information of the
user, such as the user’s address, name and resume information. The task information of the
crowdsourcing design will be updated as the user completes the task in the system, such as
the reputation value of the worker and the address of the task received. RC mainly records
the interaction information between users, such as the details of the posted task and the
completion status of the worker after receiving the task. The worker and the publisher
reach a crowdsourcing design service agreement in RC.

The contract contains an important protocol: the reputation value update protocol
updateReputation(), which is used to manage the user’s reputation. It automatically increases
or decreases the reputation value of the corresponding worker based on the publisher’s
evaluation of the task.

While most traditional crowdsourcing systems focus on finding deception or other
malicious behaviors after workers complete their tasks, this crowdsourcing design system
curb malicious behaviors of workers in advance and improve the quality of crowdsourcing
design task completion by setting requirements such as the required minimum reputation
value of task workers when requesters post their tasks.

4.2.1. User Register and Summary Contract (URS)

URS contract is mainly used for user registration and managing user information.
Users can complete registration without using their real identity information, providing
them with a certain level of privacy protection. The main structure of the contract is
shown in Figure 7, where a total set of users, UserPool, and a series of data structures
recording the user’s details are provided. Each user’s data structure records Username,
Address, profile, RegisterTime, Reputation, the number of ongoing crowdsourcing design
tasks (ProcessTaskNum), the number of finished crowdsourcing design tasks (FinishTaskNum)
and a list of addresses of completed tasks (RC Address). The reputation is an important
parameter; the system will issue the default reputation value after the user completes the
registration, which will be updated automatically with the user’s work performance in the

Machines 2023, 11, 69 8 of 16

future. The incentive mechanism of reputation value is based on the literature [16], where
the level of reputation value directly can reflect the user’s level of crowdsourcing design.
ProcessTaskNum reflects the user’s current level of busyness. FinishTaskNum combined with
Reputation reflect the user’s ability to work. RC Address reflects the main areas of work
of the user. None of the above data can be easily altered by third parties and can only
be updated automatically after a crowdsourcing design task. Therefore, using the above
parameters as criteria for receiving tasks ensures that the worker has sufficient time and
capacity to complete the task.

Machines 2023, 11, x FOR PEER REVIEW 8 of 17

increases or decreases the reputation value of the corresponding worker based on the pub-
lisher’s evaluation of the task.

While most traditional crowdsourcing systems focus on finding deception or other
malicious behaviors after workers complete their tasks, this crowdsourcing design system
curb malicious behaviors of workers in advance and improve the quality of crowdsourc-
ing design task completion by setting requirements such as the required minimum repu-
tation value of task workers when requesters post their tasks.

4.2.1. User Register and Summary Contract (URS)
URS contract is mainly used for user registration and managing user information.

Users can complete registration without using their real identity information, providing
them with a certain level of privacy protection. The main structure of the contract is shown
in Figure 7, where a total set of users, UserPool, and a series of data structures recording
the user’s details are provided. Each user’s data structure records Username, Address, pro-
file, RegisterTime, Reputation, the number of ongoing crowdsourcing design tasks (Pro-
cessTaskNum), the number of finished crowdsourcing design tasks (FinishTaskNum) and a
list of addresses of completed tasks (RC Address). The reputation is an important parameter;
the system will issue the default reputation value after the user completes the registration,
which will be updated automatically with the user’s work performance in the future. The
incentive mechanism of reputation value is based on the literature [16], where the level of
reputation value directly can reflect the user’s level of crowdsourcing design. Pro-
cessTaskNum reflects the user’s current level of busyness. FinishTaskNum combined with
Reputation reflect the user’s ability to work. RC Address reflects the main areas of work of
the user. None of the above data can be easily altered by third parties and can only be
updated automatically after a crowdsourcing design task. Therefore, using the above pa-
rameters as criteria for receiving tasks ensures that the worker has sufficient time and
capacity to complete the task.

Figure 7. The structure of URS Contract.

In particular, the contract is set up in such a way that the same Username cannot be
registered repeatedly, making each username unique. Setting the user’s name as a map-
ping of the user’s detailed data structure ensures accurate invocation of the user’s infor-
mation in subsequent smart contracts for crowdsourcing design services. With each new
user registration, the system detects the Username in UserPool and automatically updates
the mapping of the user data structure.

4.2.2. Relationship Contract (RC)
RC contract records the interaction protocols between publishers and workers, cov-

ering the entire process of posting, picking up, submitting and acquiring solutions,

Figure 7. The structure of URS Contract.

In particular, the contract is set up in such a way that the same Username cannot be
registered repeatedly, making each username unique. Setting the user’s name as a mapping
of the user’s detailed data structure ensures accurate invocation of the user’s information
in subsequent smart contracts for crowdsourcing design services. With each new user
registration, the system detects the Username in UserPool and automatically updates the
mapping of the user data structure.

4.2.2. Relationship Contract (RC)

RC contract records the interaction protocols between publishers and workers, cov-
ering the entire process of posting, picking up, submitting and acquiring solutions, eval-
uating and issuing rewards for tasks. The RC contract architecture is shown in Figure 8.
The contract architecture contains a total task set, TaskPool; a data structure, Task Struc-
ture, that records task details; and a data structure, Worker Structure, that records worker
task processes.

Through a smart contract, the task publisher posts a crowdsourcing design task
and sets the corresponding requirements for the worker. The system will automatically
generate the corresponding task structure and store it on the blockchain. Before a worker
receives a task, the function ReceiveTask(), defined in the RC contract, evaluates the
worker’s ability to work according to the requirements set by the requester. If the task
requirements are satisfied, the worker can successfully receive the task. At the same time,
the system will generate a corresponding worker structure; the publisher can track the
progress of the worker’s crowdsourcing design task at any time. The task-status machine
changes the task status from Pending to Claimed. When the number of workers receiving
the task reaches the required number of workers set by the publisher, the task will not
be available for receiving again. Workers who have received an assignment will need to
submit a solution before the deadline.

Machines 2023, 11, 69 9 of 16

Machines 2023, 11, x FOR PEER REVIEW 9 of 17

evaluating and issuing rewards for tasks. The RC contract architecture is shown in Figure

8. The contract architecture contains a total task set, TaskPool; a data structure, Task

Structure, that records task details; and a data structure, Worker Structure, that records

worker task processes.

Figure 8. The structure of RC contract.

Through a smart contract, the task publisher posts a crowdsourcing design task and

sets the corresponding requirements for the worker. The system will automatically

generate the corresponding task structure and store it on the blockchain. Before a worker

receives a task, the function ReceiveTask(), defined in the RC contract, evaluates the

worker’s ability to work according to the requirements set by the requester. If the task

requirements are satisfied, the worker can successfully receive the task. At the same time,

the system will generate a corresponding worker structure; the publisher can track the

progress of the worker’s crowdsourcing design task at any time. The task-status machine

changes the task status from Pending to Claimed. When the number of workers receiving

the task reaches the required number of workers set by the publisher, the task will not be

available for receiving again. Workers who have received an assignment will need to

submit a solution before the deadline.

If the posted task includes some essential large files or folders, requesters should also

save the corresponding attachment folders to the storage layer as mentioned above, then

store the corresponding generated search pointer to the blockchain. The worker uses the

pointer to find the corresponding task document to access the details and background of

this crowdsourcing design task. In addition, a simple task deposit agreement is set up in

the smart contract. Users are required to pay a certain amount of task deposit when

posting or receiving tasks to ensure a fair performance in the crowdsourcing service

agreement reached by both parties.

4.3. Reputation Algorithm

Each successfully registered user is assigned a default reputation 𝛽𝑊 , 𝛽𝑊 ∈

𝛧, (0,1, … , 𝛽𝑊
𝑀𝑎𝑥) , which reflects the user’s ability to work and reputation level. The

Figure 8. The structure of RC contract.

If the posted task includes some essential large files or folders, requesters should also
save the corresponding attachment folders to the storage layer as mentioned above, then
store the corresponding generated search pointer to the blockchain. The worker uses the
pointer to find the corresponding task document to access the details and background of
this crowdsourcing design task. In addition, a simple task deposit agreement is set up in
the smart contract. Users are required to pay a certain amount of task deposit when posting
or receiving tasks to ensure a fair performance in the crowdsourcing service agreement
reached by both parties.

4.3. Reputation Algorithm

Each successfully registered user is assigned a default reputation βW , βW ∈ Z,
(
0, 1, . . . , βMax

W
)
,

which reflects the user’s ability to work and reputation level. The reputation value is updated
depending on the publisher’s evaluation of the worker’s completion of the crowdsourcing
design task, with a = H indicating a positive review and a = L indicating a negative review.
The formula for calculating the reputation can be described as:

βW =

min

(
βMax

W , βW + 1
)
, if a = H and βW ≥ hk

βW + 1, if a = L and βW < hk + 1
βW − 1, if a = H and βW ≥ hk + 1
0, if a = L and βW = hk

(1)

where hk is the social strategy threshold, a method of using social norms to control worker
behavior [16]. If the user’s reputation value drops to a threshold and the crowdsourcing
design task does not receive a positive review, the user’s reputation value will simply be
cleared. The user will not be able to receive tasks normally and will need to complete some
simple tasks with no specific requirements for reputation to accumulate positive feedback
until the reputation value rises to the threshold, when the user’s task receiving function
will return to normal.

Machines 2023, 11, 69 10 of 16

4.4. Protocol Algorithm

To completely describe the process of crowdsourcing design services, the following
algorithms are designed in the smart contract: Register, PostTask, ReceiveTask, SubmitSolution,
GetSolution, EvaluateSolution and other auxiliary algorithms. The user interacts with the
smart contract deployed on the blockchain through the crowdsourcing application to
complete the crowdsourcing design. The flow of smart contract and protocol interaction
for crowdsourcing design services is shown in Figure 9.

Machines 2023, 11, x FOR PEER REVIEW 10 of 17

reputation value is updated depending on the publisher’s evaluation of the worker’s com-
pletion of the crowdsourcing design task, with indicating a positive review and

indicating a negative review. The formula for calculating the reputation can be de-
scribed as: 	min(, + 1) , 	 	 	 ≥ ℎ	 + 1,																 	 	 	 < ℎ + 1− 1,																 	 	 	 ≥ ℎ + 10,																		 	 	 	 ℎ

 (1)

where ℎ is the social strategy threshold, a method of using social norms to control
worker behavior [16]. If the user’s reputation value drops to a threshold and the
crowdsourcing design task does not receive a positive review, the user’s reputation value
will simply be cleared. The user will not be able to receive tasks normally and will need
to complete some simple tasks with no specific requirements for reputation to accumulate
positive feedback until the reputation value rises to the threshold, when the user’s task
receiving function will return to normal.

4.4. Protocol Algorithm
To completely describe the process of crowdsourcing design services, the following

algorithms are designed in the smart contract: Register, PostTask, ReceiveTask, SubmitSolu-
tion, GetSolution, EvaluateSolution and other auxiliary algorithms. The user interacts with
the smart contract deployed on the blockchain through the crowdsourcing application to
complete the crowdsourcing design. The flow of smart contract and protocol interaction
for crowdsourcing design services is shown in Figure 9.

Figure 9. The flow of smart contract and protocol interaction for crowdsourcing design services.

4.4.1. Register
Users need to complete identity registration before participating in a crowdsourcing

design task. The Register protocol first confirms that the currently registered username is
not in use, then publishes the user’s detailed registration information User = {addrUser,
Username, Profile, TimeReg, NumPT, NumFT, } to the blockchain, where TimeReg denotes the
user registration time. NumPT and NumFT denote the number of tasks being processed and

Figure 9. The flow of smart contract and protocol interaction for crowdsourcing design services.

4.4.1. Register

Users need to complete identity registration before participating in a crowdsourcing
design task. The Register protocol first confirms that the currently registered username
is not in use, then publishes the user’s detailed registration information User = {addrUser,
Username, Profile, TimeReg, NumPT, NumFT, βW} to the blockchain, where TimeReg denotes the
user registration time. NumPT and NumFT denote the number of tasks being processed and
the number of finished tasks by workers, respectively, both with initial values of zero. βW is
the initial reputation value issued by the system, which is related to the average reputation
value of all workers in the current crowdsourcing system.

4.4.2. Posting Task

Once a task publisher has completed registering, they can post crowdsourcing design
tasks Task = { addrURS, Requester, Title, Description, θ, dlS, dlE, λ, βMin

W , Type, PointerT} in
the crowdsourcing application, where dlS and dlE denote the deadline for task workers to
submit tasks and the deadline for publishers to complete evaluations, respectively; Type
is the type of the current crowdsourcing design task; and PointerT denotes a pointer to
the necessary attachments for the current crowdsourcing design task. In order to avoid
malicious behavior from requesters, such as refusing to pay commission, it is set that
requesters need to pay the corresponding task deposit before posting the task. Algorithm 1
shows the concrete implementation of posting task.

Machines 2023, 11, 69 11 of 16

Algorithm 1: PostTask

Inputs: the address of URS addrURS, Requester, Title, Description, task reward and deposit
coins(θ + δ), the deadline of worker submit task dlS, the deadline of requester evaluate task dlE,
maximum workers number λ, the limited condition of worker βMin

W , Type, pointer of task
attachment PointerT
Outputs: RC contract RCTask, update URSrequester
01 if Requester is unregistered then
02 Requester has not been registered;
03 go final;
04 if Title is not unique then
05 Title has been taken;
06 go final;
07 if coins(θ + δ) < θ + δ then
08 Requester deposits the reward on blockchain failed;
09 go final;
10 postTaskList()← Title;
11 TaskPool(Title)← Task{addrURS, Requester, Title, Description, θ, dlS, dlE, λ, βMin

W , Type, PointerT}
12 nowWorkerNumtask ← 0;
13 updateURSContract(RCTask, URSrequester);
14 final;
15 returns RCTask

4.4.3. Receiving Task

The worker calls the getPendingTask() protocol in the RC contract to query the crowd-
sourcing design tasks available for collection and receives the task that matches his/her
work capability via Algorithm 2. Similar to task requesters, workers are required to pay
a certain amount of task deposit before receiving the task in order to prevent them from
slacking off and working negatively.

Algorithm 2: ReceiveTask

Inputs: RC contract RCTask, the address of URS addrURS, Worker, Title, task reward and deposit
coins(δ), worker URSworker
Outputs: update RC contract RCTask and URS contract URSworker
01 if Worker is unregistered then
02 Worker has not been registered;
03 go final;
04 if βW < βMin

W then
05 Worker does not satisfy the condition;
06 go final;
07 if checkTaskStatus(Title) is not Pending or Claimed then
08 TaskPool(Title) can be accepted anymore;
09 go final;
10 if coins(δ) < δ then
11 Requester deposits the reward on blockchain failed;
12 go final;
13 workerList()← worker(addrworker, Wusername, Title, Timestamp)
14 NumPT ++;
15 receivedTaskList()← Title;
16 nowWorkerNumtask ++;
17 updateTaskStatus(Title);
18 updateURSContract(RCTask, URSworker);
19 final;
20 return RCTask

Machines 2023, 11, 69 12 of 16

4.4.4. Submitting and Acquiring Task Solution

A worker completes a task and submits the task solution via the submitSolution()
protocol, which is set to be invoked by workers who have received the task to complete
the solution submission only before the task’s submission deadline. First, the worker signs
with the private key and the public key of the task requester to encrypt the content of the
solution and store it in the storage layer—the distributed database. Following this, the
corresponding file hash value and the file retrieval pointer are submitted and stored in the
blockchain. Finally, the requester gets the file pointer through the getSolution() protocol to
find the source file and decrypts it with his/her private key to access the solution content.

4.4.5. Evaluating Task Solution and Sending Reward

After a worker submits a task, the requester needs to start the process of evaluating
the task and paying the task reward before the evaluation deadline. The task reward
is determined by the quality of the worker’s completed task via Algorithm 3; based on
the evaluation result, the URS contract automatically updates the worker’s reputation
value synchronously.

Algorithm 3: Evaluate Solution

Inputs: RC contract RCTask, Requester, Title, Worker, task evaluate level, social strategy hk
Outputs: update RC contract RCTask, update URS contract URSrequester and URSworker, send
reward to the worker W
01 if checkTaskOwner(Requester) is failed then
02 Rusername is not the owner of this task;
03 go final;
04 if checkTaskLevel is success then
05 task has been evaluated;
06 go final;
07 if checkTaskStatus(Title) is Uncompleted then
08 βW ← 0 ;
09 sendReward(coins(0));
10 else if βW ≥ hk & level ≡ H then
11 βW ← min

(
βMax

W , βW + 1
)

;
12 sendReward(coins(θ + δ));
13 else if βW ≥ hk & level ≡ L then
14 βW ← βW − 1 ;
15 sendReward(coins(δ));
16 else if βW ≡ hk & level ≡ L then
17 βW ← 0 ;
18 sendReward(coins(δ));
19 else if βW < hk & level ≡ H then
20 βW ← βW + 1 ;
21 sendReward(coins(δ));
22 updateReputation(URSworker, βW);
23 updateURSContract(RCTask, URSworker);
24 updateURSContract(RCTask, URSRequester);
25 updateAvgReputation();
26 final;
27 returns RCTask, URSrequester, URSworker

5. Experiment
5.1. Experiment Environment

This paper is designed to realize blockchain-based process management and control
of crowdsourcing design services based on the above framework. The smart contract
framework is written and tested using Solidity v0.8.7 programming language and Remix
web editor. The experimental environment is Win10 x64 bit operating system, using the
current popular blockchain development framework Truffle v5.6.4, then combined with

Machines 2023, 11, 69 13 of 16

JavaScript and Ganache v2.6.0-beta.3 client to complete the smart contract compilation,
deployment and testing.

5.2. Experiment Process and Analysis

To evaluate and validate the feasibility of the framework presented in this paper, we
have deployed this crowdsourcing design platform on our regional blockchain, validating
the functionality of the smart contract in crowdsourcing design service steps, including
user registration, the requester posting a crowdsourcing design task, the worker receiving
the task, the worker submitting the task and the user traceability of the crowdsourcing
design task.

5.2.1. Smart Contracts Complication and Deployment

The compilation and deployment of the smart contract is completed using commands
in the operating system terminal, as shown in Figure 10. The ABI of the smart contract will
be generated after compilation, which is used to call the functions in the smart contract and
implement the data storage. This is successfully deployed to the Ganache client, as shown
in Figure 11.

Machines 2023, 11, x FOR PEER REVIEW 13 of 17

12 sendReward((+));
13 else if 	≥ 	 ℎ 	&	 	 ≡ 	 then
14 ← 	− 	1;
15 sendReward(());
16 else if 	≡ 	 ℎ 	&	 	 ≡ 	 then
17 ← 0;
18 sendReward(());
19 else if 	< 	 ℎ 	&	 	 ≡ then
20 ← 	+ 	1;
21 sendReward(());
22 updateReputation(,);
23 updateURSContract(,);
24 updateURSContract(,);
25 updateAvgReputation();
26 final;
27 returns , ,

5. Experiment
5.1. Experiment Environment

This paper is designed to realize blockchain-based process management and control
of crowdsourcing design services based on the above framework. The smart contract
framework is written and tested using Solidity v0.8.7 programming language and Remix
web editor. The experimental environment is Win10 x64 bit operating system, using the
current popular blockchain development framework Truffle v5.6.4, then combined with
JavaScript and Ganache v2.6.0-beta.3 client to complete the smart contract compilation,
deployment and testing.

5.2. Experiment Process and Analysis
To evaluate and validate the feasibility of the framework presented in this paper, we

have deployed this crowdsourcing design platform on our regional blockchain, validating
the functionality of the smart contract in crowdsourcing design service steps, including
user registration, the requester posting a crowdsourcing design task, the worker receiving
the task, the worker submitting the task and the user traceability of the crowdsourcing
design task.

5.2.1. Smart Contracts Complication and Deployment
The compilation and deployment of the smart contract is completed using commands

in the operating system terminal, as shown in Figure 10. The ABI of the smart contract
will be generated after compilation, which is used to call the functions in the smart con-
tract and implement the data storage. This is successfully deployed to the Ganache client,
as shown in Figure 11.

Figure 10. Successfully compile and deploy smart contracts. Figure 10. Successfully compile and deploy smart contracts.

Machines 2023, 11, x FOR PEER REVIEW 14 of 17

Figure 11. Deploying contracts to Ganache client.

5.2.2. System Functionality Testing
The following is a test to verify some basic functions of this crowdsourcing design

service process control. Figure 12 shows the user registration data recorded on the block-
chain and addrList[] stores the address information of the users; currently three users have
completed registration.

Figure 12. User registration data on the blockchain.

As shown in Figure 13, the requester R1 posts a task titled “Design a three-axis robot
arm” on this crowdsourcing design platform, and the worker W1 receives and submits
the task. One must simply follow the prompts to enter the corresponding crowdsourcing
design task information and then initiate a transaction to complete the interaction with
the blockchain and accomplish the crowdsourcing design service.

(a) (b)

Figure 11. Deploying contracts to Ganache client.

5.2.2. System Functionality Testing

The following is a test to verify some basic functions of this crowdsourcing design ser-
vice process control. Figure 12 shows the user registration data recorded on the blockchain
and addrList[] stores the address information of the users; currently three users have com-
pleted registration.

Machines 2023, 11, x FOR PEER REVIEW 14 of 17

Figure 11. Deploying contracts to Ganache client.

5.2.2. System Functionality Testing
The following is a test to verify some basic functions of this crowdsourcing design

service process control. Figure 12 shows the user registration data recorded on the block-
chain and addrList[] stores the address information of the users; currently three users have
completed registration.

Figure 12. User registration data on the blockchain.

As shown in Figure 13, the requester R1 posts a task titled “Design a three-axis robot
arm” on this crowdsourcing design platform, and the worker W1 receives and submits
the task. One must simply follow the prompts to enter the corresponding crowdsourcing
design task information and then initiate a transaction to complete the interaction with
the blockchain and accomplish the crowdsourcing design service.

(a) (b)

Figure 12. User registration data on the blockchain.

Machines 2023, 11, 69 14 of 16

As shown in Figure 13, the requester R1 posts a task titled “Design a three-axis robot
arm” on this crowdsourcing design platform, and the worker W1 receives and submits
the task. One must simply follow the prompts to enter the corresponding crowdsourcing
design task information and then initiate a transaction to complete the interaction with the
blockchain and accomplish the crowdsourcing design service.

Machines 2023, 11, x FOR PEER REVIEW 14 of 17

Figure 11. Deploying contracts to Ganache client.

5.2.2. System Functionality Testing
The following is a test to verify some basic functions of this crowdsourcing design

service process control. Figure 12 shows the user registration data recorded on the block-
chain and addrList[] stores the address information of the users; currently three users have
completed registration.

Figure 12. User registration data on the blockchain.

As shown in Figure 13, the requester R1 posts a task titled “Design a three-axis robot
arm” on this crowdsourcing design platform, and the worker W1 receives and submits
the task. One must simply follow the prompts to enter the corresponding crowdsourcing
design task information and then initiate a transaction to complete the interaction with
the blockchain and accomplish the crowdsourcing design service.

(a) (b)

Machines 2023, 11, x FOR PEER REVIEW 15 of 17

(c) (d)

Figure 13. Users complete the process of crowdsourcing design services. (a) Requester R1 posts the
task; (b) Worker W1 receives the task; (c) Worker W1 submits the solution; (d) Requester R1 evalu-
ates the solution.

After the above simulation of the crowdsourcing design task, the details of this
crowdsourcing design task are recorded on the blockchain, as shown in Figure 14: “Re-
quester R1 has posted a crowdsourcing design task, ‘Design a three-axis robot arm’. The
design requires ‘It needs an original design with high precision, low cost, simple trans-
mission, simple manufacturing process’. Currently one worker received this task and
completed the submission; the status of the task is completed”.

Figure 14. Crowdsourcing design task information.

Figure 15 shows the traceability information of worker W1’s completion of the
crowdsourcing design task recorded on the chain. The traceability information details the
address information of the worker, the time of receiving the task and the time of submit-
ting the task, a brief description of the task and the attached retrieval pointer.

Figure 15. The traceability information of crowdsourcing design task.

In summary, the test results show that the blockchain-based control of crowdsourc-
ing design services and visual management of crowdsourcing design tasks are achieved.

Figure 13. Users complete the process of crowdsourcing design services. (a) Requester R1 posts the
task; (b) Worker W1 receives the task; (c) Worker W1 submits the solution; (d) Requester R1 evaluates
the solution.

After the above simulation of the crowdsourcing design task, the details of this crowd-
sourcing design task are recorded on the blockchain, as shown in Figure 14: “Requester
R1 has posted a crowdsourcing design task, ‘Design a three-axis robot arm’. The design
requires ‘It needs an original design with high precision, low cost, simple transmission,
simple manufacturing process’. Currently one worker received this task and completed the
submission; the status of the task is completed”.

Machines 2023, 11, x FOR PEER REVIEW 15 of 17

(c) (d)

Figure 13. Users complete the process of crowdsourcing design services. (a) Requester R1 posts the
task; (b) Worker W1 receives the task; (c) Worker W1 submits the solution; (d) Requester R1 evalu-
ates the solution.

After the above simulation of the crowdsourcing design task, the details of this
crowdsourcing design task are recorded on the blockchain, as shown in Figure 14: “Re-
quester R1 has posted a crowdsourcing design task, ‘Design a three-axis robot arm’. The
design requires ‘It needs an original design with high precision, low cost, simple trans-
mission, simple manufacturing process’. Currently one worker received this task and
completed the submission; the status of the task is completed”.

Figure 14. Crowdsourcing design task information.

Figure 15 shows the traceability information of worker W1’s completion of the
crowdsourcing design task recorded on the chain. The traceability information details the
address information of the worker, the time of receiving the task and the time of submit-
ting the task, a brief description of the task and the attached retrieval pointer.

Figure 15. The traceability information of crowdsourcing design task.

In summary, the test results show that the blockchain-based control of crowdsourc-
ing design services and visual management of crowdsourcing design tasks are achieved.

Figure 14. Crowdsourcing design task information.

Machines 2023, 11, 69 15 of 16

Figure 15 shows the traceability information of worker W1’s completion of the crowd-
sourcing design task recorded on the chain. The traceability information details the address
information of the worker, the time of receiving the task and the time of submitting the
task, a brief description of the task and the attached retrieval pointer.

Machines 2023, 11, x FOR PEER REVIEW 15 of 17

(c) (d)

Figure 13. Users complete the process of crowdsourcing design services. (a) Requester R1 posts the
task; (b) Worker W1 receives the task; (c) Worker W1 submits the solution; (d) Requester R1 evalu-
ates the solution.

After the above simulation of the crowdsourcing design task, the details of this
crowdsourcing design task are recorded on the blockchain, as shown in Figure 14: “Re-
quester R1 has posted a crowdsourcing design task, ‘Design a three-axis robot arm’. The
design requires ‘It needs an original design with high precision, low cost, simple trans-
mission, simple manufacturing process’. Currently one worker received this task and
completed the submission; the status of the task is completed”.

Figure 14. Crowdsourcing design task information.

Figure 15 shows the traceability information of worker W1’s completion of the
crowdsourcing design task recorded on the chain. The traceability information details the
address information of the worker, the time of receiving the task and the time of submit-
ting the task, a brief description of the task and the attached retrieval pointer.

Figure 15. The traceability information of crowdsourcing design task.

In summary, the test results show that the blockchain-based control of crowdsourc-
ing design services and visual management of crowdsourcing design tasks are achieved.

Figure 15. The traceability information of crowdsourcing design task.

In summary, the test results show that the blockchain-based control of crowdsourcing
design services and visual management of crowdsourcing design tasks are achieved. From
the posting of a crowdsourcing design task to the final payment of the task reward, the
complete details of the user’s operation are recorded on the blockchain and updated as the
user interacts with the smart contract. In particular, the data of crowdsourcing design tasks
cannot be tampered with or deleted at will. Crowdsourcing design tasks performed under
this framework can always track the current status of the task; even after the crowdsourcing
design task is finished, the task data will be permanently saved and can be traced back to
any task at any time. The entire system consensus is jointly maintained by the participating
nodes, which has higher credibility than relying on third parties for data management. The
blockchain system and IPFS are both distributed architecture, which does not have the
problem of single point of failure and has higher availability.

6. Conclusions

In this paper, we analyze some problems of the traditional crowdsourcing design
service platform in the context of social manufacturing, design a blockchain-based approach
of model architecture for crowdsourcing design services using the decentralization, tamper-
proof and traceability features of blockchain. Combined with IPFS and other technologies,
the whole crowdsourcing logic process is implemented with smart contracts. The paper
details the composition of the application layer, blockchain layer and storage layer in this
method; depicts the data-interaction process between three layers; and solves the problem
of blockchain-based crowdsourcing design services involving large files that affect the
operation of the blockchain. Finally, we tested the deployment of the entire framework
on the blockchain. The results showed that the entire crowdsourcing design workflow
can be fully implemented and the control of the crowdsourcing design service process can
be achieved.

In this paper, a series of algorithmic protocols are designed based on smart contracts.
A task-state machine is designed to accurately describe all the states of the tasks in the
crowdsourced design workflow and enhance the flexibility of the crowdsourced design
service, combining blockchain technology with a crowdsourcing design model under the
context of social manufacturing.

Although the model and method proposed in this paper are feasible and practical,
there are still some shortcomings. The experimental validation in Section 5 simply verifies
the usability of the model functions with a small scale of experimental data. The presented

Machines 2023, 11, 69 16 of 16

model performs well when the number of network nodes is low, but as the number of
network nodes increases, the uncertainty brought to the model remains to be studied in
depth. In the future, we will further improve the algorithmic logic of smart contracts so that
they can run stably and securely in a complex node network environment before deploying
them to public test networks for testing.

Author Contributions: Conceptualization, methodology, supervision, project administration and
funding acquisition, D.L. (Dianting Liu); Software, formal analysis, writing—original draft prepara-
tion, writing—review and editing, and visualization, D.L. (Dong Liang). All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
number 71961005, and Natural Science Foundation of Guangxi Zhuang Autonomous Region, grant
number 2020GXNSFAA297024.

Data Availability Statement: The smart contract used during the current study are available from
the corresponding author Dong Liang (1020211081@glut.edu.cn) upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Guo, W.; Wang, Z.; Shao, H.Y.; Wang, L.; Gong, L.; Yu, S.S.; Feng, Y.X.; Wan, X.M.; Liu, J.Q. Crowdsourcing design theory and key

technology development. Comput. Integr. Manuf. Syst. 2022, 28, 2650–2665.
2. Jiang, P.Y.; Yang, M.L.; Li, W.D.; Liu, J.J.; Guo, W.; Li, P.L. CI Literature Review and Its Application Exploration in Social

Manufacturing. China Mech. Eng. 2020, 31, 1852–1865.
3. Jiang, P.Y.; Leng, J.W.; Ding, K. Analyzing and delimiting overlapping concept boundaries of social manufacturing. Comput.

Integr. Manuf. Syst. 2018, 24, 829–837.
4. Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. Available online: http://www.bitcoin.org/bitcoin.pdf (accessed on

18 September 2022).
5. Gavin, W. Ethereum: A Secure Decentralised Generalised Transaction Ledger. Ethereum Proj. Yellow Pap. 2014, 151, 1–32.
6. Szabo, N. Smart Contracts: Building Blocks for Digital Markets. Available online: https://www.docslib.org/doc/246577/smart-

contract-building-blocks-for-digital-markets (accessed on 10 November 2022).
7. Howe, J. The rise of crowdsourcing. Wired Mag. 2006, 14, 1–4.
8. Li, Y.; Duan, H.Y.; Yin, Y.Y.; Gao, H.H. Survey of Crowdsourcing Applications in Blockchain Systems. Comput. Sci. 2021, 48, 12–27.
9. Ding, Y.; Chen, Z.; Lin, F.; Tang, C. Blockchain-Based Credit and Arbitration Mechanisms in Crowdsourcing. In Proceedings of the

2019 3rd International Symposium on Autonomous Systems (ISAS), Shanghai, China, 29–31 May 2019; pp. 490–495. [CrossRef]
10. Wu, C.; Zhao, M.N.; Hua, X.H.; Qi, H.W. Design and Implementation of Crowdsourcing Agricultural Products Logistics Platform

Based on Block Chain Technology. J. Geomat. 2022, 2, 139–143.
11. Yang, Z.; Huang, S.; Zheng, C.Y.; Wang, T.Y. A Trusted Management Framework for Crowdsourced Testing Intellectual Property

Based on Blockchain. Comput. Appl. Softw. 2021, 10, 27–32+99.
12. Ghaffaripour, S.; Miri, A. A Decentralized, Privacy-Preserving and Crowdsourcing-Based Approach to Medical Research. In

Proceedings of the 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Toronto, ON, Canada, 11–14
October 2020; pp. 4510–4515.

13. Gao, L.P.; Cheng, T.; Gao, L. TSWCrowd: A Decentralized Task-Select-Worker Framework on Blockchain for Spatial Crowdsourc-
ing. IEEE Access 2020, 8, 220682–220691. [CrossRef]

14. Li, M.; Weng, J.; Yang, A.J.; Lu, W.; Zhang, Y.; Hou, L.; Liu, J.N.; Xiang, Y.; Deng, R.H. CrowdBC: A Blockchain-based Decentralized
Framework for Crowdsourcing. IEEE Trans. Parallel Distrib. Syst. 2019, 20, 1251–1266. [CrossRef]

15. Benet, J. Ipfs-content addressed, versioned, p2p file system. arXiv 2014, arXiv:1407.3561.
16. Zhang, Y.; van der Schaar, M. Reputation-Based Incentive Protocols in Crowdsourcing Applications. In Proceedings of the 2012

Proceedings IEEE INFOCOM, Orlando, FL, USA, 25–30 March 2012; pp. 2140–2148.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://www.bitcoin.org/bitcoin.pdf
https://www.docslib.org/doc/246577/smart-contract-building-blocks-for-digital-markets
https://www.docslib.org/doc/246577/smart-contract-building-blocks-for-digital-markets
http://doi.org/10.1109/ISASS.2019.8757776
http://doi.org/10.1109/ACCESS.2020.3043040
http://doi.org/10.1109/TPDS.2018.2881735

	Introduction
	Background
	Crowdsourcing Workflow
	Blockchain
	Smart Contract

	Blockchain-Based Model Architecture of Crowdsourcing Design
	Overview
	Structure
	Application Layer
	Blockchain Layer
	Storage Layer

	Process of Crowdsourcing Design

	Smart Contracts and Algorithm Protocols
	Notations
	Smart Contract
	User Register and Summary Contract (URS)
	Relationship Contract (RC)

	Reputation Algorithm
	Protocol Algorithm
	Register
	Posting Task
	Receiving Task
	Submitting and Acquiring Task Solution
	Evaluating Task Solution and Sending Reward

	Experiment
	Experiment Environment
	Experiment Process and Analysis
	Smart Contracts Complication and Deployment
	System Functionality Testing

	Conclusions
	References

