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Abstract: This study aims to identify parametric models to estimate track irregularities in high-speed
railways with simple acceleration measurements. The primary contribution of current research is the
development of effective parametric models with smaller parameters. These parameters are derived
from the measured data via a specialized track geometry inspection system. An adaptive Kalman
filter algorithm, using the displacement estimated from the acceleration signals as the input and
measured track irregularities as the output, is applied to obtain the model’s unknown parameters.
These models are applied to acceleration measured from high-speed rail vehicles in operation, and
track irregularities are estimated in spatial and wavelength domains. The estimated irregularities are
compared to the track geometry inspection system’s results.

Keywords: track irregularities; accelerometers; parametric models; system identification; adaptive
Kalman filter; IIR model; FIR model; Hybrid model

1. Introduction

Track irregularities mainly originate from heavy traffic loads and unexpected ground
movement, which excite the wheelset and create unwanted vibrations. These vibrations
may affect passenger comfort and cause the degradation of track and train components
or, at worst, derailment. Therefore, rail operators and infrastructure managers should
regularly monitor and maintain the track irregularities with proper methods to ensure
passenger comfort and safety.

Track irregularities, defined as deviations from the original track geometry, are usually
measured with a track inspection vehicle equipped with special measurement devices
using contact probes, lasers, or optical sensors [1,2]. However, using this inspection vehicle
with measuring devices is costly and complicated. In addition, the dynamic characteristics
of a track inspection vehicle are different from those of a high-speed train in commercial
operation, so the dynamic deflection of the track caused by a high-speed train cannot
be appropriately measured. As an alternative, a simple and inexpensive device using
accelerometers installed on an in-service vehicle has drawn attention because it can be
used for daily monitoring of track conditions. Theoretically, displacement can simply be
estimated by double integrating acceleration. However, in practice, the integration usually
yields unwanted drifts due to the non-zero initial condition of the signal, the direct current
(DC) offsets, or the noise due to electrical/mechanical hysteresis in sensors or cables [3]. To
avoid these drawbacks, many researchers have proposed model-based methods. In these
methods, system models are required, which can represent the input–output relationship
between acceleration and track irregularities.

Several studies have sought models that describe the dependence between acceleration
and track irregularities. Kawasaki et al. [4] presented a method using car body acceler-
ation and an auto-regression model with extra inputs. The properties of the suspension
system highly influence the car body acceleration; hence, it is difficult to separate the
effect of suspension from the acceleration signals. Weston et al. [5,6] used bogie-mounted
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accelerometers and a gyroscope to monitor track irregularities and proposed a correction
using the second-order dynamic model to improve the lateral irregularity. The results of
such studies were limited to wavelengths less than 35 m or 70 m and thus were unsuitable
for measuring long wavelengths up to 150 or 200 m. Alfi et al. [7] proposed a method for
calculating irregularities with long wavelengths from vehicle acceleration measurements
using a model-based identification procedure defined in the frequency domain. However,
there was a non-negligible difference in the trend of the power spectral density and in the
space diagram for wavelengths up to 120 m, which is essential for passenger comfort during
high-speed journeys. Czop et al. [8] presented an approach to detect track irregularities
using axle box accelerometers and the inverse linear parametric vehicle dynamics model.
They focused on the relationship between the measured bending moment and axle box
vibrations, not displacement, which is essential for making a track maintenance decision.
Hidalgo et al. [9] and Tsunashima et al. [10] developed Kalman-filter-based techniques that
combined a kinematic model and a dynamic model to identify track irregularities. Both
works used an accelerometer and a gyroscope to estimate the vertical track irregularities,
and relatively acceptable accuracy was obtained. Muñoz et al. [11] proposed an efficient
Kalman-based methodology for monitoring lateral track irregularities using inertial sensors
installed on a train in operation. In this study, two accelerometers are utilized to measure
the lateral acceleration of the wheelset and the bogie frame. At the same time, a gyroscope
is employed to detect the yaw angular velocity of the wheelset.

Lee et al. [12] proposed a mixed filtering approach using the Kalman, band-pass, and
compensation filters for waveband monitoring of lateral and vertical track irregularities,
which used accelerometers installed on the axle box and the bogie. The method used
Kalman and band-pass filters for displacement estimation from measured acceleration.
Compensation filters consisting of finite impulse response models with 40 parameters
were used to correct for amplitude and phase difference, which result from the inherent
characteristics of the preceding filters and the lateral motion of the wheelset or the bogie
with respect to the track. However, the models were expensive and complex because too
many parameters were used. This research proposes efficient parametric models with
fewer parameters. The parameters are derived from the measured signals obtained using a
track geometry inspection system (TGIS). An adaptive Kalman filter algorithm is applied
to obtain the unknown parameters of track irregularities with an estimated displacement
from acceleration signals as the input and track irregularity signals as the output. Finally,
the developed models are used in the analysis of acceleration data measured from the axle
box and the bogie of a high-speed train in operation.

This paper is organized as follows: The measurement setup used to obtain acceleration
signals and track geometry is described in Section 2; Section 3 presents the process of
estimating displacement from acceleration signals, while Section 4 explains the parametric
models and the methodology used to estimate the parameters; Section 5 describes the
model section process and validates the selected model; In Section 6, track irregularities are
estimated using acceleration signals obtained from high-speed trains in operation, and the
results are compared with the reference irregularities; and the summary and conclusions
can be found in Section 7.

2. Measurement Setup

Figure 1 depicts the installation of lateral and vertical accelerometers on an axle box
and a bogie of a high-speed train in operation. Capacitive-type accelerometers were used to
measure low-frequency vibrations. The sampling frequency used to acquire each signal was
2048 Hz. Additionally, the train’s speed was measured synchronously with the acceleration
signals, so the filtered signals were rearranged from the time domain to the wavenumber
domain with a 0.25 m sampling interval.
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Figure 1. Accelerometers on axle box and bogie: (a) axle box-mounted accelerometers; (b) bogie-
mounted accelerometers [12]. 
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installed on the high-speed train HSR-350x, which is the prototype of commercial high-
speed trains in Korea [13]. A light-sectioning technique using a small laser band as a sharp 
edge was utilized to measure the profile. The inertial data obtained with gyros and accel-
erometers, which were installed close to the laser device and the camera, were used for 
geometric measurements. Their signals underwent time-domain processing prior to con-
version to the wavenumber domain through filtering and re-sampling. 

3. Displacement Estimation from Acceleration 
As mentioned in the introduction, displacement estimation from noisy acceleration 

using direct double integration results in unrealistic errors. A discrete state-space model 
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Figure 1. Accelerometers on axle box and bogie: (a) axle box-mounted accelerometers; (b) bogie-
mounted accelerometers [12].

The profile and geometry of the track were measured using a specialized TGIS, which
can operate at speeds of up to 320 km/h with a spatial resolution of 0.25 m. The TGIS
was installed on the high-speed train HSR-350x, which is the prototype of commercial
high-speed trains in Korea [13]. A light-sectioning technique using a small laser band as a
sharp edge was utilized to measure the profile. The inertial data obtained with gyros and
accelerometers, which were installed close to the laser device and the camera, were used
for geometric measurements. Their signals underwent time-domain processing prior to
conversion to the wavenumber domain through filtering and re-sampling.

3. Displacement Estimation from Acceleration

As mentioned in the introduction, displacement estimation from noisy acceleration us-
ing direct double integration results in unrealistic errors. A discrete state-space model and
the Kalman filter were introduced to resolve the error in the previous works [12,14]. The fol-
lowing describes the state-space model for displacement estimation from noisy acceleration:

• State model

xn+1 = Fxn + Gun, (1)

• Space model

an = Hxn + wn, (2)

where in

F =

α 0 0
1 0 0
0 1 0

,G =

1
0
0

, and H =
1

T2
s

[
1 −2 1

]
. (3)

In Equation (3), α is a model parameter (0� α ≤ 1) and Ts is the sampling time. In
the state-space equations, the state transition matrix F is used to update the preceding
state, and G is the noise-input matrix. At the same time, H is the measurement matrix
used to map the estimated displacement onto the measured acceleration. The noises un
and wn are comprised of zero-mean white Gaussian processes. It is assumed that the initial
displacement x0 is zero.

The measured acceleration signals are utilized to estimate the displacement using a
Kalman filter algorithm, and its covariance form is described as follows [15]:

• Initial condition

x̂0|−1 = 0, (4)

P0|−1 = Π0. (5)

• Recursion relations
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- Innovations:

en = an −Hx̂n|n−1, (6)

- Innovation covariance:

Re,n = HPn|n−1H∗ + Rn, (7)

- Kalman prediction gain:

Kp,n =
(

FPn|n−1H∗ + GSn

)
R−1

e,n , (8)

- State estimation:

x̂n+1|n = Fx̂n|n−1 + Kp,nen, (9)

- State error covariance:

Pn+1|n = FPn|n−1F∗ + GQnG−Kp,nRe,nK∗p,n. (10)

where x̂n+1|n is the estimate of xn, Pn+1|n is the state error covariance information at step n,
Π0 is the auto-covariance of the initially estimated displacement x̂0|−1, and Qn and Rn are
the auto-covariances of un and wn, respectively.

After applying the Kalman filter, the third-order Butterworth band-pass filters are
applied to eliminate the short-wavelength effect due to the wheel and the bogie and the
long-wavelength effect due to the track’s curves. Block diagrams illustrating the processes
are presented in Figure 2.
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Figure 2. Displacement estimation from acceleration signals.

4. Model Setup and Identification
4.1. Concept

System identification is a technique used to build and complement a model with
measurements [16]. The model may have a parametric or a non-parametric description in
the frequency or time domains. The non-parametric description uses a system’s impulse
or frequency response with no parameters. It is highly dependent on time or frequency
resolution. Using window techniques to reduce leakage can lead to signal distortion.
Moreover, it is difficult to use in real-time calculation because an inverse Fourier transform is
required to represent the results in the time domain. Therefore, a parametric representation
was utilized in this work. It uses a model whose parameters are identified by an adaptive
filtering algorithm that minimizes the error between the estimated and measured outputs.
There are two kinds of parametric models: tailor-made and ready-made. The former
is constructed using fundamental physical principles, and its parameters are unknown
variables used to represent the characteristics of input–output relationships. The latter is
built in terms of input, output, and transfer characteristics without any physical principles
representing its internal workings. The variables describe the relationship between the
inputs and outputs without representing physical quantities.
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The relationship between track irregularities and the motion of an axle box or a bogie
depends on the dynamic characteristics of the suspension system and the effective wheel
conicity, the mechanism of which is highly complex; hence, it is challenging to represent
using physical models [17]. Therefore, ready-made parametric models, which can predict
track irregularities from the estimated displacement, are selected for this research. The
displacement is estimated from the acceleration signals, which the TGIS measured so that
they are synchronized with track irregularities. The estimated displacement was used
instead of the measured acceleration to reduce uncertainty in the system identification.

4.2. Model Setup

The finite impulse response (FIR) and the infinite impulse response (IIR) models are
considered for the ready-made parametric models. The FIR models depend on the present
and previous values of input signals only, while the IIR models rely on one or more prior
output values in addition to the input signal [18]. They are represented as follows:

- IIR model:

yn = −
N

∑
k=1

akyn−k +
M

∑
k=0

bkxn−k, (11)

- FIR model:

yn =
M

∑
k=0

bkxn−k, (12)

where ak and bk are model parameters, and xn and yn are the input and output of the model.
The FIR models have been widely used because of their stable behavior and good

convergence in the estimation. However, they require many parameters and complex
calculations to achieve a satisfactory performance. The IIR models can realize a sharp
transition band with relatively few parameters, although they are unstable [19]. In this
work, a hybrid model using a serial application of IIR or FIR models is applied to employ
the advantages of both models. The parameters are initially set to zero and identified using
the adaptive Kalman filter as illustrated in Figure 3a,b. In the figures, A and B correspond
to IIR and FIR filters, respectively.

4.3. Adaptive Kalman Filter

Before applying an adaptive Kalman filter process, the parametric models are modified
and described as a state-space model [20]:

- State model

θn+1 = θn + un, (13)

- Space model:

yn = HT
n θn + wn, (14)

where

θn = [b0, . . . , bM, a1, . . . , aN ]
T , Hn = [xn, . . . xn−M,−yn−1, . . . ,−yn−N ]

T

un, wn : Zero−mean white Gaussian noises.
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The adaptive Kalman filter is applied to identify the model parameters recursively. It
is an optimal estimation of the state that minimizes the squared error between the estimated
and the measured track irregularities. The algorithm can be summarized as follows:

• Initialization

θ̂0|−1 = 0, P0|−1 = Θ0, (15)

• Recursions

- Innovations:

en = yn −Hnθ̂n|n−1, (16)

- Innovation covariance:

Re,n = HnPn|n−1H∗n + Rn, (17)

- Kalman prediction gain:

Kp,n = Pn|n−1H∗nR−1
e,n , (18)

- State estimation:

θ̂n+1|n = θ̂n|n−1 + Kp,nen, (19)

- State error covariance:
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Pn+1|n = Pn|n−1 + Qn −Kp,nRe,nK∗p,n = Pn|n−1 + Qn −Kp,nHnPn|n−1. (20)

In the algorithm, θ̂n+1|n is the parameter estimation at n, and Qn, Rn, and Θ0 represent
the auto-covariance of un, wn, and θ0, respectively.

5. Identification of the Models
5.1. Model Selection

To determine the model parameters, the displacements and irregularities obtained
over a track section of 30 km in length, as shown in Figure 4, are used as the input and
output. They were sampled every 0.25 m; hence, 120,000 points are used for identification
in each direction. Several single and hybrid models are created using a selection of poles
and zeros. The Pearson’s product-moment correlation coefficient (PPMCC) between the
estimated and the measured track irregularities, the measure of the linear dependency
between the two signals [21], is evaluated to determine the optimal orders of the model.
The mean square error (MSE) of the estimated irregularity is also evaluated to compare the
performance of the models.
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The number of zeros (M) and poles (N) for the models, defined as in Equations (11)
and (12), range from 0 to 20 and 1 to 20, respectively. The contour plots, as shown in Figure 5,
are used for the intuitive evaluation of the models. The highest values are obtained above
six zeros and one pole in the lateral direction. In the vertical direction, they are obtained
above fourteen zeros and one pole, above twelve zeros and three poles, and above six zeros
and five poles. IIR models with six zeros and one pole and six zeros and five poles are
selected for the vertical and lateral directions, respectively, because models with smaller
orders are efficient.
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Figure 5. PPMCC contour plots using estimated displacement from measured acceleration: (a) lateral
direction; (b) vertical direction.

The PPMCC and the MSE for different models are compared, as shown in Figure 6.
The numbers in the parentheses indicate the number of zeros and poles; for example, FIR(4)
represents the FIR model with M = 4, and IIR(6,5) stands for the IIR model with M = 6
and N = 5. The FIR(40) model is selected for comparison, as it was used in a previous
work [11]. The FIR(4) model is also selected because it has the lowest number of zeros with
no pole and a relatively high PPMCC in the lateral direction.



Machines 2023, 11, 6 9 of 16
Machines 2023, 11, x FOR PEER REVIEW 10 of 18 
 

 

 
(a) 

(b) 

Figure 6. Comparison of PPMCC (♦) and MSE (■) of different models: (a) lateral direction; (b) ver-
tical direction. 

The spatial frequency responses of the derived models are shown in Figure 7. As 
mentioned in the introduction, the models are used to compensate for the discrepancies 
caused by the lateral motion of the axle box or the bogie relative to the track and the phase 
delay of the previous filters. Therefore, the model in the lateral direction has larger value 
than that in the vertical direction. Data from two additional test campaigns, carried out 
within a six-month interval after the first test, are used to ensure the reproducibility of the 
proposed models. Despite the six-month interval between the first and the third trials, the 
frequency responses of both directions are consistent. Therefore, it is safe to conclude that 
the models are reliable and can be applied to estimate track irregularities. 

The pole–zero plots of the derived models are shown in Figure 8. All poles are located 
inside, near the unit circle, and separated from zeros. This ensures that the derived models 
are stable and can produce bounded signals. 

Before FIR(40) IIR(6,1) FIR(4) FIR(4) +
IIR(6,1)

IIR(6,1) +
FIR(4)

PPMCC 0.62 0.73 0.79 0.64 0.63 0.80
MSE 5.99 1.87 2.48 2.34 2.53 1.45

1.0

2.0

3.0

4.0

5.0

6.0

7.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
SE

 (m
m

2 )

PP
M

C
C

Before FIR(40) IIR(6,5) FIR(4) FIR(4) +
IIR(6,5)

IIR(6,5) +
FIR(4)

PPMCC 0.85 0.88 0.90 0.86 0.69 0.90
MSE 1.66 1.32 1.08 1.58 3.20 1.07

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
SE

 (m
m

2 )

PP
M

C
C

Figure 6. Comparison of PPMCC (�) and MSE (�) of different models: (a) lateral direction; (b) verti-
cal direction.

In Figure 6a, for the lateral direction, it is found that the PPMCC value is increased
when a single IIR(6,1) or FIR(4) is used. However, the MSE for the IIR(6,1) model is higher
than that of the FIR(4) or FIR(40) models. A hybrid IIR/FIR model, which applies the
FIR(4) after the IIR(6,1), results in the highest PPMCC and the lowest MSE. On the contrary,
the worst result is obtained when the sequence of the filters is reversed, i.e., the IIR(6,1) is
applied after the FIR(4). Hence, it is confirmed that the hybrid IIR/FIR model is adequate
and appropriate for estimating lateral track irregularity. In Figure 6b, for the vertical
direction, it is found that the PPMCC and the MSE slightly improve when a single IIR(6,5)
model is used. The effect of using a hybrid IIR/FIR model is moderate, and a hybrid
FIR/IIR model worsens the result. Therefore, it is confirmed that a single IIR model would
be sufficient to estimate the vertical track irregularity.

The spatial frequency responses of the derived models are shown in Figure 7. As
mentioned in the introduction, the models are used to compensate for the discrepancies
caused by the lateral motion of the axle box or the bogie relative to the track and the phase
delay of the previous filters. Therefore, the model in the lateral direction has larger value
than that in the vertical direction. Data from two additional test campaigns, carried out
within a six-month interval after the first test, are used to ensure the reproducibility of the
proposed models. Despite the six-month interval between the first and the third trials, the
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frequency responses of both directions are consistent. Therefore, it is safe to conclude that
the models are reliable and can be applied to estimate track irregularities.
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The pole–zero plots of the derived models are shown in Figure 8. All poles are located
inside, near the unit circle, and separated from zeros. This ensures that the derived models
are stable and can produce bounded signals.

5.2. Model Validation

The derived parametric models are applied to estimate track irregularities from the
acceleration signals obtained from the HSR-350x train on which the TGIS is installed. The
results in the spatial domain are shown in Figure 9. In the lateral direction, the irregularity
estimated without the parametric model overestimates the track irregularity, while the
derived models ensure the estimated results are close to the measured track irregularity.
In the vertical direction, all results are consistent, and no significant improvements are
observed regardless of the model used.
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Figure 8. Pole−zero plots: (a) lateral direction; (b) vertical direction.
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Figure 9. Estimation of track irregularities from the TGIS in the spatial domain.
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Since it is complicated to analyze the results in the spatial domain, track irregularities
are transformed into the wavelength domain, and their power spectral densities are com-
pared as shown in Figure 10. The compensation model improves the irregularity estimation
in the lateral direction, especially for wavelengths between 4~70 m. However, the effect of
the model is indistinct in the vertical direction.
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Figure 10. Estimation of track irregularities using the TGIS signal in the wavelength domain:
(a) lateral direction; (b) vertical direction.

6. Track Irregularity Estimation Using Derived Models

To examine the applicability of the derived models, they were used to estimate track
irregularities from the signals obtained using the accelerometers installed on the axle box
and the bogie of a KTX train in operation. A section of the slab track with notable lateral
and vertical track irregularities was selected for comparison. The reference measurement
with the TGIS was carried out approximately one year before the measurement tests with
the in-service train. The slab track was selected because the variations in time are expected
to be smaller than those for the ballasted track. Three measurement tests were carried out
within a one-week interval to ensure the reproducibility of the methodology, and the results
were compared in the spatial and the wavelength domains as shown in Figures 11–13. The
maximum train speed in these test campaigns was 300 km/h. The discrepancies were
presumed to be a result of the differences in the suspension characteristics and wheel
profiles of the KTX train and HSR-350x train.
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The estimated and measured lateral track irregularities are compared in Figures 11a
and 12. The estimated results from the three tests show excellent agreement, confirming that
the proposed method can be used for trains in regular operation. The results also show good
agreement with the reference irregularity. In the spatial domain, as shown in Figure 11a, an
irregularity is clearly observed near the 0.25 km section from both accelerometers installed
on the axle box and the bogie. In the wavelength domain, as shown in Figure 12, the
estimated results show good agreement over all wavelengths except below 4 m and near
10 m.
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Figure 12. Estimation of lateral track irregularities in the wavelength domain: (a) axle box-mounted
accelerometer; (b) bogie-mounted accelerometer.

The estimated and measured vertical track irregularities are compared in Figures 11b
and 13. The results from the three tests of the bogie-mounted accelerometer show excellent
agreement, while those of the axle box-mounted accelerometer show some discrepancies.
However, a notable irregularity near the 0.25 km section is clearly observed. Its magnitude
is estimated within a tolerable range in both the axle box and the bogie-mounted accelerom-
eters, as shown in Figure 11b. The wavelength characteristics of the estimated irregularities
are shown in Figure 13. The results obtained from the accelerometers installed on the axle
box and the bogie exhibit the same spectral characteristics of the measured irregularity.
The results show that bogie-mounted accelerometers estimate the irregularities better. It is
presumed that the acceleration signal of the axle box is noisier because the vibration level
is much higher.
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Figure 13. Estimation of vertical track irregularities in the wavelength domain: (a) axle box-mounted
accelerometer; (b) bogie-mounted accelerometer.

7. Summary and Conclusions

The parametric models are identified by applying a system identification technique
that uses estimated displacement from acceleration as the input and measured track ir-
regularity as the output. The parameters are derived from the acceleration and the track
irregularities from a track geometry inspection system (TGIS). The parametric models are
set up based on the IIR and/or the FIR, and the adaptive Kalman filter is applied for their
estimation. The orders of the parametric models are determined by evaluating the PPMCC
and the MSE. The number of parameters can be reduced while improving the performance
of the models. In this work, a hybrid IIR/FIR model and a single IIR model are selected
for lateral and vertical directions. They are validated by estimating irregularities from the
acceleration signals measured by the TGIS.

Finally, track irregularities are estimated using acceleration measured from trains in
commercial operation. The results using data obtained from three measurement tests show
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good agreement, ensuring the methodology’s reproducibility. The estimated irregularities
are compared with the reference irregularity in the spatial and wavelength domains. The
suggested method can detect the location of irregularities in both the lateral and the vertical
directions. It is also demonstrated that the estimated irregularities exhibit the same spectral
characteristics as the measured irregularity.

In conclusion, the identified parametric models can be used to predict track irregulari-
ties from the accelerometers installed on high-speed trains in commercial operation.
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