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Abstract: Mass customisation demand requires increasingly flexible assembly operations. For the
in-plant logistics of such systems, milkrun trains could present advantages under high variability
conditions. This article uses an industrial study case from a global white-goods manufacturing
company. A discrete events simulation model was developed to explore the performance of multi-
model assembly lines using a set of operational and logistics Key Performance Indicators. Four
simulation scenarios analyse the separate effects of an increased number of product models and three
different sources of variability. The results show that milkruns can protect the assembly lines from
upstream process disturbances.

Keywords: milkrun; in-plant logistics; flexible assembly; simulation; high-mix low-volume; lean
manufacturing

1. Introduction

Since the end of the 20th century, it is considered that demand trends are shifting
from mass production towards mass customisation [1] and mass personalisation [2]. To
address this situation, manufacturing companies need to produce an increasing number
of different products, in smaller quantities each, without compromising on quality or
price [3]. For consumer goods manufacturers, this means shifting from large batches of
very similar products towards high-mix low-volume production. To gain an advantage
or simply remain competitive, production flexibility, reconfigurability and resilience are
key [4].

In a typical discrete production process—e.g., automobiles, white goods, home elec-
tronics, furniture, toys—the assembly stage taking place after manufacturing is also of
capital importance [5]. Traditional assembly operations are performed in manual or semi-
automated lines or cells, which are usually dedicated to one product or a small family
of products closely related [6]. These products are assembled in batches to minimise the
losses incurred due to product changeovers [7,8]. Looking at existing assembly operations
approaches to build upon, Lean Manufacturing [9] proposes a methodology inherently
oriented towards reduced batch sizes, frequent product changeovers, multi-product as-
sembly cells and cross-functional operator teams [10,11]. In this context, it seems clear
that traditional assembly lines face serious threats when confronted with the high-mix
low-volume demand brought by the mass customisation paradigm. The main challenges
include dealing with complexity, uncertainty and disturbances, successfully deploying
disruptive digital technologies [12]—i.e., Industry4.0 [13] or smart manufacturing [14]—
and further integrating the sub-systems related to assembly: supporting functions such as
internal logistics [15], maintenance [16] or quality control [17].
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Internal logistics is the supply chain function most closely related to the assembly
operations since it is tasked with feeding components to the assembly line or cell without
introducing production constraints [18,19]. Flexible assembly lines driven by mass cus-
tomisation and featuring mixed- or multi-model production pose additional challenges
to internal logistics [20], which impact directly on the classic Lean supply performance
indicators [21]. In-plant milkruns [22] (misuzumashi [23], tow-train [18]) are one of the
best available Lean tools for efficiently supplying parts to flexible multi-model assembly
lines [24].

The brief literature review that will be presented in Section 2 shows that despite an
increasing research depth on the topic of milkrun logistic systems for flexible assembly
lines, there are still limited published works which include variability. Two papers are very
closely related to our research topic: Korytkowski et al.’s [25] is great but features a single-
model assembly line, while Faccio et al.’s [26] article considers mixed-model assembly
lines, but the sources of variability considered there are limited to milkrun train capacity
and refilling interval. This connects with the key avenues for future work identified by
Gil-Vilda et al. [19], which point to including variability and disturbances to the study of
milkrun systems.

In consequence, the goal of this article is to continue exploring the use of milkrun
trains for the internal logistics of flexible assembly operations featuring multiple manual
assembly lines. In particular, we aim to look at scenarios where demand presents mass
customisation characteristics (i.e., high-mix low-volume). The work presented here aims
to evaluate the performance of milkrun trains and assembly lines in this demand context
by focusing on two main aspects, following the lines for further investigation detected by
Gil-Vilda et al. [19], namely the product mix (multi-model in opposition to single-model
assembly) and the impact of variability and stochastic disturbances.

To address the aforementioned objectives, the following research questions are formulated:

1. What is the effect on the operational and logistics Key Performance Indicators (KPIs) of
producing multiple models in an assembly line compared to single-model production?
Are there significant differences between mixed-model and multi-model production
from the milkrun internal logistics point of view?

2. How is the milkrun-assembly lines system affected by variability? In particular, to what
extent is it impacted by assembly process variability and supply chain disturbances?

To carry out this research, Discrete Events Simulation (DES) was the chosen tool. A
real industrial study case from a global white-goods manufacturer site located in northern
Spain is presented and used to provide the foundations of the different simulation scenarios
analysed to address the research questions.

The structure of this article is the following: Section 2 presents a brief literature review
on the topic, highlighting the key findings made by previous research and the open lines of
research derived from them. Section 3 Methodology introduces the assumptions used to
build the simulation model, details the study case data and the parameters as well as the
performance indicators selected to define and assess the simulation scenarios. Section 4
Results presents the outcome of the simulation, which is then discussed in Section 5.

2. Literature Review

Feeding the components to assembly lines requires complex in-plant logistics to
do so in an efficient, flexible and responsive manner. Although many feeding policies
could be used [27], some have clear advantages when facing a demand situation of mass
customisation or mass personalisation.

In the context of Lean logistics, milkruns (also named ‘tow-trains’ or shuttles) are
defined as ‘pickups and deliveries at fixed times along fixed routes’ [18]. Inbound and outbound
milkrun delivery systems work analogously, sharing a key aspect: ‘milkruns are round tours
on which full and empty returnable containers are exchanged in a 1:1 ratio’ [22].

Several authors have proposed different approaches for classifying milkrun systems.
For instance, Kilic et al. [28] proposed that the main problem for milkrun design is to
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determine the routes and time periods aiming to minimise total cost, which are composed
of transportation and Work In Process (WIP) holding costs. Their framework classifies
milkrun problems depending on the need to determine the time periods, the routes or
both; for one- or multiple-routed milkruns; and considering either equally or differently
timed routes. On the other hand, Mácsay et al. [29] described four milkrun-based material
supply strategies, while Klenk et al. [30] modelled milkrun systems using Methods-Time
Measurement (MTM) parameters and explored six major milkrun concepts.

Alnahhal et al. conducted a literature review in 2014 [31] that found a scarcity of
studies looking at in-plant milkrun systems as a whole, and that there was a research
tendency to drift away from Lean goals to look for optimality based on restrictive objectives
in its stead. Later articles, however, addressed in-plant milkruns from multiple angles;
in particular, for mixed-model assembly systems closely related to multi-model systems,
which are the focus of this article. A plethora of study cases have also been published in
recent years, helping to illustrate the benefits of milkruns and the production challenges
they help to overcome. The following subsections look into some of them in further detail.

2.1. In-Plant Milkruns for Mixed-Model Assembly Lines

Alnahhal et al. [32] looked into using milkruns for mixed-model assembly lines
from decentralised supermarkets. Variables such as train routing, scheduling and loading
problems were considered, aiming to minimise the number of trains, loading variability
route length variability and assembly line inventory costs. Different analysis tools were
employed: analytical equations, dynamic programming and Mixed-Integer Programming
(MIP). On the other hand, Golz et al. [33] used a heuristic solution in two stages to minimise
the number of shuttle drivers, focusing on the automotive sector.

This sector was also the focal point of Faccio et al.’s work [26], in which they proposed
a general framework using short-term (dynamic) and long-term (static) sets of decisions
allowing to size up the feeding systems for mixed-model assembly lines composed of
supermarkets, kanbans and tow-trains. In another article [34], Faccio et al. dived deeper into
the subject by investigating kanban number optimisation. It was highlighted that traditional
kanban calculation methods fell short under a multi-line mixed-model assembly systems.

Emde et al. also looked at optimising some aspects of mixed-model assembly lines,
namely (1) the location of in-house logistics zones [35] and (2) the loading of tow-trains to
minimise the inventory at the assembly and to avoid material shortages, using an exact
polynomial procedure [36]. Discrete Events Simulation was used by Vieira et al. [37] in an
automated way (using a tailored API on top of a DES commercial software) to model and
analyse the costs of mixed-model supermarkets.

2.2. Other Aspects of In-Plant Milkruns

A few articles examined the performance evaluation of milkrun systems. Klenk et al. [38]
evaluated milkruns in terms of cost, lead time and service level. Their article used real
data from the automotive industry with a focus on dealing with demand peaks. Bozer
et al. [39] presented a performance evaluation model used to estimate the probability of
(1) exceeding the physical capacity of the milkrun train and (2) exceeding the prescribed
cycle time. This model assumed a basic, single-train system and that assembly lines are
never starved of components. It highlighted some of the milkrun advantages: low lead
times, low variability and low line-side inventory levels. Other articles describe milkrun
systems evaluation methods which employ cost efficiency [29] or the required number
of tow-trains [40]. Many authors used discrete event simulation to evaluate the potential
performance of milkrun systems as a tool for milkrun design [41], evaluating dynamic
scheduling strategies [42] or digital twin verification and validation [43].

The Association of German Engineers (VDI—Verein Deutscher Ingenierure) proposed
the standardisation guidelines VDI 5586 [44] for in-plant milkrun systems design and di-
mensioning. Schmid et al. [45] discussed the draft VDI norm and found several drawbacks.
Their article states that algorithms can support the milkrun design process; however, this
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system’s design cannot be formulated as a regular optimisation problem. In a later article,
Urru et al. [46] highlighted that VDI 5586 was the only norm for milkrun logistics systems
design and that it is only applicable under severe restrictions. A methodology was then
proposed to complement the VDI guideline. Kluska et al. proposed a milkrun design
methodology which includes the use of simulation as supporting tool [41].

Gyulai et al. [47] provided an overview of models and algorithms for treating milkrun
systems as a Vehicle Routing Problem (VRP). This article introduced a new approach with
initial solution generation heuristics and a local search method to solve the VRP.

Gil-Vilda et al. [19] focused on studying the surface productivity and milkrun work
time of U-shaped assembly lines fed by a milkrun train using a mathematical model. This
article established promising avenues for future research: (1) assessing the impact of the
number of parts per container and (2) analysing the impact of variability.

On the topic of variability, two articles stand out. Korytkowski [25] posed the research
question about ‘how disturbances in the production environment and managerial decisions affect
the milkrun efficiency’. This work analyses a single-model assembly line by employing
discrete events simulation including three variability parameters—assembly process co-
efficient of variability, probability of a delayed milkrun cycle start and the magnitude
of such delay—in addition to other three parameters: WIP buffer capacity, TAKT time
synchronisation, and the milkrun cycle time. The KPIs used were throughput, WIP stock,
milkrun utilisation and workstation starvation. The key conclusions were that TAKT sync
does not affect the KPIs, even in conjunction with limited WIP buffer capacity. It was also
found that a higher milkrun cycle time decreases the milkrun utilisation and increases the
assembly line stock. Finally, this article concluded that milkrun systems mitigate the impact
of production variations, which implies that they do not require large safety times built
into them. Faccio et al. [26] also introduced variability sources in their dynamic milkrun
framework for mixed-model assembly lines. In particular, this article includes tow-train
capacity variability (related to the number of parts per kanban container, which is linked to
the stochastic demand considered) and refilling interval variability.

2.3. In-Plant Milkrun Study Cases

There is no scarcity of published articles featuring study cases of in-plant milkrun
systems. However, there are not so many articles specifically focusing on milkruns feeding
multi-model assembly lines, and only a few articles consider stochastic variables. It is
also noteworthy that the majority of study cases on the topic belong to the automotive
industry. Table 1 summarises the study case articles found in this brief review, which
includes the articles mentioned previously as well as a few additional documents [48–52]
which specifically present milkrun study cases.

Table 1 shows some noteworthy points. First of all, no article specifically shows study
cases of multi-model assembly lines, although there are some articles on mixed-model
systems. Secondly, very few articles present real industrial study cases outside of the auto-
motive sector. Finally, variability has not been commonly considered by research articles on
the topic so far. The work presented here aims to cover the three highlighted shortcomings.
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Table 1. Key aspects of selected research articles on in-plant milkrun systems which include study cases.

Article Analysis Tool Objective No.
Lines

No.
Vehicles

Product
Mix

Variability Real
Industry

Case

Sector

Aksoy [51] MILP and heuristics MR route optimisation Multi Multi Single No Yes Automotive
Alfonso [53] Simulation Ergonomy and material

flow improvement
Multi Single Single No Yes Automotive

Alnahhal [32] MIP, DP and
math modelling

Min WIP, variability,
handling cost

Multi Multi Mixed No No NS 1

Coelho [43] Simulation Verify and validate digital
twin framework for in-
plant logistics

Multi NS NS Yes Yes Automotive

Costa [52] Simulation Train loading Multi Single Single No Yes Electronics
Emde [48] MIP and heuristics Min WIP Single Single Mixed No No Automotive
Faccio [26] Math model Min no vehicles and

WIP
Multi Multi Mixed Yes Yes Automotive

Faccio [34] Math model Optimal no. kanbans Multi Multi Mixed Yes Yes Automotive
Gil-Vilda [19] Math model Max surface

productivity
Single Single Single No Yes Unknown

Golz [33] MILP and heuristics Min no. trains Multi Single Mixed Yes No Automotive
Gyulai [47] Heuristics and local

search method
Min no. vehicles Multi Multi NS No NS Automotive

Kilic [28] Mixed Integer
Programming (MIP)

Min cost (no vehicles ×
distance travelled)

Multi Multi NS No Yes Automotive

Klenk [38] Math model Handling demand peaks Multi Single NS Yes Yes Automotive
Korytkowski [25] Simulation Effect of disturbances

and management deci-
sions

Single Single Single Yes No NS

Pekarcikova [54] Simulation Improve logistic flows Single Single Single No NS Automotive
Rao [42] Simulation Improve material flow,

reduce no. vehicles
Multi Multi Single No NS NS

Satoglu [50] Math model
and heuristics

MR route to minimise
handling and stock costs

Multi Single Single No Yes Electronics

Simic [49] Particle swarm
optimisation

Min stock costs Single Single Single No No Automotive

1 NS: Not Specified.

3. Materials and Methods

In this article, the operational performance of two assembly lines and the milkrun train
that feeds them is evaluated under different conditions. The system consisting of assembly
lines and internal logistics was studied by considering a set of inputs, a Discrete Events
Simulation model and a set of output KPIs, as depicted in Figure 1. The model consists
of two main parts: the assembly lines and the supply chain feeding the components to
the Assembly Line (AL) in containers using a milkrun train. Simulation was chosen for
building this model because it allows the introduction of stochastic elements [55], such
as process or logistics variability, which is necessary to achieve this work’s goals. The
simulation tool employed was FlexSim® (2022.0, FlexSim Software Products, Inc., Orem,
UT, USA). Several simulation scenarios are created by modifying different parameters and
disturbances values to analyse desired aspects of the system behaviour. Section 3.1 details
the modelling assumptions. Section 3.2 includes the notation and definitions employed,
and Section 3.3 includes the input data used in the models, which are used for validation
(Section 3.4) and the experiment design (Section 3.5).
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Figure 1. In-plant milkrun for multi-model assembly lines. Input parameters and disturbances are
changed when analysing the performance of the system using simulation. Model output includes
relevant operational and logistics Key Performance Indicators (KPIs) for evaluation.

3.1. Assumptions

The simulation model depicted in Figure 1 is made of two main subsystems: (1) two
manual assembly lines, which feature operators, workstations, product buffers and compo-
nents racks; and (2) internal logistics, which include a milkrun train, the components Points
Of Use (POUs), a warehouse and the information flow necessary to ensure the assembly
line receives the required components on time; see Figure 2.

Assembly lines: Figure 2a,b show the elements of the assembly lines used in this
model, which feature the following assumptions following the classification of assembly
systems by Boysen et al. [6]:

• The assembly systems are unpaced, buffered lines.
• These are fixed-worker assembly lines: operators are assigned to stations.
• There is manual assembly only (no semi- or fully automated work content).
• The number of workstations is constant. Each station can process only one product

unit at a time.
• Operators need to gather all components specified by the Bill of Materials (BOM) to

proceed to assemble at their stations; see Figure 2a.
• The demand mix is known and it continues for the whole simulation horizon.
• The assembly lines can be single-model, mixed-model or multi-model. Single-model

lines only produce one product variant per AL. Mixed-model lines can produce more
than one model, but there is no setup time between products. Multi-model lines are
similar to mixed-model lines but they do incur setup time losses when changing over
from one product model to another.

• Setup times, where present, are not dependent on the product sequence.
• The product sequence consists of an alternating pattern of batches of products. The

batch size is stochastic, based on a discrete uniform distribution to represent the prob-
ability of a batch being released to the assembly line with fewer units than standard.
This represents the disturbances caused by upstream manufacturing processes. The
probability distribution is governed by the batch size coefficient of variability (CVq).
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• Processing and setup times are stochastic. They follow a lognormal distribution based
on mean values and standard deviations, which are expressed by the coefficients of
variability (CVp, CVs).

• Slightly different processing times on each station mean that these are unbalanced
assembly lines, as shown in the ‘Input’ subsection.

Figure 2. Simulation model subsystems interaction. (a) Assembly line stations; (b) Milkrun operator
loading and unloading containers to assembly station; (c) Milkrun train picking at the warehouse,
followed by the components replenishment cycle across all Points Of Use (POUs) of the route.

Internal Logistics: Figure 2 shows the main components of the internal logistics, which
consists of four subsystems:

• Information flow between the assembly lines and the milkrun train, so that the milkrun
picks up the right components for the product models that will be needed in the AL.
This includes the calculations of the number of containers of each component Ni. This
is worked out based on the expected consumption over the milkrun cycle time (d), the
no. of pieces of component i per product unit (ni) and the no. of pieces per container
(qi), with a minimum of 2, as shown in Equation (1). This minimum of 2 containers is
required to prevent assembly line starvation, which could occur otherwise since the
milkrun logic implies taking empty containers and replacing them with full ones on
the next cycle.

Ni = max
(⌈

di · ni
qi

⌉
, 2
)

(1)

• The number of pieces in each component container is stochastic, based on the standard
number of pieces per container and a coefficient of variability (CVc). A discrete
uniform distribution is employed, which uses CVc as the lower limit and the standard
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no. of pieces as the upper limit. This represents the probability of a certain number
of pieces being non-conforming due to quality problems, inaccurate counting at the
external suppliers’ production site or incorrect re-packing at the in-plant warehouse,
especially for components packed in bulk, such as nuts and bolts.

• Milkrun train picking at the warehouse (see Figure 2c) is modelled as a single POU.
The milkrun train is emptied upon arrival, and it is thereafter filled again with the
required containers for the next supply cycle.

• The milkrun transportation time from/to all POUs (Figure 2c) is based on historical
time measurements from the industrial study case. Since the data show very little
variability, the model assumes a deterministic transportation time given by the input
parameter Tt.

• Supply chain operator loading and unloading of component containers to the assembly
lines at each POU, as shown in Figure 2b. There are two possible situations: (1) Regular
cycle (same product model): the operator replaces the empty boxes in the ‘returns rack’
with full boxes of the same component. The handling time is different for full and
empty containers; see the input subsection. (2) Product changeover cycle (before the
assembly line changeover): in which the milkrun operator firstly replaces any current
product empty container to ensure that the current batch can be finished and then
loads the next containers of the next product components so that they are available to
the assembly operators when they finish the stations’ changeover.

3.2. Notation

The following notations are introduced:
Input: Parameters

Q Batch size
CT Assembly cycle time
CTMR Milkrun cycle time
L No. of assembly lines, index l.
K No. of assembly workstations (no. POUs) per assembly line, index k.
M No. of product models, index m.
Tp Processing time
Ts Setup time
WC Work content (i.e., total process time)
WIP No. of work in progress units between workstations
Tt Milkrun transportation time to/from assembly line
Te

h Milkrun operator container handling time, empty container
T f

h Milkrun operator container handling time, full container

Input: Disturbances

CVp Process time coefficient of variation: CVp = σTp/µTp

CVs Setup time coefficient of variation: CVs = σTs/µTs
CVc Conforming units per container coefficient of variation
CVq Batch size coefficient of variation

Output: Key Performance Indicators

P Productivity (units/operator-h): production rate of conforming units per assembly
operator.

LT Lead Time (min): average time for a batch of units to be finished from the moment
the last unit of the previous batch is finished.

U Milkrun Utilisation (%): fraction of total available time that the supply chain
operator is busy (picking components at the warehouse, driving the milkrun train
and handling containers to load/unload the components at the POUs).

S Stock in the assembly line (units): average stock of components held in the assembly
line measured in equivalent finished product units.
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3.3. Input Data

The simulation model uses data provided by the industrial study case, which presents
a common situation faced by plenty of manufacturing businesses globally. Table 2 shows
the model parameters base, min and max values.

Table 2. Input parameters and disturbances base and range values.

Parameter Units Min Max Base Value

Q units 48
CT s see Table 3
CTMR min 140
L lines 2
K stations 5
M models 2 4 4
Tp s see Table 3
Ts s 480
WC s see Table 3
WIP units 1
Tt min 4
Te

h s 1

T f
h s 2

CVp 0 0.50 0.15
CVs 0 0.50 0.15
CVq 0 0.50 0.10
CVc 0 0.20 0.00

The operations considered in this model include two manual assembly lines which
assemble four product models, two on each line. The mean processing times for each
model and station along with work content and cycle time is summarised in Table 3.
These processing times were obtained from the industrial company standard operating
procedures, which in turn are calculated using MTM.

Table 3. Product processing time input data.

Line m
Tp (s)

CT (s) WC (s)
k = 1 k = 2 k = 3 k = 4 k = 5

1 1 192.8 187.5 185.5 188.2 190.1 192.8 944.1
2 214.3 210.2 215.4 212.0 210.7 215.4 1062.6

2 3 237.6 238.5 236.7 233.0 232.1 238.5 1177.9
4 176.1 176.1 175.1 173.2 173.0 176.1 873.5

The products within a line share materials, technological features and general pur-
poses, but they require different components, assembly fixtures and tooling. This calls
for changeovers to adjust the workstations when a batch of a different product model is
required. The parameter governing setup times is Ts, which takes each operator approxi-
mately 6 min (see Table 2), independently of the product sequencing.

Each product unit consists of many different components, as shown in Table 4. Most
components are required only once per finished product unit, although some components,
especially the smaller ones, may be required in larger numbers.
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Table 4. Bill Of Materials summary data.

m
No. Components Total No.

Components
Total

Piecesk = 1 k = 2 k = 3 k = 4 k = 5

1 16 6 10 11 4 47 62
2 28 4 14 13 13 72 132
3 20 7 20 18 21 86 160
4 16 9 9 24 14 72 105

Components are transported to the POUs and then presented to the assembly operators
in containers, i.e., boxes, trays or small trolleys. Each container carries a certain number of
pieces of one component, typically a few dozens for middle- and large-size components,
and about one hundred pieces for small components, such as bolts, screws and washers.

In this particular study case, an important number of components are packed in
very large quantities per container compared to the number of pieces needed to feed the
assembly line for the duration of the milkrun cycle. Note that the the milkrun cycle time is
approximately similar to the time required to complete a production batch. To illustrate this
fact, Table 5 shows the number of components of each product model that are packed in
large quantities. Here, large quantities refers to the case in which one single container includes
a number of pieces allowing to assemble more than two full batches of products—i.e., it is
equivalent to the assembly line consumption of two milkrun cycles.

Table 5. Details of the high number of components served in large quantities 2 to the assembly lines.

Number of Components
Product Model

Avg
m = 1 m = 2 m = 3 m = 4

Total no. components 47 72 86 72 69
Packed in large quantities 2

No. components 13 25 29 37 26
Percentage components 28% 35% 34% 51% 28%

2 Containers including a no. of pieces equivalent to the consumption of more than two milkrun cycles.

When the milkrun operator arrives at each POU, the containers are handled between
the train and the back side of the POU racks. Based on measurements at the industrial
partner facility, one second was estimated for handling empty containers and two seconds
for containers full of components, as shown in Table 2. When walking from the milkrun
train to the POU, the milkrun operator’s speed was considered 1 m/s. The milkrun train
speed in the assembly line area was found to be around 1 m/s, and the POU positions
are separated approximately 2 m from each other, resulting in a 12 m long assembly
line. Regarding the milkrun train travel from the warehouse to either assembly line, the
industrial partner measurements showed little variability for an average travel time of
approximately 4 min each way. The milkrun preparation time at the warehouse (picking
time) was simulated considering the warehouse as a single picking point and treated as
any POU of the assembly line.

The DES model takes into account the inherent variability of manual assembly op-
erations by using lognormal distributions for processing and setup times, following the
recommendations of [56]. The lognormal distribution is generated using the mean (µ)
values of Tp and Ts—see Table 3—and the standard deviation (σ), which is given as a
percentage of the mean by the coefficients of variation CVp and CVs. The base values for
the coefficients were estimated from historical data provided by the industrial partner of
this study case. The data allowed estimating CVp and CVs to be in the range of 0.15–0.20
for manual assembly lines. Note that since one of the goals of this work is to analyse the
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influence of processing and setup times variability on the internal logistics performance,
CVp and CVs will take a range of values in certain simulation scenarios. Another two
sources of variability, introduced in Section 3.1, are considered: the conforming units per
container variability (CVc) and the batch size quantity variability (CVq). They are relevant
along with the processing and setup variability because the logistic performance of the
milkrun system is directly related to them.

3.4. Verification and Validation

The validation and verification of the simulation models were performed separately
for assembly operations and internal logistics.

For the assembly operations section, historical production KPIs data were gathered
and compared against the results of a simple parametric model and a discrete events simu-
lation model. The results presented by the authors in [57] allowed the validation of both
models by comparison against real industry study case data. It was also possible to verify
the parametric model against the simulation model (considering no variability) because
their results difference was smaller than 3.5% for any considered performance metric. In
summary, the results indicated that both parametric and simulation models slightly under-
estimate total output and that they overestimate the production rate, labour productivity
and line productivity. Both models were found to be reliable for the context considered
here since the mean relative error was 1.63% and the max relative error was 4.9%.

Regarding the internal logistics part of the simulation model, the validation was
carried out using measurements at the industrial partner assembly lines from June 2022.
A total of 18 milkrun cycle measurements were registered, finding an average milkrun
utilisation of 78.4%. This was compared with the equivalent simulation model results
(U = 71.6%) to calculate a relative error of 8.7%, slightly below 10%, which was considered
satisfactory for the scope of this work.

3.5. Experiment Design

To address the research questions laid out in Section 1, several simulation scenarios
were designed and then implemented on the simulation model by modifying the model’s
parameters. Table 6 summarises the parameters and range of values used to set up the
simulation scenarios.

Table 6. Simulation scenarios.

Scenario Parameter Units Range

i. Product mix M models {2, 4}
Ts s {0, 480}

ii. Process variability CVp, CVs per unit [0, 0.50]
iii. Batch size variability CVq per unit [0, 0.50]
iv. Components quantity var. CVc per unit [0, 0.20]

The first research question—‘(1) What is the effect on the operational and logistics KPIs of
producing multiple models in an assembly line compared to single-model production? Are there
significant differences between mixed-model and multi-model production from the milkrun internal
logistics point of view?’—is examined by changing the number of product models under
demand (one model per assembly line for single-model, M = 2; two models per assembly
line per mixed- and multi-model, M = 4) and the setup time duration parameter (Ts set
to 0 s for mixed-model, 480 s for multi-model). For this scenario i., process and batch
quantity coefficients of variability take their base values (Tp and Ts 0.15, CVq 0.10 ), and the
conforming units per container coefficient of variability is set to 0, as stated in Table 2.

The second research question—‘(2) How is the milkrun-assembly lines system affected by
variability? In particular, to what extent is it impacted by assembly process variability and supply
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chain disturbances?’—will be decomposed into the three variability sources considered in
the simulation model. Firstly, process variability is governed by parameters CVp (assembly
processing time variability) and CVs (setup time variability). These parameters will take
values ranging from 0 (no variability at all) up to 0.50 (high variability), making up scenario
ii. Secondly, the batch size variability coefficient will be used to represent in-plant manu-
facturing issues leading to smaller-than-standard batches of products being released for
assembly. Similarly to the previous scenario, in scenario iii. CVq values will range from 0
to 0.50, covering from no disturbances up to half of the batches having fewer units than
it was intended. Finally, scenario iv. looks into external supplier perturbations which are
simulated using the components quantity coefficient of variability. CVc will take values
in the range of 0 to 0.20, meaning that each components container can have up to 20%
fewer valid pieces in the less favourable case. The effect of the interactions between the
variability parameters was not analysed because a preliminary two-level full factorial
design of experiments showed that two-factor interactions were not significant for the KPIs
under study in comparison to the effects of the variability parameters by themselves.

The following Section 4 Results shows the outcome of the simulation scenarios intro-
duced here.

4. Results

This section includes the outcome of the simulations corresponding to scenarios i.-iv.
Section 4.1 addresses the first research question, and Section 4.2 includes scenarios ii.-iv.,
which jointly address the second research question.

The results shown here are obtained with a simulation horizon of 74 h with a warm-up
time of 2 h (i.e., nine production shifts after the warm-up is finished). To account for the
stochastic nature of the results, each simulation scenario is run 20 times. This number was
chosen because it was found that using a larger number of runs did not affect the resulting
output in a statistically significant manner. At the start of each simulation run, all assembly
stations and buffers between them are empty as well as all the components racks and the
milkrun train.

The results shown in this section are presented in boxplots where the upper and lower
limit of the boxes corresponds to the first and third quartiles. The coloured line is the mean
and the whiskers limits are set to 1.5 times the interquartile range. Outlier data points
(beyond the whiskers) are marked by a circle. The charts scale has been kept constant
across all simulation scenarios to facilitate comparison.

4.1. Single-Model vs. Mixed-Model, Multi-Model Assembly

The selected operational KPIs comparing the performance of the assembly lines under
scenario i. demand conditions are shown in Figure 3 and summarised in Table 7.

The productivity of single- and mixed-model lines is significantly superior to multi-
model lines, as is expected considering that the setup time becomes zero (from 480 s per
batch of 48 units, which represents just below 5% of the time needed to complete the batch
on average). The difference in productivity between single- and mixed-model lines is
related to operator idle and blocked times following product model changeovers as a result
of cycle time differences between the incoming and outgoing products. Said difference does
not account for significant productivity results in this case. Batch lead time, as expected, is
slightly larger for mixed- and multi-model lines compared to single-model lines.

On the internal logistics KPIs side, milkrun utilisation and assembly line stock show a
clear differentiation between single-model assembly lines and the other two. Incorporating
multiple product models increases greatly the utilisation (from 51% to 72%, a +44% incre-
ment). Note that this steep increase could be linked to the high percentage of components
packed in large quantities. This will be examined in the next Section 5 Discussion.
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Figure 3. Scenario i.: Mean and deviation values of KPIs for single-, mixed- and multi-model
assembly lines. (a) Line productivity, (b) batch lead time, (c) milkrun utilisation and (d) assembly line
stock levels.

The component stock in the assembly line also suffers an increase for mixed- and
multi-model lines driven by the same reason: single-model assembly lines see their average
component stock decrease as the containers with very large quantities of pieces are con-
sumed over time. Contrarily, mixed- and multi-model lines are constantly fed with small
component boxes full of pieces. In the case shown here, the difference is significant but not
dramatic, at an approx. +22% increase (from 182 to 223 units).

In summary, increasing product mix negatively affects operational KPIs (reduces
productivity, increases batch lead time), which was expected. It also increases greatly
supply chain operator utilisation (+44% rise), although the magnitude of this sharp increase
could be attributed to the high percentage of components packed in large quantities.

Table 7. Scenario i: Mean and standard deviation (SD) of main KPIs for single-, mixed- and multi-
model assembly lines.

Product Mix
P (u/oper-h) LT (min) U (%) S (u)

Mean SD Mean SD Mean SD Mean SD

Single-model 3.33 0.015 188.9 1.5 50.60 0.82 181.7 1.9
Mixed-model 3.31 0.006 192.0 1.4 72.05 1.23 222.8 6.2
Multi-model 3.19 0.013 191.4 1.1 71.50 1.24 223.2 8.4

4.2. Variability and Disturbances

This subsection looks at how increasing levels of variability affect the operational (P,
LT) and internal logistics KPIs (U, S). As described in Section 3.5, simulation experiments
were set up to independently analyse the influence of assembly line process variability (CVp
and CVs, scenario ii.), batch size variability (CVq, scenario iii.) and conforming components
variability (CVc, scenario iv.).

4.2.1. Process Variability

To analyse the impact of the assembly line process and setup variability, the respective
coefficients were modified increasingly from 0 up to 0.50 (the base value for the industrial
case study is 0.15; see Table 2). Figure 4 shows the results of this simulation scenario, and
Table 8 includes the results’ numeric values for average and standard deviation.
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Figure 4. Scenario ii.: Mean and deviation values of KPIs for varying levels of process and setup
coefficients of variation. (a) Productivity, (b) batch lead time, (c) milkrun utilisation, and (d) assembly
line stock level.

In terms of operational KPIs, Figure 4a,b show that, as expected, an increase in process
variability negatively the performance of the assembly line, especially considering that this
lines’ number of work-in-process units is limited to one. In particular, it can be seen that
the productivity deteriorates greatly when CVp and CVs are greater than 0.20 both in terms
of mean and standard deviation. Batch lead time follows the same trend.

Figure 4c shows that U does not suffer any changes, although its standard deviation
increases slightly. On the other hand, the assembly line components’ stock levels are
severely impacted, rising from approx. 220 units for none or very small variability (CVp
and CVs at 0–0.10) up to an average of approx. 270 units for CVp, CVs 0.50, which represents
a noticeable +23% increase. Standard deviation also rises, but it remains small compared to
the mean values of S, as shown in Figure 4d. In summary, only AL stock levels are affected
by in-process variability, while the milkrun driver’s workload remains unaffected.

Table 8. Scenario ii.: Mean and standard deviation of main KPIs for increasing values of process variability.

CVp, CVs

P (u/oper-h) LT (min) U (%) S (u)

Mean SD Mean SD Mean SD Mean SD

0.00 3.27 0.012 183.0 1.2 71.75 1.33 220.4 4.9
0.10 3.24 0.011 187.8 0.8 71.25 1.16 218.7 5.8
0.20 3.12 0.015 195.4 1.1 71.45 1.05 238.5 7.6
0.30 2.98 0.019 205.2 1.8 71.30 0.99 238.1 8.8
0.40 2.83 0.021 216.0 2.2 71.45 1.23 252.6 7.8
0.50 2.67 0.025 228.7 2.3 71.28 4.06 272.1 10.7

4.2.2. Batch Size Variability

To understand the impact that upstream manufacturing process issues would have
on the assembly operational and internal logistics performance, scenario iii. was set up by
changing the value of CVq, which determines the probability of an assembly production
batch smaller than standard. CVq takes values between 0 (no disruption) and 0.50 (meaning
that on average, half the batches released to the assembly lines have between 36 and 48 units.
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The simulation results of scenario iii. are summarised in Figure 5, and average and standard
deviation data are shown in Table 9.

Figure 5. Scenario iii.: Mean and average values of KPIs for varying levels of batch size coefficients of
variation. (a) Productivity, (b) batch lead time, (c) milkrun utilisation, and (d) assembly line stock.

Figure 5a,b shows that the average of both line productivity and lead time remains
constant despite changes in CVq. Although P standard deviation increases slightly, it
remains very low at about 0.25–0.43% of the average value. The lead time StDev, on the
other hand, does increase more than five-fold while remaining very low compared to
average values (StDev of 0.24–1.39%). Therefore, the data show that batch size variability
has no significant impact on the operational KPIs. Although variability rises as CVq grows,
it remains at very low levels in relative terms.

Figure 5c,d show very little impact on internal logistics KPIs as a result of an important
rise in batch size variability. The milkrun utilisation average does increase slightly (from 71
to 73%, c.+4% rise), but the StDev reduction (from 1.25% to 0.82%) is not statistically signifi-
cant. In a similar fashion, assembly line components stock decreases slightly in both average
and standard deviation values, but none of these changes are statistically significant.

Table 9. Scenario iii.: Mean and standard deviation of main KPIs for increasing values of batch size
variability.

CVq

P (u/oper-h) LT (min) U (%) S (u)

Mean SD Mean SD Mean SD Mean SD

0.00 3.18 0.008 191.7 0.5 70.68 1.25 225.6 8.0
0.10 3.19 0.013 191.4 1.1 71.50 1.24 223.2 8.4
0.20 3.19 0.012 191.1 1.2 71.74 1.37 222.6 9.1
0.30 3.19 0.019 191.0 2.0 72.84 1.07 225.8 8.5
0.40 3.18 0.011 191.1 2.8 73.17 0.92 224.7 6.7
0.50 3.17 0.014 191.9 2.7 73.32 0.82 218.1 6.8

4.2.3. Components Quantity Variability

The goal of this subsection is to analyse the impact of the components quantity
coefficient of variability CVc. This coefficient is employed to represent disturbances within
in-house or external suppliers’ processes, resulting in a lower-than-standard number of
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conforming pieces in each component container. As explained in Section 3, the number of
conforming pieces per container is simulated using a discrete uniform distribution which
has the inferior limit set to CVc percent of the nominal value. Scenario iv. considers CVc
values from 0 to 0.20, as shown in Table 10.

Figure 6a shows that productivity is affected negatively by an increase in CVc, al-
though the magnitude of the impact is very limited: only a −2.2% reduction from the base
scenario when components containers have up to 20% less conforming pieces than expected.
Similarly, lead time is impacted negatively by CVc increase, as depicted in Figure 6b. The
LT average rises slightly (c.+2%) and suffers a greater dispersion of results (StDev increases
by +54%). All in all, even a substantial increase in components quantity variability does
not affect the assembly lines’ operational KPIs severely.

Figure 6. Scenario iv.: Mean and deviation values of KPIs for varying levels of components quantity
coefficients of variation. (a) Productivity, (b) batch lead time, (c) milkrun utilisation, (d) assembly
line stock.

Regarding internal logistics KPIs, Figure 6c,d show that an increase of CVc has no
significant impact on either milkrun utilisation or assembly line component stock levels.

Table 10. Scenario iv.: Mean and standard deviation of main KPIs for increasing values of component
quantity variability.

CVc

P (u/oper-h) LT (min) U (%) S (u)

Mean SD Mean SD Mean SD Mean SD

0.00 3.19 0.013 191.4 1.1 71.50 1.24 223.2 8.4
0.05 3.17 0.015 192.4 1.2 72.17 0.99 217.5 6.2
0.10 3.16 0.016 193.5 1.2 72.26 0.81 220.0 6.8
0.15 3.15 0.019 194.0 1.6 72.00 1.05 222.0 5.6
0.20 3.12 0.019 195.2 1.7 72.40 0.50 221.9 5.9

5. Discussion

The results shown in the previous section have been summarised in Table 11.
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Table 11. Summary of KPI change trends resulting from each scenario considered.

Scenario Productivity Lead
Time

Milkrun
Utilisation

Line
Stock

Goal ↑ ↓ ↓ ↓
i. Product mix ↘ ↗ ↑↑ ↑↑
ii. Process variability: CVp, CVs ↑ ↓↓ ↑↑ = ↑↑
iii. Batch size variability: CVq ↑ = = ≈ ≈
iv. Components quantity variability: CVc ↑ ↘ ↗ ≈ ≈

Increasing the product mix from single- to mixed- and multi-model assembly lines
results in a moderate impact on operational performance (P, LT) but a very significant
negative effect on internal logistics KPIs, which could have further implications. For
instance, the rise of assembly line component stock would increase the required floor space
and decrease the assembly line surface productivity.

It is important to note that according to the results shown in Section 3.1, the greatest
factor affecting U is the product mix, with a remarkable +44% increase resulting from
changing from single- to multi-model assembly.

This sharp increase in U is caused by the rising number of containers that need to be
handled, which is due to two main reasons.

(1) First of all, the number of component containers to be handled is larger every time
there is a product changeover, which is the case for almost every milkrun cycle under the
assumption that the milkrun cycle time is approximately similar to the time required to
complete a batch of products (cf. CTMR, Q in Table 2 and CT in Table 3). The increased
number of containers to be handled is due to the fact that the supply chain operator needs
to take all the containers of the outgoing model from the POU racks regardless of how many
component pieces are left and replace them with components for the incoming product
model. During regular supply cycles, on the other hand, containers are only replaced if
needed (empty boxes work as kanban signals).

(2) The second reason is related with the compound effects of the first reason and
the fact that in this particular study case, we find a large number of components packed
in large quantities (see Table 5). This fact means that for a significant percentage of the
components, each milkrun train carries enough pieces to assemble more than four times
the required amount of pieces. Furthermore, the milkrun train will need to take back to the
warehouse a full container and a half-empty container every time a changeover is needed.

Thus, it seems reasonable to conclude that milkrun utilisation is higher on mixed- and
multi-model lines compared to single-model assembly lines. However, the magnitude of
the increase shown in the Results must be considered carefully, since it it would be strongly
related to the container quantities of this particular industrial study case.

As a closing remark on this subject, two aspects could be looked at in order to reduce
the milkrun utilisation for multi-model assembly lines. Firstly, if enough shop-floor space
is available, small components packed in large quantities could be left by the workstations,
forming an assembly line supermarket, independent of the regular milkrun cycles. For
larger components, relaxing the rule of minimum two containers (see Equation (1)) could
be considered. Secondly, packing components in smaller quantities (so that two containers
cover approximately the consumption of a milkrun cycle) could also reduce the milkrun
workload so that it is only slightly higher than for single-model assembly lines.

Production variability (CVp, CVs) is the most important disturbance factor affecting
productivity, lead time and assembly line components stock. However, it does not affect
supply chain operator utilisation because the productivity reduction implies a reduction
of output rate (which slows down components consumption). The reason behind this is
that the milkrun work logic establishes a fixed replenishment frequency (milkrun cycle
time), resulting in a supply chain operator workload effectively unaffected by several minor
variations over the course of a full replenishment cycle.
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Despite the previous expectation that variability would always impact performance
negatively, results from Sections 4.2.2 and 4.2.3 show that the internal logistics KPIs are not
sensitive to disturbances originated by batch size and components quantity variability (CVq
and CVc respectively). This implies that employing milkruns for the internal logistics of
flexible multi-model assembly lines under high-mix low-volume demand is a way to shield
this part of the supply chain from upstream disturbances, arriving from either external or
internal processes.

It was also found that variability regarding batch size (CVq) does not have any notice-
able negative impact on operational performance, as shown in Figure 5c.

Note that as mentioned in Section 2, this article addresses a gap in the literature by
specifically addressing in-plan logistics for multi-model assembly operations, including
variability, and using a real study case—specially from an industry sector other than
automotive.

The fact that the simulation model used in this work is based on a real industry study
case provides valuable insight into the behaviour of similar assembly operations—internal
logistics systems under increasingly hard conditions in terms of variability and product
mix. However, it is important to note that this also limits the generalisation extent of the
results obtained due to certain aspects listed below.

First of all, the case employed here considers only a relatively small product variation
within each assembly line (∆WC 13% and 34% for AL no.1 and AL no.2, respectively) and
almost no difference in terms of average WC per model when comparing both lines (∆WC
c.2%). Understanding how much product variability affects the operational and internal
logistics KPIs could be a potential avenue for further research to understand the extent of
the potential benefits of employing milkruns for high-mix low-volume assembly.

Secondly, it could be argued that the number of conforming components coefficient of
variability (CVc) only modifies the number of pieces per container available to the assembly
operator, but it does not realistically capture the possibility of components actually arriving
at the assembly line and then causing quality control failures or unexpected assembly
process time increases, which would imply additional productivity losses due to reasons
such as product rework and idle/blocked assembly operators.

Thirdly, milkrun transportation time was considered deterministic because the industry
case measurements indicated this time were consistent. However, for multi-train production
sites, variability caused by occasional milkrun train traffic jams could be considered.

Finally, modelling the milkrun train as a single wagon could be slightly underesti-
mating its utilisation despite the satisfactory validation results. Specifically, in potential
scenarios featuring longer milkrun cycle times—note that the CTMR parameter was un-
changed through scenarios i. to iv.—this would entail a greater number of component
containers and therefore potentially a greater number of required wagons leading to an
increased walking time for the supply chain operator, which the current simulation model
would not capture.

6. Conclusions

To address a mass customisation demand context that drives high-mix low-volume
assembly operations, this article studied the implications of using milkrun trains for the
internal logistics of multi-model assembly lines. Based on a real industrial study case from
the white-goods sector, a discrete events simulation model was employed to set up four
different scenarios which evaluate the effect of product mix and three different sources
of variability. To measure such impact, a set of four Key Performance Indicators (KPIs)
were used, two corresponding to assembly operations and two corresponding to supply
chain efficiency.

It was found that multi-model lines increase significantly the milkrun utilisation
and the assembly line components stock compared to single-model lines. However, the
magnitude of this large increase could be partially attributed to particularities of the study
case. Operational KPIs were also affected negatively but to a much lesser extent. Internal
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logistics performance is greatly affected by the variability of assembly line processing
time, especially in terms of component stock. Other sources of variability, such as the
ones affecting the number of units per production batch or the components quantity per
container, have very limited impact on the selected KPIs. This would imply that employing
milkruns for the internal logistics of flexible multi-model assembly lines under high-mix
low-volume demand is a way to shield this part of the supply chain from upstream
disturbances, arriving from either external or internal processes.

Two key limitations of this work are the relatively low product variability in terms of
work content and the milkrun train physical features simplification.

Further research paths include exploring the implications of much greater product
work content variability, incorporating more detailed physical models of the milkrun train
and expanding the simulation model to include adjacent layers that could constrain the
performance of the assembly system as a whole, such as quality (defects, reworks, quality
controls) or breakdowns and maintenance.
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