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Abstract: This study focuses on modeling the yeast fermentation process using the hybrid modeling
method. To improve the prediction accuracy of the model and reduce the model training time, this
paper presents a semi−supervised hybrid modeling method based on an extreme learning machine
for the yeast fermentation process. The hybrid model is composed of the mechanism model and the
residual model. The residual model is built from the residuals between the real yeast fermentation
process and the mechanism model. The residual model is used in parallel with the mechanism model.
Considering that the residuals might be related to the inaccurate parameters or structure of the
process, the mechanism model output is taken as unlabeled data, and the suitable inputs are selected
based on Pearson’s maximum correlation and minimum redundancy criterion (RRPC). Meanwhile,
an extreme learning machine is employed to improve the model’s training speed while maintaining
the model’s prediction accuracy. Consequently, the proposal proved its efficacy through simulation.

Keywords: hybrid modeling; extreme learning machine; semi−supervised; the yeast fermentation process

1. Introduction

Yeast fermentation is one of the most important biomanufacturing processes as a new
type of clean energy, and ethanol is an important substitute for fossil fuels. It is mainly
produced by the yeast fermentation process. However, the growth of yeast is sensitive
to environmental conditions such as temperature, PH, and substrate concentration. The
yeast fermentation process involves a complex biochemical mechanism [1]. Therefore, it is
difficult to build an accurate model of the yeast fermentation process.

Roles [2] modeled the yeast fermentation bioreactor based on the kinetics of yeast
growth. In addition to the kinetics of yeast fermentation, Nagy [3] built a detailed model
that involves heat transfer, the dependence of kinetic parameters on temperature, the mass
transfer of oxygen, and the influence of temperature and ionic strength on the mass transfer
coefficient. Considering the inhibitory effect of ethanol, a stripping model was proposed to
further improve the prediction accuracy of the mechanism model [4]. Further, to recover
ethanol from the gas mixture produced by the CO2 stripping method, Rodrigues et al. [5]
proposed an improved mechanism model based on the mass balance equation, stripping,
absorption kinetics, and gas−liquid balance. Recently, a new modeling technique consid-
ered cell cycling, which can reduce yeast consumption and raw material costs [1]. Although
the above mechanism model can well reflect the process flow and has good extrapolation
characteristics, a large number of experiments may be needed to determine the kinetic
structure, the parameters, and the mechanism of the yeast fermentation process, which all
need to be fully understood.

For the data−driven method, detailed prior knowledge about the yeast fermentation
process and mechanisms is not required. The process model is identified through a large
amount of process data. Many data−driven methods based on machine learning have been
widely used to develop fermentation process models. Ławryńczuk [6] used a BP neural
network to model and control the temperature of the bioreactor. Zhang [7] employed a
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least squares support vector machine to establish a nonlinear model and to optimize the
control of the process. Smuga−Kogut et al. [8] took advantage of a modeling method
based on the random forest to predict bioethanol concentration. Konishi [9] estimated
bioethanol production from volatile components in lignocellulosic biomass hydrolysates by
deep learning. The extreme learning machine (ELM) proposed by Huang et al. [10] greatly
improved the computational speed because it only adjusted the weight of the output layer
of the network and did not need to adjust the weight of the network through the gradient
descent method like a BP neural network. The speed of learning is faster than a traditional
support vector machine and neural network, and a similar generalization performance can
be achieved. Sebayang et al. [11] developed an ELM model to predict the performance
of engines fueled by bioethanol. For data−driven modeling, the quality and quantity
of the data are crucial to the quality of the model. For the yeast fermentation process, a
large number of high−quality data points may be difficult to obtain due to the limitations
of measurement techniques, long experimental cycles, etc. Useful data are essential to
obtaining a satisfactory model that is based on data−centered modeling methods.

Hybrid modeling combines mechanism modeling with data−driven modeling, which
not only considers the dynamics of a process but also reduces the demand for process
data. In essence, hybrid modeling uses data to solve the mismatch problem of mechanism
models and provides higher modeling accuracy. The structure of hybrid modeling is
mainly divided into the serial [12–14] and parallel structures [15,16]. For hybrid modeling
with a parallel structure, the key is to build the residual model (RM), which utilizes the
data−modeling method to model the residual between the mechanism model and process.
The utility of the RM is to compensate for the mechanism model. At present, in the hybrid
modeling framework, most studies use machine learning methods to train the RM, and
the prediction accuracy of the nonlinear models obtained is higher than that of linear
models [17]. Su et al. [15] used a BP neural network to train the RM and verified the
excellent prediction accuracy of the hybrid model combined with a BP neural network
in the continuous polymerization processes. Niu et al. [18] established a hybrid model
using the least squares support vector machine to predict the substrate concentration
and product concentration of a fed−batch fermentation reactor. Chen et al. [19] applied
support vector regression (SVR) and an artificial neural network to the hybrid modeling
of continuous pharmaceutical processes. The hybrid modeling method effectively solved
the model mismatch problem. The advantage of parallel structure hybrid modeling is
that it can build an excellent model without considering the specific reasons leading to
the mismatch of mechanism models and making new experiments. It only uses the RM
to describe the dynamics that mechanism models cannot describe. However, the above
studies are all supervised learning methods, which only consider the correlation between
residuals and process inputs (control variables). Other factors related to residuals, such
as oversimplification of the mechanism model and inaccurate model parameters, are not
taken into consideration.

Semi−supervised learning refers to the fact that the learner combines labeled and
unlabeled data to improve the learning performance [20]. In this paper, semi−supervised
learning is considered to train RM, and the mechanism model output is taken as unlabeled
data. However, filtering the data is necessary. Otherwise, the training burden of the
model will be increased, and irrelevant data will even reduce the prediction accuracy of
the model. Xu et al. [21] proposed a semi−supervised feature selection method (RRPC)
based on correlation and redundancy criteria for feature classification, which shows that
the combination of labeled and unlabeled data improves feature selection. Considering the
unconsidered dynamics, inaccurate model parameters, measurement uncertainty factors
in the mechanism model, and model training speed, this paper adopts a parallel hybrid
modeling method without considering the source of the mismatch in the mechanism
model. The output of the mechanism model is taken as unlabeled data, the appropriate
training data are selected through a RRPC algorithm for RM training, and then a set of
nonlinear residual models are established by ELM. The established residual models are



Machines 2023, 11, 63 3 of 13

combined with the mechanism model to form a hybrid model. Finally, the effectiveness
of the semi−supervised hybrid modeling method is verified by comparing its modeling
accuracy and speed with those of the existing modeling methods.

2. Yeast Fermentation Bioreactor

The continuous yeast fermentation process for ethanol production is considered a
simple continuous stirred reactor that involves continuously adding material to the biore-
actor and removing the product from the reactor. Biomass (Saccharomyces cerevisiae) and
the substrate (glucose) are the two main components of the bioreactor, and ethanol is the
main product. The ideal operating conditions of the bioreactor are ingredients that are fully
mixed, stirring speed, feed concentration, pH value, and a constant substrate feed flow and
outlet flow from the reactor according to the requirements of the process.

The comprehensive model of the yeast fermentation process is as follows [3]:

dCX
dt

= µXCX
CS

KS + CS
e−KPCP − Fout

V
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dt

= µPCX
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(6)

where the input u of the model is the flow rate of the coolant and the output vector
Y = [CX, CP, CS, CO2 , Tr, Tj]

T represents the biomass concentration, ethanol concentration,
substrate (glucose) concentration, oxygen concentration, reactor temperature, and jacket
temperature in the bioreactor, respectively. Fin, Csin, and Tin are the flow rate, concentration,
and temperature of substrate feed, Fout is the outlet flow rate of the bioreactor, Tinj is the
temperature of the coolant, C∗O2

is the oxygen saturation concentration, and V and Vj are
the volumes of the bioreactor and jacket, respectively. Note: Fin = Fout; the total volume of
reaction medium V remains constant.

In Equation (1), the maximum specified growth rate µx depends on Tr:

µX = A1 exp
(
− Ea1

R(Tr + 273)

)
− A2 exp

(
− Ea2

R(Tr + 273)

)
. (7)

In Equation (4), the oxygen mass transfer coefficient is represented by the following
temperature function:

(kla) = (kla)0(1.024)Tr−20 (8)

the oxygen saturation concentration C∗O2
depends on Tr and pH (the overall effect of

ionic strength):

C∗O2
=
(

14.16− 0.394Tr + 0.00772T2
r − 0.000064T3

r

)
· 10−ΣHk Ik . (9)
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The overall effect of ionic strength is as follows:

ΣHk Ik = 0.5HNa
mNaCl
MNaCl

MNa
V + 2HCa

mCaCO3
MCaCO3

MCa
V + 2HMg

mMgCl
MMgCl

MMg
V

+0.5HCl

(
mNaCl
MNaCl

+ 2
mMgCl2
MMgCl2

)
MCl
V + 2HCO3

mCaCO3
MCaCO3

MCO3
V .

+0.5HH10−pH + 0.5HOH10−(14−pH)

(10)

In Equations (4) and (5), the rate of oxygen consumption during biomass growth is:

rO2 = µO2

1
YO2

CX
CO2

KO2 + CO2

· 1000 (11)

for clarity, the parameter nomenclature and parameter values involved in models (1–11)
can be found in reference [3], respectively.

3. Semi−Supervised Hybrid Modeling Structure

The above model is the yeast fermentation process model. Although it can capture
the main dynamics of the process, unconsidered dynamics, inaccurate model parameters,
and measurement errors may lead to residuals between the mechanism model and the
real process. The output vector of the actual process is defined as Yp, and the output
vector of the mechanism model is defined as Ym; then the residual vector of the process
is e = Yp − Ym, where e = [∆Cx, ∆Cp, ∆Cs, ∆CO2 , ∆Tr, ∆Tj]

T. Before building RMs, we need
to select the appropriate input data for each RM. The training data set is X = {u, Ym},
including the input of the bioreactor and the output of the mechanism model. Each residual
model requires different training data. The input vector is selected for the ith RM through
RRPC as follows:

URMi = ϕi(e(i), X) (12)

where ϕi represents the input selection function of the ith RM, i = 1, 2... 6, and e(i) represents
the ith residual variable in the form of MATLAB code.

According to the selected input vector URMi and residual e(i), ELM is used to construct
a group of RMs. The output of the ith RM is:

yRMi = fi(URMi). (13)

A group of RMs and mechanism models are combined into a hybrid model with a
parallel structure, as shown in Figure 1. Yh = Ym + YRM represents the predicted value
of the hybrid model, where YRM = [yRM1, · · · , yRM6]

T is to compensate the mechanism
model with the RMs.

A residual model with good precision can be trained via supervised learning, but in the
real process, the unconsidered model structure and incorrect parameters of a mechanism
model may cause a deviation between the mechanism model and the real process. The
purpose of this article is to let the output of the mechanism model be considered in the
training data during the training of RM. The semi−supervised learning method based on
RRPC is used to select appropriate inputs to establish RMs with better accuracy. Meanwhile,
ELM is considered to train RMs to maintain good generalization performance and reduce
the training time of the model. The semi−supervised hybrid modeling framework is shown
in Figure 1, including the mechanism model, a group of RMs, an input selection module,
and an ELM training module. The dashed box represents the offline training process of the
ith RM.
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4. Construction of a Residual Model (RM)
4.1. Input Selection for the RM

The output of the mechanism model was also used as the input of the training RM,
and the maximum correlation and minimum redundancy criteria (RRPC) based on the
Pearson correlation coefficient were used to select the best input and train the RM with the
highest accuracy.

Pearson’s correlation coefficient is a method to evaluate the correlation between
two vectors based on the covariance matrix of the data matrix. The residual vector is
e = [∆Cx, ∆Cp, ∆Cs, ∆CO2 , ∆Tr, ∆Tj]

T, and the input vector is X = {u, Ym}. The Pearson
correlation coefficient is used to describe the correlation between the jth input and the
ith residual:

P(X(j), e(i)) =
cov(X(j), e(i))√

var(X(j))× var(e(i))
(14)

according to supervised input selection following the maximum correlation criterion, the
input most relevant to the ith residual is obtained by maxP(e(i), X(j)). According to the
minimum redundancy criterion for unsupervised input selection, the input with the least
correlation with the lth input is obtained by min

j 6=l
P(X(j), X(l)).

The incremental search method is used to define the input vector selected by RRPC as
URMi,k−1, in which there are k− 1 inputs, and then the kth input URMi(k) is selected from
the remaining input vector {X−URMi,k−1}:

URMi(k) = argmax
Fj∈X−URMi,k−1

P(Fj, e(i))− 1
k− 1 ∑

Fl∈URMi,k−1

P(Fj, Fl)

. (15)

The input selection process of RM is shown in Algorithm 1:
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Algorithm 1. Select the ith RM input based on RRPC

1: Input: residual vector e(i), input vector X, and number of target inputs s;
2: Construct the target input set URMi = ∅ and available input set U = X−URMi of the residual
model;
3: For k = 1 to s do;
4: For each element Fj in U and each element Fl in URMi, select a new input according to
Equation (16):

URMi(k) = argmax
Fj∈U

[
P(Fj, e(i))− 1

k− 1 ∑
Fl∈URMi

P(Fj, Fl)

]
; (16)

5: Update URMi = URMi ∪URMi(k) and U = U −URMi(k)
6: End for;
7: Output: URMi.

4.2. RM Training

The input selection of the residual model is complete, and the residual model is trained
by ELM. ELM is essentially a single hidden layer feed−forward neural network (SLFN),
and its network structure is shown in Figure 2. The characteristic of ELM are that the
parameters of the hidden layer are given randomly and the weights of the output layer are
solved analytically, which can significantly improve the training speed of the model while
maintaining the generalization performance similar to that of the traditional BP neural
network. As the amount of data increases, applying ELM to train the residual model can
save a lot of time.
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For the training of the ith residual model, given the training data {URMi, e(i)}, URMi ∈
Rm×n, and e(i) ∈ R1×n, m is the number of selected inputs and n is the data length, the
output of the standard SLFN with P hidden nodes is:

yRMi =
p

∑
z=1

βzg(ωzURMi(q) + bz), q = 1, 2, . . . , n, (17)

where ωz = [ωz1, ωz2, · · ·ωzm]
T is the weight vector connecting the z hidden layer node to

the input node, βz = [βz1, βz2, · · · βzm]
T is the weight vector connecting the z hidden layer

node to the output node, bz is the threshold of the z hidden node, g(·) is the activation
function, and forms of the activation function are Sigmoid, Sine, Hardlim, and RBF, etc.,
and yRMi ∈ R1×n is the output vector of RM.
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If SLFN with p hidden nodes approximates n training samples with zero error, i.e.,
∑n

q=1 ‖YRMi(q)−e(i, q)‖ = 0, ωz, βz, and bz exist such that:

p

∑
z=1

βzg(ωzURMi(q) + bz) = e(i, q), q = 1, 2, . . . , n. (18)

Equation (18) is expressed in matrix form as follows:

Hβ = e(i) (19)

H =

g(ω1URMi(1) + b1 · · · g(ωpURMi(1) + bz
...

...
...

g(ω1URMi(n) + b1 · · · g(ωpURMi(n) + bz


n×p

, (20)

β =

βT
1
...

βT
p


p

, (21)

e(i) =

e(i, 1)
...

e(i, n)


n

, (22)

where H is the hidden layer output matrix of SLFN and the z column represents the output
vector of the z hidden layer node associated with all inputs.

If the activation function g(·) is infinitely differentiable on any interval, the output
weight matrix can be calculated by Equation (23) [10]:

β̂ = H†e(i). (23)

According to Equation (24), the output of the ith RM is calculated as follows:

YRMi =
p

∑
z=1

β̂zg(ωzURMi(q) + bz), q = 1, 2, . . . , n, (24)

the ith RM construction process is shown in Algorithm 2.

Algorithm 2. Construction of the ith RM

1: Input: residual vector e(i) and input vector URMi corresponding to the residual vector;
2: Divide input into the training and validation sets and perform data normalization;
3. Initialize ω and b;
4: H is calculated by Equation (20) according to ω, b, and the training set;
5: Calculate β from Equation (21);
6: The ith RM output is calculated by Equation (22) according to ω, b, validation set, H, and β;
7: Reverse normalization;
8: Output: YRMi.

5. Modeling Method and Experimental Validation
5.1. Algorithm and Performance Index

According to the hybrid model structure and RM introduced above, the semi−supervised
hybrid modeling process is summarized as follows:

1. Collect the input u and output Yp of the yeast fermentation process, calculate the
output Ym of the mechanism model, and calculate the residual e between the real
process and mechanism model;

2. Save u, Yp, Ym, and e in the database. Set time t = 1;
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3. Collect new data, calculate e according to step (3), and set t = t + 1;
4. When t = n, select the appropriate input variables for each residual variable according

to Algorithm 1;
5. According to Algorithm 2, a group of RM is trained and used together with the

mechanism model to form a hybrid model;
6. Perform step (3) to calculate the output YRM of RM and the output Yh of the hy-

brid model.

Note: The final determination of the input variables of the residual model is measured
by the prediction error. Two indexes commonly used to evaluate model accuracy in machine
learning are the mean absolute error (MAE) and the root mean square error (RMSE).

The MAE is the average of absolute errors:

MAE =
∑n

t=1|YRM(t)− e(:, t)|
n

. (25)

The RMSE is the square root of the mean square error between predicted and ob-
served values:

RMSE =

√
∑n

t=1 (YRM(t)− e(:, t))2

n
(26)

where n is the data length, YRM(t) is the predicted value of RM at time t, and e(:,t)represents
the real value of residual at time t in the form of MATLAB code.

5.2. Comparison between the Mechanism Model and the Real Yeast Fermentation Process

To evaluate the effectiveness of the proposed semi−supervised hybrid modeling
approach, this section designs a simulation case based on an existing bioreactor model.
Assuming that the models (1–11) are real process models, it is considered that the residuals
are caused by incorrect dynamic structure, inaccurate modeling parameters, and sensor
measurement errors during the process of mechanism modeling. Cell growth is affected
by the concentration of dissolved oxygen, and biomass overgrows in the presence of
excess dissolved oxygen, thus resulting in a decrease in ethanol production. Equation (11)
describes the relationship between oxygen consumption rate and biomass growth. This
paper assumes that the mechanism model describes the kinetic relationship between oxygen
consumption rate and biomass growth as follows:

rO2 = µO2

1
YO2

C2
X

CO2

KO2 + CO2

· 1000 (27)

The biomass is the main factor affecting the ethanol production rate. The preexpo-
nential factor in the biomass growth rate model is related to the reaction collision cross
section, number of molecules per unit volume, temperature, etc. It is assumed that the
preexponential factor A1 in the biomass growth rate model in the mechanism model is not
correctly identified, which is 2% lower than the real process. Considering that the acquisi-
tion of input and output signals is affected by sensor accuracy and measurement noise, the
requirements for input and output signals are shown in Tables 1 and 2 respectively.

Table 1. Input signal requirements of the bioreactor.

Input Variable Bounds Noise Unit

u [12, 18] [0,0.1] l/h
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Table 2. Output signal requirements of the bioreactor.

Output Variable Initial Value Noise Unit

CX 0.94 [0, 0.005] g/L
CP 12.74 [0, 0.05] g/L
CS 29.18 [0, 0.1] g/L

CO2 3.23 [0, 0.01] g/L
Tr 30.01 [0, 0.1] °C
Tj 27.42 [0, 0.1] °C

The input is constrained between bounds, and the value is randomly chosen from a
uniform distribution between the specified variation range value, which is consistent within
20 time steps, and each step is 1 h. The process runs for 2000 h. According to the above
conditions, the outputs of the real process and mechanism model are shown in Figure 3,
and there is a significant deviation between the real process and the mechanism model.
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5.3. Comparison between the Semi−Supervised Hybrid Model and the Mechanism Model

To evaluate the prediction effect of the semi−supervised hybrid model, the input
should be selected by Algorithm 1 first, then the RM can be trained. RM trained with
different inputs will produce different error values, which can be quantified by the MAE.
To make the results more obvious, the ratio of the MAE with the semi−supervised learning
method of the input selection module and that without the supervised learning method of
the input selection module are used for demonstration, as shown in Figure 4.
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It can be seen from the figure that selecting an appropriate number of inputs can effec-
tively improve the prediction accuracy of the model. Using too many useless inputs does
not reduce the prediction error of the model but increases the complexity of the training. In
addition, it can be seen from the figure that semi−supervised mixture modeling has the
most obvious improvement effect on the biomass concentration and oxygen concentration
predictions, which is also consistent with the model mismatch assumption above.

After input selection, the network should be trained by the ELM. The first 1800 time
data is used as the training set, and the last 200 time data is used as the test set. Firstly, the
parameters of the hidden layer are set to random values, and the sigmoid function is chosen
as the activation function. Secondly, the number of hidden layer nodes was initialized,
and then it was gradually increased on the basis of this value. Thirdly, we compared the
predicted performance of the network. Finally, the number of nodes in the hidden layer
was decided according to the best performance. Table 3 shows a set of training parameters
and errors during the training of RMs. When the RMs are obtained, the RMs are used to
predict the residual to compensate for the output of the mechanism model. Figure 5 shows
the prediction errors of the mechanism model and the semi−supervised hybrid model. It
can be seen that, compared with the mechanism model, the prediction error of the hybrid
model is greatly reduced and close to 0.

Table 3. Training parameters and prediction errors of the RMs.

RM The Number of
Inputs

The Number of
Hidden Layer

Nodes
MAE RMSE

RM1(∆CX) 4 6 0.0013 0.0015
RM2(∆CP) 5 8 0.0131 0.0158
RM3(∆CS) 4 6 0.0270 0.0334

RM4(∆CO2) 3 5 0.0027 0.0033
RM5(∆Tr) 5 8 0.0251 0.0291
RM6(∆Tj) 3 7 0.0243 0.0294
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5.4. Comparison between Semi−Supervised Hybrid Modeling and Ordinary Hybrid Modeling

In this paper, RRPC is used to select the inputs, and important process information
can be extracted from the data to improve the accuracy of RM training. As shown in
Figure 6, the absolute value of the prediction errors of semi−supervised hybrid modeling
and ordinary hybrid modeling shows that the amplitude of ordinary hybrid modeling (red
line) is higher, especially for biomass and oxygen concentrations. Meanwhile, to quantify
the above results, Table 4 shows the MAE and RMSE of these two methods.
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Table 4. Prediction errors of semi−supervised/ordinary hybrid modeling.

Residual Variables
MAE of

Ordinary/Semi−Supervised
Hybrid Modeling

RMSE of
Ordinary/Semi−Supervised

Hybrid Modeling

∆CX 0.0016/0.0013 0.0017/0.0015
∆CP 0.0138/0.0131 0.0167/0.0158
∆CS 0.0285/0.0270 0.0351/0.0334

∆CO2 0.0035/0.0027 0.0042/0.0033
∆Tr 0.0265/0.0251 0.0309/0.0291
∆Tj 0.0255/0.0243 0.0312/0.0294
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5.5. ELM and the BP Neural Network

This section mainly compares the prediction accuracy and training time of the ELM
and the BP neural network training RM. The two methods are simulated by MATLAB
on a PC with a 3 GHz i5 CPU and 8 GB of RAM. The training data, number of hidden
layer nodes, and activation function of the BP neural network are consistent with the ELM.
Table 5 shows the comparison of accuracy and time between the two methods. It shows
that the ELM has a similar generalization performance as the BP neural network, and the
training time of the BP neural network is at least 10 times longer than the ELM. With the
increasing quantity of data and complexity of network structure, the ELM can save a lot of
training time, and ELM may be more suitable to be applied to online prediction.

Table 5. Prediction accuracy and training time of the ELM and BP neural networks.

RM
The MAE of the BP

Neural
Network/ELM

The RMSE of the BP
Neural

Network/ELM

The Training Time
of the BP Neural
Network/ELM(s)

RM1(∆CX) 0.0013/0.0013 0.0015/0.0015 0.241/0.016
RM2(∆CP) 0.0132/0.0131 0.0160/0.0160 0.214/0.016
RM3(∆CS) 0.0270/0.0270 0.0333/0.0334 0.249/0.013

RM4(∆CO2) 0.0026/0.0027 0.0031/0.0033 0.247/0.013
RM5(∆Tr) 0.0251/0.0251 0.0294/0.0291 0.254/0.018
RM6(∆Tj) 0.0243/0.0243 0.0294/0.0294 0.226/0.013

6. Conclusions

In this paper, for yeast fermentation process modeling, hybrid modeling with a parallel
structure compensates the mechanism model by constructing a residual model, which not
only avoids the optimization problem involved in the recalibration of the mechanism model
but also reduces the number of experiments carried out by researchers and saves money and
time. Compared to the existing supervised hybrid modeling, a semi−supervised hybrid
modeling method based on an extreme learning machine is proposed, which not only
uses a semi−supervised learning method to find useful data for residual model training
to improve the prediction accuracy of the residual model but also improves the model
training speed. Given the advantages of ELM, online hybrid modeling will be considered
in future work. An additional issue that needs to be explored further includes building a
framework to choose the corresponding hybrid model structure and network structure in
different situations.
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