
Citation: Jiang, W.; Song, C.; Wang,

H.; Yu, M.; Yan, Y. Obstacle Detection

by Autonomous Vehicles: An

Adaptive Neighborhood Search

Radius Clustering Approach.

Machines 2023, 11, 54. https://

doi.org/10.3390/machines11010054

Academic Editor: Yahui Liu

Received: 22 November 2022

Revised: 28 December 2022

Accepted: 29 December 2022

Published: 2 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

Obstacle Detection by Autonomous Vehicles: An Adaptive
Neighborhood Search Radius Clustering Approach
Wuhua Jiang 1, Chuanzheng Song 1, Hai Wang 2 , Ming Yu 3,* and Yajie Yan 1

1 School of Automotive and Transportation Engineering, Hefei University of Technology, Hefei 230009, China
2 Discipline of Engineering and Energy, Murdoch University, Perth, WA 6150, Australia
3 School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009, China
* Correspondence: yu0202@hfut.edu.cn

Abstract: For autonomous vehicles, obstacle detection results using 3D lidar are in the form of
point clouds, and are unevenly distributed in space. Clustering is a common means for point cloud
processing; however, improper selection of clustering thresholds can lead to under-segmentation or
over-segmentation of point clouds, resulting in false detection or missed detection of obstacles. In
order to solve these problems, a new obstacle detection method was required. Firstly, we applied
a distance-based filter and a ground segmentation algorithm, to pre-process the original 3D point
cloud. Secondly, we proposed an adaptive neighborhood search radius clustering algorithm, based
on the analysis of the relationship between the clustering radius and point cloud spatial distribution,
adopting the point cloud pitch angle and the horizontal angle resolution of the lidar, to determine the
clustering threshold. Finally, an autonomous vehicle platform and the offline autonomous driving
KITTI dataset were used to conduct multi-scene comparative experiments between the proposed
method and a Euclidean clustering method. The multi-scene real vehicle experimental results showed
that our method improved clustering accuracy by 6.94%, and the KITTI dataset experimental results
showed that the F1 score increased by 0.0629.

Keywords: autonomous vehicle; adaptive neighborhood search radius; clustering; obstacle detection

1. Introduction

Key technologies for autonomous driving can be outlined in three parts: perception;
planning; and control. As autonomous driving technology evolves, lidar is becoming the
key detection unit for the perception systems of autonomous vehicles, due to its ability to
precisely detect range and angle information. The function of perception systems based
on 3D lidar is to achieve obstacle detection from disordered point clouds: the obstacle
detection results have been shown to directly influence the precision of motion planning
and decision making [1–6]. Existing 3D point cloud processing methods are problematic,
because they select improper clustering thresholds, which result in low detection accuracy;
therefore, obstacle detection based on lidar is a promising prospect.

Obstacle detection methods based on lidar can be mainly classified as two types:
point-cloud-clustering-based methods [7–11] and deep-learning-based methods [12,13].

The 3D point cloud data collected by lidar are in the form of discrete points, and
these points, belonging to the same object, are distributed densely. Point cloud clustering
groups together points that belong to the same obstacle, according to the three-dimensional
coordinates and reflection intensity of the point cloud. There are four common point cloud
clustering methods. Firstly, DBSCAN (Density-Based Spatial Clustering of Applications
with Noise) is a density-based clustering method, which is suitable for point clouds of
various shapes. Zhao et al. improved the traditional DBSCAN method, so as to obtain a
dynamic clustering radius [14]. Wang et al. introduced the k-nearest neighbor concept, to
calculate the clustering radius [15]. Although these methods could adjust the clustering

Machines 2023, 11, 54. https://doi.org/10.3390/machines11010054 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines11010054
https://doi.org/10.3390/machines11010054
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0003-2789-9530
https://doi.org/10.3390/machines11010054
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines11010054?type=check_update&version=2

Machines 2023, 11, 54 2 of 16

threshold, compared to traditional DBSCAN, they did not consider the effect of minPts,
and the presence of noise points reduced the clustering accuracy. Secondly, k-means is
a clustering method that aims to divide the point cloud into k clusters. For the complex
driving conditions of autonomous vehicles, it is impossible to specify the number of
obstacles. Xia et al. proposed an improved k-means algorithm that could merge clusters
with high similarity, and reduce over-segmentation; however, the initial value of k still
needed to be set in advance [16]. In order to automatically set the value of k, Li et al.
presented a method that took the number of locally dense regions ask; however, the process
of searching for dense regions dramatically increased the computational burden, and
reduced calculation speed. Moreover, the k-means method is not applicable to cluster
point clouds with complex shapes [17]. Thirdly, the basic idea of the grid-based clustering
method is that the 3D point cloud is divided into several 2D grids, and then the grids with
similar attributes are connected. Wang et al. suggested an improved method based on
grid mapping, which described moving obstacles using the grid conflict coefficient and
the inconsistencies between multiple frames of the point cloud [18]. Xie et al. applied a
multi-frame fusion method based on grid mapping, to detect moving obstacles, and used an
obstacle template matching algorithm to detect static obstacles. Though this method could
speed up obstacle detection, it was difficult to accurately distinguish adjacent obstacles,
and large amounts of environmental information could be lost [19]. Fourthly, Euclidean
clustering is a distance-based method: when the distance between two adjacent points is
less than the given distance threshold, they are clustered into one cluster. This method
is widely used in point cloud processing, because it can obtain good detection results for
various objects. Yan et al. optimized the Euclidean clustering method, by the addition of
a spatial distance threshold; however, the spatial distance threshold remained fixed [20].
Guo et al. introduced a weight coefficient, to redefine the calculation method of the
clustering threshold, and adopted the octree structure to accelerate detection; nevertheless,
the accuracy of obstacle detection was still not high [21]. To deal with the above problems,
Wen et al. used features such as lidar angular resolution, to determine the adaptive
threshold; however, the threshold was calculated based on the two-dimensional point
cloud [22].

Many researchers have discovered that it is difficult to obtain satisfactory clustering
results by applying only one clustering algorithm, and research on hybrid clustering algo-
rithms has begun: for instance, grid mapping combined with the density-based clustering
method [23], and the distance-based clustering method combined with the density-based
clustering method [24]. However, these methods are too complex to guarantee real-time
detection.

In recent years, deep learning models have been developed to process 3D point clouds
for obstacle detection. A deep learning model called PointNet, which can directly take the
origin 3D point cloud as input for detecting obstacles, has been developed by Ref. [25].
Aiming to make full use of local features to improve detection accuracy, Qi et al. put
forward PointNet++ [26]. On the basis of this research, Shi S et al. also proposed a deep
learning model called PointRCNN [27]. To obtain higher detection accuracy, a large number
of training samples and computational resources are needed, to train the deep learning
model; however, the computing resources of autonomous vehicles are limited, and it is
difficult to deploy a deep learning framework effectively.

Current obstacle detection based on lidar mainly uses point cloud clustering methods.
Setting clustering thresholds based on empirical values is a simple method, but it is difficult
to accurately detect obstacles, such as pedestrians and vehicles with complex shapes [20,28].
Setting the point cloud clustering threshold based on the point cloud angle relationship
is a method of determining the clustering threshold by considering the angle relationship
between two adjacent points in the horizontal direction and the distance from the 3D point
cloud to the lidar [22,23]. The point cloud is unevenly distributed in the vertical direction,
and the distance between two adjacent points in the vertical direction increases steeply
with the growth of the point cloud distance and pitch angle, so it is difficult to achieve

Machines 2023, 11, 54 3 of 16

accurate segmentation of the point cloud in the vertical direction by only determining the
clustering threshold based on the angular relationship in the horizontal direction.

To solve the above problems, a new obstacle detection method, called adaptive neigh-
borhood search radius clustering, is proposed in this paper. Based on the analysis of the
irregular spatial distribution characteristics of the point cloud, we introduced the pitch
angle of the point cloud, to determine the clustering threshold together with the horizontal
angular resolution of lidar. We conducted comparative experiments, using the proposed
method and the Euclidean clustering method [28], to validate the effectiveness of the
proposed algorithm at improving detection accuracy.

The rest of the paper is organized as follows: in Section 2, the pre-processing and
ground segmentation of the point cloud are discussed; in Section 3, the relationship between
the clustering radius and the non-uniform spatial distribution of the point cloud, and the
adaptive threshold clustering algorithm are presented; in Section 4, the proposed method
is experimentally verified; finally, the whole paper is concluded in Section 5.

2. Data Pre-processing
2.1. Interference Points Removal

Interference points in the original point cloud will reduce the accuracy of obstacle
detection. Points in the following three categories should be removed: (1) noise points
caused by body vibration or electromagnetic interference, and outlier points caused by
environmental factors such as falling leaves; (2) points far away from the lidar, as they are
sparsely distributed and retain little environmental information; (3) points belonging to
hanging obstacles. Filtering out these interference points will accelerate obstacle detection,
and improve detection accuracy. To summarize, we only keep measurement points that
satisfy the following conditions:

dmin <
√

x2 + y2 < dmax (1)

z < zmax (2)

where dmin and dmax are the minimum and maximum distance thresholds, respectively;
dmax is related to the effective detection distance of the lidar, and zmax is the height threshold
of a measurement point being judged as a hanging point. In this paper, dmin, dmax, and zmax
are set to be 2, 50 and 5 m.

Figure 1a shows the original point cloud without removing the interference points.
After the removal of the above interference points, the pre-processed point cloud is obtained,
as shown in Figure 1b.

Machines 2023, 11, x FOR PEER REVIEW 4 of 17

(a) (b)

Figure 1. Interference point removal: (a) point cloud before interference point removal; (b) point

cloud after interference point removal.

2.2. Ground Segmentation

After removing the interference points, the remaining point cloud can be divided into

two parts: the ground point cloud and the obstacle point cloud. The ground point cloud,

which contains a large number of points, is only collected by scanning road surfaces. The

obstacle point cloud typically consists of point cloud from cars, pedestrians, green spaces

and buildings. Processing the ground point cloud will slow down detection speed, and

shorten the decision-making time of the autonomous driving system. In addition, the ex-

istence of the ground point cloud will reduce the segmentation accuracy of the obstacle

point cloud. Therefore, ground segmentation is required before obstacle detection.

Considering that the ground point cloud is evenly distributed, a ground segmenta-

tion algorithm that can be applied to the slope situation is used for ground segmentation,

as follows [11]: firstly, three subspaces, including 𝑃1, 𝑃2 and 𝑃3 are separated along the

direction of the vehicle driving from the point cloud 𝑃, after removal of the interference

points; secondly, the points in subspace 𝑃𝑖 are rearranged in ascending order, to obtain

𝑃𝑖
∗, and the sum of the height of the first N (50) points 𝑆𝑢𝑚𝐻𝑒𝑖𝑔ℎ𝑡 and the average height

𝐴𝑣𝑒𝐻𝑒𝑖𝑔ℎ𝑡, respectively, are calculated; thirdly, every point 𝑝 in 𝑃𝑖
∗ with a z-axis value

less than 𝐴𝑣𝑒𝐻𝑒𝑖𝑔ℎ𝑡 + ∆ℎ is marked as an initial point and 𝑝 is added into 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑒𝑡,

while ∆ℎ is the error threshold (1.6 m); finally, the plane fitting method, based on RAN-

SAC, is applied separately, to extract the ground point cloud, 𝑷𝒐𝒏, using 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑒𝑡 for

each subspace:

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + ⅆ = 0 (3)

C = ∑ (𝑘𝑖 − �̂�)(𝑘𝑖 − �̂�)
𝑇

𝑖=1:𝑛𝑢𝑚

 (4)

where 𝑎, 𝑏, 𝑐 and ⅆ are the parameters of each subspace plane model, C is the covari-

ance matrix, 𝑘𝑖 is the 𝑖𝑡ℎ point cloud in the seed point set 𝑘. As the low points are likely

to be ground points, a set containing a certain number of lower points is selected to calcu-

late the covariance matrix C. The dispersion of the seed set can be calculated by the sin-

gular value decomposition of C to obtain the normal vector of the ground plane in each

subspace. The flow chart of the ground segmentation algorithm is shown in Figure 2.

Figure 1. Interference point removal: (a) point cloud before interference point removal; (b) point
cloud after interference point removal.

Machines 2023, 11, 54 4 of 16

2.2. Ground Segmentation

After removing the interference points, the remaining point cloud can be divided
into two parts: the ground point cloud and the obstacle point cloud. The ground point
cloud, which contains a large number of points, is only collected by scanning road surfaces.
The obstacle point cloud typically consists of point cloud from cars, pedestrians, green
spaces and buildings. Processing the ground point cloud will slow down detection speed,
and shorten the decision-making time of the autonomous driving system. In addition, the
existence of the ground point cloud will reduce the segmentation accuracy of the obstacle
point cloud. Therefore, ground segmentation is required before obstacle detection.

Considering that the ground point cloud is evenly distributed, a ground segmentation
algorithm that can be applied to the slope situation is used for ground segmentation,
as follows [11]: firstly, three subspaces, including P1, P2 and P3 are separated along the
direction of the vehicle driving from the point cloud P, after removal of the interference
points; secondly, the points in subspace Pi are rearranged in ascending order, to obtain
P∗i , and the sum of the height of the first N (50) points SumHeight and the average height
AveHeight, respectively, are calculated; thirdly, every point p in P∗i with a z-axis value less
than AveHeight+∆h is marked as an initial point and p is added into InitialSet, while ∆h is
the error threshold (1.6 m); finally, the plane fitting method, based on RANSAC, is applied
separately, to extract the ground point cloud, Pon, using InitialSet for each subspace:

ax + by + cz + d = 0 (3)

C = ∑
i=1:num

(
ki − k̂

)(
ki − k̂

)T
(4)

where a, b, c and d are the parameters of each subspace plane model, C is the covariance
matrix, ki is the ith point cloud in the seed point set k. As the low points are likely
to be ground points, a set containing a certain number of lower points is selected to
calculate the covariance matrix C. The dispersion of the seed set can be calculated by the
singular value decomposition of C to obtain the normal vector of the ground plane in each
subspace. The flow chart of the ground segmentation algorithm is shown in Algorithm 1.

Algorithm 1: Ground segmentation
Input: P (Point cloud)
Output: Pon (Ground point cloud), Poff (Obstacle point cloud)

1 Split P into three sections along the direction of vehicle driving: P1, P2 and P3;
2 Initialize Num, SumHeight, AveHeight, InitialSet;
3 foreach p ∈ Poff do
4 Pi is sorted by z - axis height value from lowest to highest to obtain Pi

*;
5 while Num < N do
6 SumHeight = SumHeight + Pi

*[num].z;
7 Num = Num + 1;
8 end
9 AveHeight = SumHeight/N;
10 foreach p ∈ Pi

* do
11 if p.z <= AveHeight + 4h then
12 InitialSet = InitialSet ∪{p};
13 end
14 end
15 \\Use initial points for plane fitting;
16 Pon = Pon ∪ PlaneFitting(InitialSet);
17 Poff = P \ PlaneFitting(InitialSet);
18 end
19 return

The ground segmentation result is shown in Figure 2, while Figure 2a shows the
ground point cloud, and Figure 2b shows the obstacle point cloud.

Machines 2023, 11, 54 5 of 16

Machines 2023, 11, x FOR PEER REVIEW 5 of 17

Figure 2. Pseudo-code of ground segmentation.

The ground segmentation result is shown in Figure 3, while Figure 3a shows the

ground point cloud, and Figure 3b shows the obstacle point cloud.

(a) (b)

Figure 3. Result of ground segmentation: (a) ground point cloud; (b) obstacle point cloud.

3. Adaptive Neighborhood Search Radius Clustering Algorithm

3.1. Analysis of Point Cloud Spatial Distribution

As shown in Figure 4, the overall spatial distribution of the point clouds collected by

the lidar is sparse in remote regions, and dense in close regions. As the vertical angular

resolution 𝜔 of the lidar is higher than the horizontal resolution 𝛼, the local point cloud

spatial distribution has the following characteristics: (1) the distance between two adjacent

points belonging to the same point cloud layer is near; (2) the distance between two adja-

Figure 2. Result of ground segmentation: (a) ground point cloud; (b) obstacle point cloud.

3. Adaptive Neighborhood Search Radius Clustering Algorithm
3.1. Analysis of Point Cloud Spatial Distribution

As shown in Figure 3, the overall spatial distribution of the point clouds collected by
the lidar is sparse in remote regions, and dense in close regions. As the vertical angular
resolution ω of the lidar is higher than the horizontal resolution α, the local point cloud
spatial distribution has the following characteristics: (1) the distance between two adjacent
points belonging to the same point cloud layer is near; (2) the distance between two
adjacent points belonging to different point cloud layers is far. According to the partially
enlarged graph on the right of Figure 3, the point cloud of the pedestrians is densely
distributed horizontally and sparsely distributed vertically. In addition, when the point
cloud is collected by scanning the object surface, points belonging to the same object will
be naturally and densely distributed around it.

Machines 2023, 11, x FOR PEER REVIEW 6 of 17

cent points belonging to different point cloud layers is far. According to the partially en-

larged graph on the right of Figure 4, the point cloud of the pedestrians is densely distrib-

uted horizontally and sparsely distributed vertically. In addition, when the point cloud is

collected by scanning the object surface, points belonging to the same object will be natu-

rally and densely distributed around it.

Figure 4. Point cloud spatial distribution.

3.2. Analysis of Fixed Neighborhood Search Radius Clustering Algorithm

Clustering is a common data classification method that aims to divide elements in a

dataset into finite subsets according to a certain rule. Normally, elements that are divided

into the same subset have similar features, while elements from different subsets may ex-

hibit different features. Obstacle detection methods based on point cloud clustering divide

the obstacle point cloud into point cloud clusters, by using features such as point cloud

location and reflection intensity. Each cluster represents an obstacle, so the key to ensuring

the accuracy of obstacle detection is to group points belonging to the same obstacle into a

cluster, without any wrong division.

Point cloud clustering aims to cluster points with similar characteristics into the

neighborhood space of the clustering center in the point cloud. The size of the neighbor-

hood space depends on the neighborhood search radius 𝑟𝑑. Figure 5 shows the specific

steps of the point cloud clustering process: (a) initialize the obstacle point set, 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒 =

∅, and the seed point set, 𝑆𝑒𝑒ⅆ𝑆𝑒𝑡 = ∅, then select an unprocessed point 𝑝𝑖 from point

cloud 𝑃𝑜𝑓𝑓 as the initial clustering center, mark it as processed, add it into 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒, and

add all the points in the neighborhood space with center 𝑝𝑖 into 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒 and 𝑆𝑒𝑒ⅆ𝑆𝑒𝑡;

(b) choose each point 𝐶𝑢𝑟𝑟𝑃𝑜𝑖𝑛𝑡 (such as the green point 𝑝𝑖’) in 𝑆𝑒𝑒ⅆ𝑆𝑒𝑡 as the cluster-

ing center, add these newly processed points into 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒 and 𝑆𝑒𝑒ⅆ𝑆𝑒𝑡 , and delete

𝐶𝑢𝑟𝑟𝑃𝑜𝑖𝑛𝑡 from 𝑆𝑒𝑒ⅆ𝑆𝑒𝑡; (c) carry out the iterative search until 𝑆𝑒𝑒ⅆ𝑆𝑒𝑡 = ∅, and add

the 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒 into the obstacle list 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐿𝑖𝑠𝑡. When all the points of the point cloud

𝑃𝑜𝑓𝑓 are processed, the whole 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐿𝑖𝑠𝑡 is obtained.

Figure 3. Point cloud spatial distribution.

3.2. Analysis of Fixed Neighborhood Search Radius Clustering Algorithm

Clustering is a common data classification method that aims to divide elements in a
dataset into finite subsets according to a certain rule. Normally, elements that are divided
into the same subset have similar features, while elements from different subsets may
exhibit different features. Obstacle detection methods based on point cloud clustering
divide the obstacle point cloud into point cloud clusters, by using features such as point
cloud location and reflection intensity. Each cluster represents an obstacle, so the key

Machines 2023, 11, 54 6 of 16

to ensuring the accuracy of obstacle detection is to group points belonging to the same
obstacle into a cluster, without any wrong division.

Point cloud clustering aims to cluster points with similar characteristics into the
neighborhood space of the clustering center in the point cloud. The size of the neighborhood
space depends on the neighborhood search radius rd. Figure 4 shows the specific steps of
the point cloud clustering process: (a) initialize the obstacle point set, Obstacle = ∅, and
the seed point set, SeedSet = ∅, then select an unprocessed point pi from point cloud Po f f
as the initial clustering center, mark it as processed, add it into Obstacle, and add all the
points in the neighborhood space with center pi into Obstacle and SeedSet; (b) choose each
point CurrPoint (such as the green point pi’) in SeedSet as the clustering center, add these
newly processed points into Obstacle and SeedSet, and delete CurrPoint from SeedSet; (c)
carry out the iterative search until SeedSet = ∅, and add the Obstacle into the obstacle
list ObstacleList. When all the points of the point cloud Po f f are processed, the whole
ObstacleList is obtained.

Machines 2023, 11, x FOR PEER REVIEW 7 of 17

(a) (b) (c)

Figure 5. Schematic diagram of neighborhood search: (a) first step; (b) second step; (c) third step.

Figure 6 shows the horizontal and vertical distances of two adjacent points in a point

cloud 0–100 m, detected by a VELODYNE lidar. The farther the point cloud is from the

lidar, the greater the distance between two adjacent points horizontally and vertically;

therefore, in the process of obstacle detection, the required clustering threshold for the

distant obstacle point cloud is larger than that for the close obstacle point cloud. The

search radius 𝑟𝑑 directly influences the accuracy of point cloud clustering. Selecting 𝑟𝑑

properly can obtain an accurate obstacle detection result, while the improper selection of

𝑟𝑑 will cause false detection: specifically, if the value of 𝑟𝑑 is too large, the point cloud of

adjacent obstacles will be clustered together, resulting in multiple obstacles being clus-

tered into a single object. As shown in Figure 7a, two pedestrians are wrongly detected as

one object; conversely, if the value of 𝑟𝑑 is too small, the point cloud belonging to the

same obstacle will be divided into multiple clusters, as shown in Figure 7b, where a car is

divided into two parts.

Figure 6. Horizontal and vertical distance between two adjacent points at 0–100 m from lidar.

Considering that the point cloud spatial distribution is irregular, and the point cloud

density at different locations is different, if the fixed value of 𝑟𝑑 is applied to process the

whole obstacle point cloud, it is impossible to obtain accurate detection results. As shown

in Figure 7c, the point clouds of the pedestrians and the car are accurately segmented at a

very close distance, but the point cloud of the remote car is over-segmented. As shown in

Figure 7d, the point cloud of the near car is accurately segmented, but the remote pedes-

trians are not detected. The root cause of these above problems is that the fixed 𝑟𝑑 cannot

meet all the clustering requirements of the point clouds of cars and pedestrians at different

locations.

Figure 4. Schematic diagram of neighborhood search: (a) first step; (b) second step; (c) third step.

Figure 5 shows the horizontal and vertical distances of two adjacent points in a point
cloud 0–100 m, detected by a VELODYNE lidar. The farther the point cloud is from the
lidar, the greater the distance between two adjacent points horizontally and vertically;
therefore, in the process of obstacle detection, the required clustering threshold for the
distant obstacle point cloud is larger than that for the close obstacle point cloud. The search
radius rd directly influences the accuracy of point cloud clustering. Selecting rd properly
can obtain an accurate obstacle detection result, while the improper selection of rd will
cause false detection: specifically, if the value of rd is too large, the point cloud of adjacent
obstacles will be clustered together, resulting in multiple obstacles being clustered into a
single object. As shown in Figure 6a, two pedestrians are wrongly detected as one object;
conversely, if the value of rd is too small, the point cloud belonging to the same obstacle
will be divided into multiple clusters, as shown in Figure 6b, where a car is divided into
two parts.

Considering that the point cloud spatial distribution is irregular, and the point cloud
density at different locations is different, if the fixed value of rd is applied to process the
whole obstacle point cloud, it is impossible to obtain accurate detection results. As shown
in Figure 6c, the point clouds of the pedestrians and the car are accurately segmented
at a very close distance, but the point cloud of the remote car is over-segmented. As
shown in Figure 6d, the point cloud of the near car is accurately segmented, but the remote
pedestrians are not detected. The root cause of these above problems is that the fixed rd
cannot meet all the clustering requirements of the point clouds of cars and pedestrians at
different locations.

Machines 2023, 11, 54 7 of 16

Machines 2023, 11, x FOR PEER REVIEW 7 of 17

(a) (b) (c)

Figure 5. Schematic diagram of neighborhood search: (a) first step; (b) second step; (c) third step.

Figure 6 shows the horizontal and vertical distances of two adjacent points in a point

cloud 0–100 m, detected by a VELODYNE lidar. The farther the point cloud is from the

lidar, the greater the distance between two adjacent points horizontally and vertically;

therefore, in the process of obstacle detection, the required clustering threshold for the

distant obstacle point cloud is larger than that for the close obstacle point cloud. The

search radius 𝑟𝑑 directly influences the accuracy of point cloud clustering. Selecting 𝑟𝑑

properly can obtain an accurate obstacle detection result, while the improper selection of

𝑟𝑑 will cause false detection: specifically, if the value of 𝑟𝑑 is too large, the point cloud of

adjacent obstacles will be clustered together, resulting in multiple obstacles being clus-

tered into a single object. As shown in Figure 7a, two pedestrians are wrongly detected as

one object; conversely, if the value of 𝑟𝑑 is too small, the point cloud belonging to the

same obstacle will be divided into multiple clusters, as shown in Figure 7b, where a car is

divided into two parts.

Figure 6. Horizontal and vertical distance between two adjacent points at 0–100 m from lidar.

Considering that the point cloud spatial distribution is irregular, and the point cloud

density at different locations is different, if the fixed value of 𝑟𝑑 is applied to process the

whole obstacle point cloud, it is impossible to obtain accurate detection results. As shown

in Figure 7c, the point clouds of the pedestrians and the car are accurately segmented at a

very close distance, but the point cloud of the remote car is over-segmented. As shown in

Figure 7d, the point cloud of the near car is accurately segmented, but the remote pedes-

trians are not detected. The root cause of these above problems is that the fixed 𝑟𝑑 cannot

meet all the clustering requirements of the point clouds of cars and pedestrians at different

locations.

Figure 5. Horizontal and vertical distance between two adjacent points at 0–100 m from lidar.Machines 2023, 11, x FOR PEER REVIEW 8 of 17

(a) (b)

(c) (d)

Figure 7. Wrong point cloud segmentation results using fixed clustering threshold: (a) the point

cloud of the two pedestrians is under-segmented; (b) the point cloud of the car is over-segmented;

(c) the point cloud of the pedestrians is accurately segmented, and the point cloud of the car is over-

segmented; (d) the point cloud of the car is accurately segmented, and the two pedestrians are not

detected.

3.3. Design of Adaptive Clustering Search Radius

For an obstacle (e.g., a car or a pedestrian), the spatial distribution becomes sparser

further away from the lidar. To accurately cluster a point cloud belonging to the same

obstacle, the clustering radius should be adjusted in real time according to the point cloud

location and spatial distribution. The fixed threshold method [28] cannot adjust the value

of the clustering radius, which could lead to the problems of over-segmentation of the cars

point cloud and under-segmentation of the pedestrians point cloud. As shown in Figure

7, the further the obstacle is from the lidar, the greater will be the distance between the

two points of the obstacle point cloud in the horizontal and vertical directions. To realize

the accurate detection of pedestrians and cars, the value of 𝑟𝑑 of the remote pedestrian

point cloud in Figure 8a should be greater than the value of 𝑟𝑑 of the near car point cloud.

Similarly, the value of 𝑟𝑑 of the remote car point cloud in Figure 8b should be larger than

the value of 𝑟𝑑 of the near pedestrians point cloud.

Figure 6. Wrong point cloud segmentation results using fixed clustering threshold: (a) the point
cloud of the two pedestrians is under-segmented; (b) the point cloud of the car is over-segmented;
(c) the point cloud of the pedestrians is accurately segmented, and the point cloud of the car is
over-segmented; (d) the point cloud of the car is accurately segmented, and the two pedestrians are
not detected.

3.3. Design of Adaptive Clustering Search Radius

For an obstacle (e.g., a car or a pedestrian), the spatial distribution becomes sparser
further away from the lidar. To accurately cluster a point cloud belonging to the same

Machines 2023, 11, 54 8 of 16

obstacle, the clustering radius should be adjusted in real time according to the point cloud
location and spatial distribution. The fixed threshold method [28] cannot adjust the value
of the clustering radius, which could lead to the problems of over-segmentation of the
cars point cloud and under-segmentation of the pedestrians point cloud. As shown in
Figure 6, the further the obstacle is from the lidar, the greater will be the distance between
the two points of the obstacle point cloud in the horizontal and vertical directions. To realize
the accurate detection of pedestrians and cars, the value of rd of the remote pedestrian
point cloud in Figure 7a should be greater than the value of rd of the near car point cloud.
Similarly, the value of rd of the remote car point cloud in Figure 7b should be larger than
the value of rd of the near pedestrians point cloud.

Machines 2023, 11, x FOR PEER REVIEW 9 of 17

(a) (b)

Figure 8. Point clouds of pedestrians and cars: (a) the point cloud of the pedestrians is remote, and

the point cloud of the car is near; (b) the point cloud of the pedestrians is near, and the point cloud

of the car is remote.

The theoretical distance (Δⅆ 𝑎𝑛ⅆ Δ𝑧) between two adjacent points in horizontal and

vertical directions can be approximated by (7) and (8), respectively. It can be seen from

Figure 9 that the measured values of the distances of the two points in the horizontal and

vertical directions are basically consistent with the theoretical values calculated according

to (7) and (8); therefore, ∆ⅆ and ∆𝑧 are used as the clustering thresholds in the horizontal

and vertical directions in this paper.

(a) (b)

Figure 9. Theoretical and measured values of the distance between two points in the horizontal and

vertical directions: (a) horizontal direction; (b) vertical direction.

In this paper, we propose an adaptive neighborhood search radius calculation

method, based on the results of point cloud spatial distribution, as follows:

 𝑟𝑑 = 𝑅(𝑠𝑖𝑛(𝛼) + 𝑠𝑖𝑛(𝜔)) + 𝜎 (5)

𝑅 = √𝑥𝑖
2 + 𝑦𝑖

2 + 𝑧𝑖
2 (6)

∆ⅆ = 𝑅 𝑠𝑖𝑛(𝛼) (7)

∆𝑧 = 𝑅 𝑠𝑖𝑛(𝜔) (8)

Figure 7. Point clouds of pedestrians and cars: (a) the point cloud of the pedestrians is remote, and
the point cloud of the car is near; (b) the point cloud of the pedestrians is near, and the point cloud of
the car is remote.

The theoretical distance (∆d and ∆z) between two adjacent points in horizontal and
vertical directions can be approximated by (7) and (8), respectively. It can be seen from
Figure 8 that the measured values of the distances of the two points in the horizontal and
vertical directions are basically consistent with the theoretical values calculated according
to (7) and (8); therefore, ∆d and ∆z are used as the clustering thresholds in the horizontal
and vertical directions in this paper.

Machines 2023, 11, x FOR PEER REVIEW 9 of 17

(a) (b)

Figure 8. Point clouds of pedestrians and cars: (a) the point cloud of the pedestrians is remote, and

the point cloud of the car is near; (b) the point cloud of the pedestrians is near, and the point cloud

of the car is remote.

The theoretical distance (Δⅆ 𝑎𝑛ⅆ Δ𝑧) between two adjacent points in horizontal and

vertical directions can be approximated by (7) and (8), respectively. It can be seen from

Figure 9 that the measured values of the distances of the two points in the horizontal and

vertical directions are basically consistent with the theoretical values calculated according

to (7) and (8); therefore, ∆ⅆ and ∆𝑧 are used as the clustering thresholds in the horizontal

and vertical directions in this paper.

(a) (b)

Figure 9. Theoretical and measured values of the distance between two points in the horizontal and

vertical directions: (a) horizontal direction; (b) vertical direction.

In this paper, we propose an adaptive neighborhood search radius calculation

method, based on the results of point cloud spatial distribution, as follows:

 𝑟𝑑 = 𝑅(𝑠𝑖𝑛(𝛼) + 𝑠𝑖𝑛(𝜔)) + 𝜎 (5)

𝑅 = √𝑥𝑖
2 + 𝑦𝑖

2 + 𝑧𝑖
2 (6)

∆ⅆ = 𝑅 𝑠𝑖𝑛(𝛼) (7)

∆𝑧 = 𝑅 𝑠𝑖𝑛(𝜔) (8)

Figure 8. Theoretical and measured values of the distance between two points in the horizontal and
vertical directions: (a) horizontal direction; (b) vertical direction.

Machines 2023, 11, 54 9 of 16

In this paper, we propose an adaptive neighborhood search radius calculation method,
based on the results of point cloud spatial distribution, as follows:

rd = R(sin(α) + sin(ω)) + σ (5)

R =
√

xi
2 + yi

2 + zi
2 (6)

∆d = Rsin(α) (7)

∆z = Rsin(ω) (8)

where α is the horizontal angular resolution of lidar, ω is the pitch angle of the point cloud
layer, σ is the measurement error, and xi, yi and zi are the x, y and z coordinates of a point,
respectively.

Based on the above spatial analysis of the point cloud, the value of rd positively
correlates with the distance between two adjacent points, in both horizontal and ver-
tical directions (∆d and ∆z). In addition, ∆d is closely related to the horizontal angle
resolution, α and R, ∆z is closely related to the pitch angle, ω and R, and ∆d and ∆z
can be obtained from (7) and (8), respectively. By introducing α, ω and R, an adaptive
neighborhood search radius for the obstacle point cloud at different locations can be
calculated according to (5). Thus, the accuracy of obstacle detection for autonomous ve-
hicles is improved. The pseudo-code of the proposed algorithm is shown in Algorithm 2.

Algorithm 2: Adaptive neighborhood search radius clustering algorithm
Input: Poff (Obstacle point cloud), α, ω

Output: ObstacleList

1 Initialize Obstacle, SeedSet;
2 foreach p ∈ Poff do
3 if p.label = = PROCESSED then
4 continue;
5 else
6 \\Calculate the rd of point p based on α, ω and R, and search for neighbor points;
7 SeedSet = NeighborhoodSearch(p, rd(p, α, ω, R));
8 Obstacle = {p}∪ SeedSet;
9 p.label = PROCESSED;
10 end
11 while SeedSet 6= Φ do
12 foreach q ∈ SeedSet do
13 CurrPoint = SeedSet.first();
14 Obstacle = Obstacle ∪ NeighborhoodSearch(CurrPoint, rd(CurrPoint, α, ω, R));
15 SeedSet = SeedSet ∪ NeighborhoodSearch(CurrPoint, rd(CurrPoint, α, ω, R));
16 SeedSet = SeedSet \ {CurrPoint};
17 end
18 foreach k ∈ Obstacle do
19 \\Mark the processed points to prevent repeated clustering;
20 k.label = PROCESSED;
21 end
22 ObstacleList.add(Obstacle);
23 Obstacle = Φ;
24 end
25 end
26 return

The fixed-threshold Euclidean clustering method is simple, and has high real-time
performance, but it cannot accurately detect obstacles in complex scenes, especially when
the obstacles are far away from the ego car. Compared to the fixed threshold method,
the method proposed in this paper can adjust the threshold adaptively according to the
positions of different point clouds, which can be applied to obstacles of various complex
shapes. Compared to clustering methods that only consider the angle of horizontal di-

Machines 2023, 11, 54 10 of 16

rection, this paper adds the pitch angle of the point cloud vertical direction, which can
effectively solve the problem of over-segmentation of the obstacle point cloud, caused
by the uneven distribution of the point cloud vertical direction. The traditional k-means
clustering method needs to set the number of clusters in advance, which is not applicable
to a complex driving environment; however, our proposed method can be used without
setting the number of clusters in advance. The grid-map-based clustering method needs
to project the 3D point cloud to the 2D horizontal plane before clustering, which greatly
reduces the real-time performance of the algorithm; in addition, the grid-based method
cannot dynamically adjust the size of the grid. The method proposed in this paper is
directly used to detect 3D point clouds.

4. Experiment Result

To validate the effectiveness of the proposed obstacle detection method, multi-scene
real vehicle experiments were carried out, where the Euclidean clustering method [28] and
the proposed method were implemented. Furthermore, the comparison study of the two
methods was realized by processing the offline KITTI dataset.

4.1. Experimental Vehicle

The experimental platform was an autonomous vehicle platform equipped with three
VLP-16 lidars, and the sensor configuration scheme is shown in Table 1. The computing
platform was an Intel i7 processor with 3.1-GHz and 8G-RAM, and the algorithm was
run on the Ubuntu 16.04 operating system with ROS (Robot Operating System). The
experimental platform is shown in Figure 9.

Table 1. Configuration of sensors.

Sensor Number

VLP-16 lidar 3
Camera 1

Millimeter wave radar 4
GPS/INS 1

Ultrasonic radar 12
Gyro Sensor 1

VBOX 1

Machines 2023, 11, x FOR PEER REVIEW 11 of 17

duces the real-time performance of the algorithm; in addition, the grid-based method can-

not dynamically adjust the size of the grid. The method proposed in this paper is directly

used to detect 3D point clouds.

4. Experiment Result

To validate the effectiveness of the proposed obstacle detection method, multi-scene

real vehicle experiments were carried out, where the Euclidean clustering method [28]

and the proposed method were implemented. Furthermore, the comparison study of the

two methods was realized by processing the offline KITTI dataset.

4.1. Experimental Vehicle

The experimental platform was an autonomous vehicle platform equipped with

three VLP-16 lidars, and the sensor configuration scheme is shown in Table 1. The com-

puting platform was an Intel i7 processor with 3.1-GHz and 8G-RAM, and the algorithm

was run on the Ubuntu 16.04 operating system with ROS (Robot Operating System). The

experimental platform is shown in Figure 11.

Figure 11. Experimental platform.

Table 1. Configuration of sensors.

Sensor Number

VLP-16 lidar 3

Camera 1

Millimeter wave radar 4

GPS/INS 1

Ultrasonic radar 12

Gyro Sensor 1

VBOX 1

4.2. Multi-Scene Real Vehicle Experiments

In this section, the detection results of the proposed method and the Euclidean clus-

tering algorithm in multiple scenarios are given. As shown in Figures 12b, 13b, 14b and

15b, there were some under-segmentation and over-segmentation problems when the Eu-

clidean clustering algorithm was used to detect obstacles. By contrast, the adaptive neigh-

borhood search radius clustering method proposed in this paper can select the proper

neighborhood search radius dynamically, according to the relationship between the point

cloud spatial distribution and the clustering radius: the process of obstacle detection based

on lidar is continuous. Figures 16 and 17 show the detection process using the two meth-

ods, respectively, in an experimental scene, where one frame was extracted every 2.5 s, in

order to clearly show the obstacle motion process.

Figure 9. Experimental platform.

4.2. Multi-Scene Real Vehicle Experiments

In this section, the detection results of the proposed method and the Euclidean cluster-
ing algorithm in multiple scenarios are given. As shown in Figures 10b, 11b, 12b and 13b,
there were some under-segmentation and over-segmentation problems when the Euclidean
clustering algorithm was used to detect obstacles. By contrast, the adaptive neighborhood
search radius clustering method proposed in this paper can select the proper neighborhood

Machines 2023, 11, 54 11 of 16

search radius dynamically, according to the relationship between the point cloud spatial
distribution and the clustering radius: the process of obstacle detection based on lidar is
continuous. Figures 14 and 15 show the detection process using the two methods, respec-
tively, in an experimental scene, where one frame was extracted every 2.5 s, in order to
clearly show the obstacle motion process.

Machines 2023, 11, x FOR PEER REVIEW 12 of 17

In the experiment, 500 point cloud frames were selected from the collected dataset,

and the obstacles in each point cloud frame were manually marked. The marked obstacles

included vehicles, pedestrians, trees and other buildings. The detection results of the 500

point cloud frames processed by the above two algorithms are shown in Figure 18. The

detection accuracy of the proposed method was an improvement of 6.94 % compared to

the Euclidean clustering algorithm, and it could simultaneously reduce under-segmenta-

tion, over-segmentation and false detection effectively.

(a) (b) (c)

Figure 12. Scene of multiple adjacent pedestrians: (a) obstacle point cloud; (b) Euclidean clustering;

(c) proposed method.

(a) (b) (c)

Figure 13. Scene of a car and a pedestrian: (a) obstacle point cloud; (b) Euclidean clustering; (c)

proposed method.

(a) (b) (c)

Figure 14. Scene of a near car and two remote pedestrians: (a) obstacle point cloud; (b) Euclidean

clustering; (c) proposed method.

Figure 10. Scene of multiple adjacent pedestrians: (a) obstacle point cloud; (b) Euclidean clustering;
(c) proposed method.

Machines 2023, 11, x FOR PEER REVIEW 12 of 17

In the experiment, 500 point cloud frames were selected from the collected dataset,

and the obstacles in each point cloud frame were manually marked. The marked obstacles

included vehicles, pedestrians, trees and other buildings. The detection results of the 500

point cloud frames processed by the above two algorithms are shown in Figure 18. The

detection accuracy of the proposed method was an improvement of 6.94 % compared to

the Euclidean clustering algorithm, and it could simultaneously reduce under-segmenta-

tion, over-segmentation and false detection effectively.

(a) (b) (c)

Figure 12. Scene of multiple adjacent pedestrians: (a) obstacle point cloud; (b) Euclidean clustering;

(c) proposed method.

(a) (b) (c)

Figure 13. Scene of a car and a pedestrian: (a) obstacle point cloud; (b) Euclidean clustering; (c)

proposed method.

(a) (b) (c)

Figure 14. Scene of a near car and two remote pedestrians: (a) obstacle point cloud; (b) Euclidean

clustering; (c) proposed method.

Figure 11. Scene of a car and a pedestrian: (a) obstacle point cloud; (b) Euclidean clustering;
(c) proposed method.

Machines 2023, 11, x FOR PEER REVIEW 12 of 17

In the experiment, 500 point cloud frames were selected from the collected dataset,

and the obstacles in each point cloud frame were manually marked. The marked obstacles

included vehicles, pedestrians, trees and other buildings. The detection results of the 500

point cloud frames processed by the above two algorithms are shown in Figure 18. The

detection accuracy of the proposed method was an improvement of 6.94 % compared to

the Euclidean clustering algorithm, and it could simultaneously reduce under-segmenta-

tion, over-segmentation and false detection effectively.

(a) (b) (c)

Figure 12. Scene of multiple adjacent pedestrians: (a) obstacle point cloud; (b) Euclidean clustering;

(c) proposed method.

(a) (b) (c)

Figure 13. Scene of a car and a pedestrian: (a) obstacle point cloud; (b) Euclidean clustering; (c)

proposed method.

(a) (b) (c)

Figure 14. Scene of a near car and two remote pedestrians: (a) obstacle point cloud; (b) Euclidean

clustering; (c) proposed method.
Figure 12. Scene of a near car and two remote pedestrians: (a) obstacle point cloud; (b) Euclidean
clustering; (c) proposed method.

Machines 2023, 11, 54 12 of 16
Machines 2023, 11, x FOR PEER REVIEW 13 of 17

(a) (b) (c)

Figure 15. Scene of a remote car and pedestrians: (a) obstacle point cloud; (b) Euclidean clustering;

(c) proposed method.

(a) (b) (c) (d)

Figure 16. Continuous detection of Euclidean clustering: (a) 2.5 s; (b) 5.0 s; (c) 7.5 s; (d) 10.0 s.

(a) (b) (c) (d)

Figure 17. Continuous detection of proposed method: (a) 2.5 s; (b) 5.0 s; (c) 7.5 s; (d) 10.0 s.

Figure 13. Scene of a remote car and pedestrians: (a) obstacle point cloud; (b) Euclidean clustering;
(c) proposed method.

Machines 2023, 11, x FOR PEER REVIEW 13 of 17

(a) (b) (c)

Figure 15. Scene of a remote car and pedestrians: (a) obstacle point cloud; (b) Euclidean clustering;

(c) proposed method.

(a) (b) (c) (d)

Figure 16. Continuous detection of Euclidean clustering: (a) 2.5 s; (b) 5.0 s; (c) 7.5 s; (d) 10.0 s.

(a) (b) (c) (d)

Figure 17. Continuous detection of proposed method: (a) 2.5 s; (b) 5.0 s; (c) 7.5 s; (d) 10.0 s.

Figure 14. Continuous detection of Euclidean clustering: (a) 2.5 s; (b) 5.0 s; (c) 7.5 s; (d) 10.0 s.

Machines 2023, 11, x FOR PEER REVIEW 13 of 17

(a) (b) (c)

Figure 15. Scene of a remote car and pedestrians: (a) obstacle point cloud; (b) Euclidean clustering;

(c) proposed method.

(a) (b) (c) (d)

Figure 16. Continuous detection of Euclidean clustering: (a) 2.5 s; (b) 5.0 s; (c) 7.5 s; (d) 10.0 s.

(a) (b) (c) (d)

Figure 17. Continuous detection of proposed method: (a) 2.5 s; (b) 5.0 s; (c) 7.5 s; (d) 10.0 s. Figure 15. Continuous detection of proposed method: (a) 2.5 s; (b) 5.0 s; (c) 7.5 s; (d) 10.0 s.

In the experiment, 500 point cloud frames were selected from the collected dataset,
and the obstacles in each point cloud frame were manually marked. The marked obstacles
included vehicles, pedestrians, trees and other buildings. The detection results of the 500
point cloud frames processed by the above two algorithms are shown in Figure 16. The
detection accuracy of the proposed method was an improvement of 6.94% compared to the
Euclidean clustering algorithm, and it could simultaneously reduce under-segmentation,
over-segmentation and false detection effectively.

Machines 2023, 11, 54 13 of 16
Machines 2023, 11, x FOR PEER REVIEW 14 of 17

Figure 18. Comparison of detection results.

4.3. KITTI Datasets Experiments

The KITTI dataset was developed by the Karlsruhe Institute of Technology (Karls-

ruhe, Germany) in Germany and the Toyota Institute of Technology (Chicago, U.S.) in the

United States, and is currently one of the most common datasets used internationally in

autonomous driving [29]. The KITTI dataset includes multiple types of sensor data cover-

ing a variety of complex traffic environments, and many researchers use it to validate the

performance of algorithms used for autonomous driving systems [30–32].

After conducting multi-scene real vehicle experiments, the KITTI dataset was used

in this paper for obstacle detection, to comprehensively evaluate the performance of the

proposed algorithm. In the KITTI dataset experiment, 385 frames from the offline auton-

omous driving KITTI dataset were selected, with a total number of 1928 marked obstacles,

including 202 pedestrians, 229 cyclists and 1497 vehicles.

These point cloud frames of were processed by using the aforementioned two algo-

rithms. The evaluation results of the two methods are shown in Table 2. The results of the

KITTI dataset trials of the method proposed in this paper show that it could improve the

detection accuracy of pedestrians, cars and other obstacles in different scenes, but that

there were still some cases of false detection. In the paper, TP, FP and FN were introduced

to calculate the F1 score, being the number of true, false and missed detections, respec-

tively. The detection results belonging to FP can be divided into two groups: point cloud

under-segmentation (Figure 19) and point cloud over-segmentation (Figure 20). There

was only one group of detection results belonging to FN: missed detection (Figure 21).

The under-segmentation problem is caused by the inability of point cloud clustering

methods to detect multiple targets that are too close to each other in the horizontal direc-

tion. The point cloud distribution is discrete, and there is a distance ∆ⅆ between two ad-

jacent points in the horizontal direction. When the horizontal distance between two ob-

stacle targets is less than ∆ⅆ, the point cloud clustering method will cluster the point

clouds belonging to the two targets into one cluster, resulting in a point cloud under-seg-

mentation problem.

The over-segmentation problem is mainly the point cloud over-segmentation of a car.

The structure shape of the vehicle body to be detected is irregular, and there is an inclina-

tion angle between the engine compartment and the front windshield, as well as the trunk

lid and the rear windshield. When the car to be detected is far away from the ego car, the

clustering threshold in the vertical direction is difficult to set.

Figure 16. Comparison of detection results.

4.3. KITTI Datasets Experiments

The KITTI dataset was developed by the Karlsruhe Institute of Technology (Karl-
sruhe, Germany) in Germany and the Toyota Institute of Technology (Chicago, U.S.) in
the United States, and is currently one of the most common datasets used internationally
in autonomous driving [29]. The KITTI dataset includes multiple types of sensor data
covering a variety of complex traffic environments, and many researchers use it to validate
the performance of algorithms used for autonomous driving systems [30–32].

After conducting multi-scene real vehicle experiments, the KITTI dataset was used
in this paper for obstacle detection, to comprehensively evaluate the performance of
the proposed algorithm. In the KITTI dataset experiment, 385 frames from the offline
autonomous driving KITTI dataset were selected, with a total number of 1928 marked
obstacles, including 202 pedestrians, 229 cyclists and 1497 vehicles.

These point cloud frames of were processed by using the aforementioned two algo-
rithms. The evaluation results of the two methods are shown in Table 2. The results of
the KITTI dataset trials of the method proposed in this paper show that it could improve
the detection accuracy of pedestrians, cars and other obstacles in different scenes, but that
there were still some cases of false detection. In the paper, TP, FP and FN were introduced
to calculate the F1 score, being the number of true, false and missed detections, respectively.
The detection results belonging to FP can be divided into two groups: point cloud under-
segmentation (Figure 17) and point cloud over-segmentation (Figure 18). There was only
one group of detection results belonging to FN: missed detection (Figure 19).

Table 2. Evaluation results.

Precision Recall F1 Score

Proposed method 0.9577 0.9326 0.9449
Euclidean method 0.9030 0.8618 0.8820

Machines 2023, 11, 54 14 of 16

Machines 2023, 11, x FOR PEER REVIEW 15 of 17

The missed-detection problem is mainly caused by two reasons: one is that the laser

beam of the lidar can be blocked by other obstacles, resulting in an inability to sample the

target; the other is that the obstacles are too far away from the lidar, and the refraction of

the laser beam can cause point cloud position errors. In subsequent work, multi-sensor

fusion combined with visual sensors could be used to solve the above problems.

(a) (b)

Figure 19. Under-segmentation in KITTI dataset experiments: (a) scene image; (b) proposed

method.

(a) (b)

Figure 20. Over-segmentation in KITTI dataset experiments: (a) scene image; (b) proposed method.

(a) (b)

Figure 21. Missed detection in KITTI dataset experiments: (a) scene image; (b) proposed method.

The evaluation results are shown in Table 2, which shows that the Precision, Recall

and F1 scores are increased significantly if the proposed adaptive neighborhood search

radius clustering method is adopted; therefore, the obstacle detection method proposed

in this paper can significantly improve obstacle detection accuracy.

Figure 17. Under-segmentation in KITTI dataset experiments: (a) scene image; (b) proposed method.

Machines 2023, 11, x FOR PEER REVIEW 15 of 17

The missed-detection problem is mainly caused by two reasons: one is that the laser

beam of the lidar can be blocked by other obstacles, resulting in an inability to sample the

target; the other is that the obstacles are too far away from the lidar, and the refraction of

the laser beam can cause point cloud position errors. In subsequent work, multi-sensor

fusion combined with visual sensors could be used to solve the above problems.

(a) (b)

Figure 19. Under-segmentation in KITTI dataset experiments: (a) scene image; (b) proposed

method.

(a) (b)

Figure 20. Over-segmentation in KITTI dataset experiments: (a) scene image; (b) proposed method.

(a) (b)

Figure 21. Missed detection in KITTI dataset experiments: (a) scene image; (b) proposed method.

The evaluation results are shown in Table 2, which shows that the Precision, Recall

and F1 scores are increased significantly if the proposed adaptive neighborhood search

radius clustering method is adopted; therefore, the obstacle detection method proposed

in this paper can significantly improve obstacle detection accuracy.

Figure 18. Over-segmentation in KITTI dataset experiments: (a) scene image; (b) proposed method.

Machines 2023, 11, x FOR PEER REVIEW 15 of 17

The missed-detection problem is mainly caused by two reasons: one is that the laser

beam of the lidar can be blocked by other obstacles, resulting in an inability to sample the

target; the other is that the obstacles are too far away from the lidar, and the refraction of

the laser beam can cause point cloud position errors. In subsequent work, multi-sensor

fusion combined with visual sensors could be used to solve the above problems.

(a) (b)

Figure 19. Under-segmentation in KITTI dataset experiments: (a) scene image; (b) proposed

method.

(a) (b)

Figure 20. Over-segmentation in KITTI dataset experiments: (a) scene image; (b) proposed method.

(a) (b)

Figure 21. Missed detection in KITTI dataset experiments: (a) scene image; (b) proposed method.

The evaluation results are shown in Table 2, which shows that the Precision, Recall

and F1 scores are increased significantly if the proposed adaptive neighborhood search

radius clustering method is adopted; therefore, the obstacle detection method proposed

in this paper can significantly improve obstacle detection accuracy.

Figure 19. Missed detection in KITTI dataset experiments: (a) scene image; (b) proposed method.

The under-segmentation problem is caused by the inability of point cloud clustering
methods to detect multiple targets that are too close to each other in the horizontal direction.
The point cloud distribution is discrete, and there is a distance ∆d between two adjacent
points in the horizontal direction. When the horizontal distance between two obstacle
targets is less than ∆d, the point cloud clustering method will cluster the point clouds
belonging to the two targets into one cluster, resulting in a point cloud under-segmentation
problem.

The over-segmentation problem is mainly the point cloud over-segmentation of a
car. The structure shape of the vehicle body to be detected is irregular, and there is an
inclination angle between the engine compartment and the front windshield, as well as the

Machines 2023, 11, 54 15 of 16

trunk lid and the rear windshield. When the car to be detected is far away from the ego car,
the clustering threshold in the vertical direction is difficult to set.

The missed-detection problem is mainly caused by two reasons: one is that the laser
beam of the lidar can be blocked by other obstacles, resulting in an inability to sample the
target; the other is that the obstacles are too far away from the lidar, and the refraction of
the laser beam can cause point cloud position errors. In subsequent work, multi-sensor
fusion combined with visual sensors could be used to solve the above problems.

The evaluation results are shown in Table 2, which shows that the Precision, Recall
and F1 scores are increased significantly if the proposed adaptive neighborhood search
radius clustering method is adopted; therefore, the obstacle detection method proposed in
this paper can significantly improve obstacle detection accuracy.

5. Conclusions

In this paper, an adaptive neighborhood search radius clustering algorithm is pro-
posed, to solve the problem of unsatisfactory obstacle detection accuracy. We statistically
analyzed the variation of point cloud horizontal and vertical distance from the lidar, and
designed an adaptive clustering threshold, using the pitch angle of the point cloud and the
horizontal angle resolution of the lidar, which effectively coped with the characteristics of
point cloud non-uniform distribution, as well as reducing the under-segmentation, over-
segmentation and missed detection of the obstacle point cloud. The results of multi-scene
real vehicle experiments and multi-scene KITTI dataset trials of our method, and of the
Euclidean clustering method, show that the correct detection rate and F1 score of our
method, compared to those of the Euclidean clustering method, showed improvement of
6.94% and 0.0629, respectively.

However, when the two obstacles were extremely close to each other, and when the
obstacles were extremely far from the ego car, false detection and missed detection occurred.
In future work, we will adopt the post-fusion of lidar and camera to solve this problem.

Author Contributions: Conceptualization, W.J.; methodology, M.Y.; software, C.S.; validation, Y.Y.;
formal analysis, H.W.; writing—original draft preparation, W.J. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China,
under Grants 62173119 and 61673154.

Data Availability Statement: The data are only available upon request to the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jin, X.; Yang, H.; Liao, X.; Yan, Z.; Wang, Q.; Li, Z.; Wang, Z. A Robust Gaussian Process-Based Lidar Ground Segmentation

Algorithm for Autonomous Driving. Machines 2022, 10, 507. [CrossRef]
2. Wang, G.; Wu, J.; He, R.; Yang, S. A Point Cloud-Based Robust Road Curb Detection and Tracking Method. IEEE Access 2019, 7,

24611–24625. [CrossRef]
3. Dai, Y.; Lee, S. Perception, Planning and Control for Self-Driving System Based on On-Board Sensors. Adv. Mech. Eng. 2020, 12,

1–13. [CrossRef]
4. Pendleton, S.D.; Andersen, H.; Du, X.; Shen, X.; Meghjani, M.; Eng, Y.H.; Rus, D.; Ang, M. Perception, Planning, Control, and

Coordination for Autonomous Vehicles. Machines 2017, 5, 6. [CrossRef]
5. Shen, Z.; Liang, H.; Lin, L.; Wang, Z.; Huang, W.; Yu, J. Fast Ground Segmentation for 3D Lidar Point Cloud Based on

Jump-Convolution-Process. Remote Sens. 2021, 13, 3239–3259. [CrossRef]
6. Yurtsever, E.; Lambert, J.; Carballo, A.; Takeda, K. A Survey of Autonomous Driving: Common Practices and Emerging

Technologies. IEEE Access 2020, 8, 58443–58469. [CrossRef]
7. Xie, D.; Xu, Y.; Wang, R. Obstacle Detection and Tracking Method for Autonomous Vehicle Based on Three-Dimensional Lidar.

Int. J. Adv. Robot. Syst. 2019, 16, 1–13. [CrossRef]
8. Schubert, E.; Sander, J.; Ester, M.; Kriegel, H.P.; Xu, X. DBSCAN Revisited, Revisited: Why and How You Should (Still) Use

DBSCAN. ACM Trans. Database Syst. (TODS) 2017, 42, 1–21. [CrossRef]
9. Sun, X.; Ma, H.; Sun, Y.; Liu, M. A Novel Point Cloud Compression Algorithm Based on Clustering. IEEE Robot. Autom. Lett.

2019, 4, 2132–2139. [CrossRef]

http://doi.org/10.3390/machines10070507
http://doi.org/10.1109/ACCESS.2019.2898689
http://doi.org/10.1177/1687814020956494
http://doi.org/10.3390/machines5010006
http://doi.org/10.3390/rs13163239
http://doi.org/10.1109/ACCESS.2020.2983149
http://doi.org/10.1177/1729881419831587
http://doi.org/10.1145/3068335
http://doi.org/10.1109/LRA.2019.2900747

Machines 2023, 11, 54 16 of 16

10. Wang, Y.; Wang, B.; Wang, X.; Tan, Y.; Qi, J.; Gong, J. A Fusion of Dynamic Occupancy Grid Mapping and Multi-Object Tracking
Based on Lidar and Camera Sensors. In Proceedings of the 2020 3rd International Conference on Unmanned Systems (ICUS),
Harbin, China, 27–28 November 2020.

11. Zermas, D.; Izzat, I.; Papanikolopoulos, N. Fast Segmentation of 3D Point Clouds: A Paradigm on Lidar Data for Autonomous
Vehicle Applications. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore,
29 May–3 June 2017.

12. Li, Y.; Ma, L.; Zhong, Z.; Liu, F.; Chapman, M.A.; Cao, D.; Li, J. Deep Learning for Lidar Point Clouds in Autonomous Driving: A
Review. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 3412–3432. [CrossRef]

13. Lang, A.; Vora, S.; Caesar, H.; Zhou, L.; Yang, J.; Beijborn, O. Pointpillars: Fast Encoders for Object Detection from Point Clouds.
In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20
June 2019.

14. Zhao, J.; Xu, H.; Liu, H.; Wu, J.; Zheng, Y.; Wu, D. Detection and Tracking of Pedestrians and Vehicles Using Roadside Lidar
Sensors. Transp. Res. Part C Emerg. Technol. 2019, 100, 68–87. [CrossRef]

15. Wang, C.; Ji, M.; Wang, J.; Wen, W.; Li, T.; Sun, Y. An Improved DBSCAN Method for Lidar Data Segmentation with Automatic
Eps Estimation. Sensors 2019, 19, 172–197. [CrossRef] [PubMed]

16. Xia, X.; Zhu, S.; Zhou, Y.; Ye, M.; Zhao, Y. Lidar K-means Clustering Algorithm Based on Threshold. J. Beijing Univ. Aeronaut.
Astronaut. 2020, 46, 115–121. [CrossRef]

17. Li, X.; Zhang, Y.; Yang, Y. Outlier Detection for Reconstructed Point Clouds Based on Image. In Proceedings of the 2017 First
International Conference on Electronics Instrumentation & Information Systems (EIIS), Harbin, China, 3–5 June 2017.

18. Wang, X.; Wang, W.; Yin, X.; Xiang, C.; Zhang, Y. A New Grid Map Construction Method for Autonomous Vehicles. IFAC-
PapersOnLine 2018, 51, 377–382. [CrossRef]

19. Desheng, X.; Youchun, X.; Rendong, W. Obstacle Detection and Tracking for Unmanned Vehicles Based on 3D Laser Radar.
Automot. Eng. 2018, 40, 952–959. [CrossRef]

20. Yan, D.; Zeng, C.; Yan, S. Obstacle Circumnavigation System Based on Lidar Sensing. In Proceedings of the 2022 8th International
Conference on Control, Automation and Robotics (ICCAR), Xiamen, China, 8–10 April 2022.

21. Guo, R.; Jiang, Z.; Gao, R.; Yang, W.; Gao, Y.; Chen, X.; Zhi, Y.; Guo, L. Unmanned Vehicle 3D Lidar Point Cloud Segmentation. In
Proceedings of the 2021 40th Chinese Control Conference (CCC) 2021, Shanghai, China, 26–28 July 2021.

22. Wen, L.; He, L.; Gao, Z. Research on 3D Point Cloud De-Distortion Algorithm and Its Application on Euclidean Clustering. IEEE
Access 2019, 7, 86041–86053. [CrossRef]

23. Fan, X.; Xu, G.; Lin, W.; Wang, X.; Chang, L. Target Segmentation Method for Three-Dimensional Lidar Point Cloud Based on
Depth Image. Chin. J. Lasers 2019, 46, 292–299. [CrossRef]

24. Zheng, L.; Zhang, P.; Tan, J.; Li, F. The Obstacle Detection Method of UAV Based on 2D Lidar. IEEE Access 2019, 7, 163437–163448.
[CrossRef]

25. Qi, C.; Su, H.; Mo, K.; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. In Proceedings
of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.

26. Qi, C.; Yi, L.; Su, H.; Guibas, L.J. PointNet++: Deep Hierarchical Feature Learning on Point Sets in A Metric Space. Adv. Neural Inf.
Process. Syst. 2017, 30, 5099–5108. [CrossRef]

27. Shi, S.; Wang, X.; Li, H. PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud. In Proceedings of the 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019.

28. Fan, J.; Wang, L.; Chu, W.; Luo, Y. Research on Pedestrian Recognition in Cross-Country Environment Based on KDTree and
Euclidean Clustering. Automot. Eng. 2019, 41, 1410–1415. [CrossRef]

29. Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision Meets Robotics: The Kitti Dataset. Int. J. Robot. Res. 2013, 32, 1231–1237.
[CrossRef]

30. Zhao, Z.-Q.; Zheng, P.; Xu, S.-T.; Wu, X. Object Detection with Deep Learning: A Review. IEEE Trans. Neural Netw. Learn. Syst.
2019, 30, 3212–3232. [CrossRef] [PubMed]

31. Tang, X.; Zhang, Z.; Qin, Y. On-Road Object Detection and Tracking Based on Radar and Vision Fusion: A Review. IEEE Intell.
Transp. Syst. Mag. 2022, 14, 103–128. [CrossRef]

32. Zhao, C.; Fu, C.; Dolan, J.M.; Wang, J. L-Shape Fitting-Based Vehicle Pose Estimation and Tracking Using 3D-Lidar. IEEE Trans.
Intell. Veh. 2021, 6, 787–798. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/TNNLS.2020.3015992
http://doi.org/10.1016/j.trc.2019.01.007
http://doi.org/10.3390/s19010172
http://www.ncbi.nlm.nih.gov/pubmed/30621299
http://doi.org/10.13700/j.bh.1001-5965.2019.0113
http://doi.org/10.1016/j.ifacol.2018.10.077
http://doi.org/10.19562/j.chinasae.qcgc.2018.08.013
http://doi.org/10.1109/ACCESS.2019.2926424
http://doi.org/10.3788/CJL201946.0710002
http://doi.org/10.1109/ACCESS.2019.2952173
http://doi.org/10.48550/arXiv.1706.02413
http://doi.org/10.19562/j.chinasae.qcgc.2019.012.009
http://doi.org/10.1177/0278364913491297
http://doi.org/10.1109/TNNLS.2018.2876865
http://www.ncbi.nlm.nih.gov/pubmed/30703038
http://doi.org/10.1109/MITS.2021.3093379
http://doi.org/10.1109/TIV.2021.3078619

	Introduction
	Data Pre-processing
	Interference Points Removal
	Ground Segmentation

	Adaptive Neighborhood Search Radius Clustering Algorithm
	Analysis of Point Cloud Spatial Distribution
	Analysis of Fixed Neighborhood Search Radius Clustering Algorithm
	Design of Adaptive Clustering Search Radius

	Experiment Result
	Experimental Vehicle
	Multi-Scene Real Vehicle Experiments
	KITTI Datasets Experiments

	Conclusions
	References

