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Abstract: Fillet welds of highly reflective materials are common in industrial production. It is a great
challenge to accurately locate the fillet welds of highly reflective materials. Therefore, this paper
proposes a fillet weld identification and location method that can overcome the negative effects of high
reflectivity. The proposed method is based on improving the semantic segmentation performance of
the DeeplabV3+ network for structural light and reflective noise, and, with MobilnetV2, replaces the
main trunk network to improve the detection efficiency of the model. To solve the problem of the
irregular and discontinuous shapes of the structural light skeleton extracted by traditional methods,
an improved closing operation using dilation in a combined Zhang-suen algorithm was proposed
for structural light skeleton extraction. Then, a three-dimensional reconstruction as a mathematical
model of the system was established to obtain the coordinates of the weld feature points and the
welding-torch angle. Finally, many experiments on highly reflective stainless steel fillet welds were
carried out. The experimental results show that the average detection errors of the system in the
Y-axis and Z-axis are 0.3347 mm and 0.3135 mm, respectively, and the average detection error of the
welding torch angle is 0.1836° in the test of a stainless steel irregular fillet weld. The method is robust,
universal, and accurate for highly reflective irregular fillet welds.
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1. Introduction

Welding automation is applied in many manufacturing fields [1-4], among which
one of the most complex applications is in robot-based autonomous welding systems [5-7],
which use visual detection [8-10] to realize weld positioning and guidance, which is
an important way to achieve intelligent robotic welding. By means of visual sensing,
information in the human environment is processed and converted into position data
that can be recognized by the controller and is then sent to the executing equipment for
positioning and welding. With the improvement of welding production requirements,
structured light vision welding seam-tracking technology is also facing new challenges.
There are a large number of fillet welds needed in hull welding and new energy battery-box
welding production. The hulls are made of stainless steel and the battery boxes are made
from aluminum alloy, all of which are highly reflective materials. To identify and locate such
fillet welds, it is necessary to overcome the interference in visual imaging when working
on materials with high specular reflection. At present, there are few studies available
on the visual positioning of highly reflective fillet welds, and there are few application
products that can meet the actual production demand. Against this background, it is of
great practical significance to study the positioning method of stainless-steel right-angle
welds and develop related system software solutions.

The detection and positioning of welds using the machine vision method can be
divided into active [11-13] and passive [14-17] detection, according to the different light
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source systems. In passive visual detection, monocular or binocular cameras directly
capture images of the welding parts and extract the weld’s feature information via image
processing, to then visualize the weld positioning.

Technology based on passive vision includes robot arc-welding fillet detection, based
on an adaptive line growth algorithm proposed by Mitchell [18]. In this paper, an adaptive
line-growth algorithm based on initial seed positions is introduced that can automatically
identify fillet welds. Active vision is employed to project structural light onto the welding
parts and reflect the structural features of the welding parts, according to the imaging
features of structural light. Compared to passive vision, active vision is more stable and
versatile. Du et al. [19] studied several weld-image algorithms to combat strong noise in
robot GMAW, and adopted fast image segmentation, feature region recognition, and feature
search technology in a convolutional neural network (CNN) to accurately identify the weld
features. Yu et al. [20] proposed a method of structural light strip centerline weld extraction,
based on a pyramid scene analysis network and a Steger algorithm. The ability to recognize
the centerline of structural light under the influence of reflection interference is optimized.
Zhao et al. [21], guided by the overexposure characteristics of various noises, selected
a window of structured light extraction algorithm to extract the exact center line of the
structured light from the strong background noise, and obtained the weld feature points via
regression, realizing the on-line path planning and deviation correction of welding seam-
tracking in real time. Chen et al. [22] studied the recognition and positioning of diagonal
welds under the reflection diffraction interference caused by an on-line structured light.
They designed a convolution kernel using the imaging features of linear structured light on
fillet welds with convolved images and proposed the use of an effective non-maximum
suppression algorithm to pre-select fillet weld candidates. Finally, the candidate welds were
re-examined, based on local structural features, and the real fillet welds were identified.

From the above literature review, it can be seen that past research mostly focused on
plane welds, while research on fillet welds is still inadequate. The methods utilized in past
research on plane welds are not suitable for the identification and positioning of fillet welds in
highly reflective materials. In addition, there is no discussion of the attitude correction of the
welding torch in a fillet weld. Therefore, to solve these problems, on the basis of the traditional
morphological method (TMM), this paper proposes a fillet-weld identification and location
method based on DeeplabV3+ with MobilenetV2 and an improved Zhang-Suen algorithm.
TMM has a promising effect on noiseless structured light, and its process is shown in Figure 1,
but it cannot extract structured light under highly reflective noise. As the TMM median filter
could not filter the strongly uneven reflection noise, DeeplabV3+ model recognition-line
structural light features were used to filter the reflective noise, and MobileNetV2 was used as
the backbone network to improve the efficiency of model recognition. Due to the recognition
defects of the neural network and the removal of some pixels below the threshold value in the
laser fringe after binarization, the structured light in the image will thus form a discontinuous
region. In view of the closed operation used in TMM to eliminate the effect of binarization,
this paper adopts the expansion and Zhang-Suen methods to extract the skeleton of the
discontinuous region, which improves the filtering ability of negative-pulse noise. Then,
by combining this with the three-dimensional reconstruction mathematical model of the
system, the end coordinates of the torch and the welding torch angle were deduced, and the
attitude of the torch was corrected. Finally, a large number of experiments on highly reflective
stainless steel fillet welds were carried out and the experimental data were analyzed, to verify
the practicability of the method. The innovation of this paper lies in the fact that: (1) a fillet
weld-positioning method is proposed that can effectively overcome the uneven reflection
of line-structure light intensity. (2) For the first time, a DeeplabV3+ model was applied for
linear structural light identification to filter reflective noise, and MobileNetV2 was used
as the backbone network to improve the model identification efficiency. (3) Based on the
closed operation in TMM to eliminate the effect of binarization, expansion, combined with
the Zhang-Suen method, was used to extract the skeleton of the discontinuous region, which
improved its ability to filter negative pulse noise.
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Figure 1. The traditional morphological method (TMM) process.

2. System Model Visualization
2.1. Weld Positioning System

The schematic diagram of a robot welding seam-positioning system is shown in
Figure 2; it is composed of the robot arm body, manipulator control cabinet, laser generator,
laser head, CCD industrial camera, image acquisition card, argon gas bottle, air compressor,
upper computer, and human—computer interaction interface. The robot arm used in this
paper is a UR5 robot arm produced by the UR Company (Odense, Denmark). The bottom
of the manipulator is fixed to the platform and the end is equipped with a laser emitter and
a machine vision module, which move with the welding torch. The industrial computer
processor uses an Intel i5-8250U (8 Gb) processor, while the image-processing computer
uses an Intel i5-12400F (16 Gb) processor. When working, the vision module obtains the
weld structure’s light image and sends it to the computer, where the position of the weld
feature points is obtained after the corresponding image-processing algorithm is run in
the computer. The neural network image-processing step is processed with an NVIDIA
GTX2060 GPU. The position coordinates are converted into actual coordinate signals by
means of visual parameters. The computer communicates with the robot control cabinet
through TCP/IP and sends the positioning information to the robot. The welding actuator
is a BW210WF laser head, produced by the RAYTOOLS Company (Oberburg, Switzerland),
which is connected to the laser generator fiber, water cooling tube, air compressor tube and
argon gas tube. The set temperature of the laser thermostatic cooler is 20 °C, while the air
pressure of the air compressor is set at 0.6 MPA, and the argon gas flow is 10 L/min. The
laser generator is a YLR-1000-MM-WC 1-kilowatt laser generator made by the IPG company
(IRE-Polus, Moscow, Russia). The machine vision module consists of a camera and a laser
line emitter. The camera uses an Intel D435i model camera. The line laser is fixed at an
angle of 20° to the optical axis of the camera. The weld positioning system is implemented
on a Windows platform using the C language. The flow chart of the main function is
shown in Figure 3. The main flow includes parameter setting, position initialization, image
processing, and feature-point coordinate acquisition.

w

Figure 2. The weld positioning system.
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Figure 3. Flow chart of the experiment.

2.2. Establishment of the Mathematical Model

As shown in Figure 4, the camera and the line laser are installed at an angle of
30 degrees. The line laser emits a linear structured light, which is cast on the surface
of the target object and forms a structured light fringe, reflecting the three-dimensional
characteristics of the object. The camera captures the image of the structured light fringe
from a certain angle.

In order to obtain the relationship between the structural light image and the actual
position, we will construct a mathematical model of the image pixel coordinate system
and the world coordinate system. The first step is to convert the world coordinate system
for use by the camera coordinate system. The camera coordinate system and the world
coordinate system can be converted to the other’s format. We suppose that the coordinate
of point p in the camera coordinate system is (x,1,z,1)’; in the world coordinate system,
this is (Xw, Yw, Zw, 1)t. The conversion relationship is shown in Equation (1):

X Xuw Xw
y | _[R t]| Yo | _ Yo
z | {of 1] zo | =M2| z, @
1 1 1

where R is the 3 x 3 rotation matrix and ¢ is the 3 x 1 translation matrix. The second step
is to transform the image coordinate system for the pixel coordinate system. Here, (1, v)
are the coordinates of the origin O of the image coordinate system in the pixel coordinate
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system, dx and dy are the physical dimensions of the pixel in the coordinate axis direction
of the physical coordinate system. The relationship between the two coordinate systems is
shown in Equation (2):

u %Ouox
o | =10 4 wlly|. @
1 0 0 1|1

Then, we convert the image coordinate system to the camera coordinate system.
(X¢, Ye, z¢) is the coordinate of space-point P in the camera coordinate system; (x, y) is the
coordinate of point P in the image coordinate system; F is the focal length. The relationship
between the image coordinate system and the camera coordinate system is shown in
Equation (3):

x f 00 0]
slyl=1]0 fo0o0 z . 3)
1 0 0 10 ¢
1
This can be obtained from Equations (1)-(3):
X X
" fo 0o Orp ]y, Y,
sfo | =10 fy vw O [OT 1] Zw = MM, Zw . (4)
w w
1 0 0 1 0 1 1

According to Equation (4), the relation between pixel coordinates (u#,v) and world
coordinates (Xw, Yu, Zw) can be obtained. Among them, M; is the internal parameter
matrix and M; is the external parameter matrix. These data can be obtained using the
Zhang calibration method. The two-dimensional checkerboard can realize the parameter
calculation process with high accuracy, which has the advantages of strong robustness and
low cost.
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Figure 4. A 3D reconstruction model of the linear structured light.

2.3. Calibration of Camera

The main task of camera calibration is to calculate the internal parameters and external
parameters according to the vision model of the structured light vision system. The internal
parameters mainly refer to the actual focal length and distortion coefficient of the camera.
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The mainstream Zhang calibration method requires a two-dimensional checkerboard layout
to realize the parameter calculation process with high accuracy, which has the advantages
of strong robustness and low cost.

In this paper, the MATLAB camera calibration plug-in is used to achieve the acquisition
of 25 calibration plate images of different spatial positions. Twenty-four of them are valid,
and the calculated pixel error is 0.1026. After that, five pictures were selected with large
quadratic projection errors, and we re-calibrated the remaining 19 pictures. The results
are shown in Table 1. The pixel error is reduced to 0.0874, to meet the requirements of the
positioning system.

Table 1. Internal parameters of the camera.

Parameter Result

Focal Length [582.801412347346, 583.065607745483]

Principal Point [311.284435316149, 243.748894966768]

Radial Distortion [0.119887527023955, —0.149684597695317, —0.840199958301362]
Tangential Distortion [0.00236751860870302, —0.00598240042060791]

Pixel Error 0.0874304210396761

3. Image Processing

After the acquisition of images, the structure light center-line extraction process of
the CCD camera usually employs image filtering, edge detection, threshold segmentation,
and one or even several traditional (median filtering, canny operator edge detection, and
wavelet transform) image-processing methods. This method is not only easily affected
by welding noise, equipment vibration, and the reflective surfaces of welding parts but
also requires a great deal of calculation, and image processing takes a long time. These
traditional image-processing methods have little effect on the noise reduction of structural
light reflection diffraction between metal surfaces. Therefore, this paper adopts the method
of machine learning for image segmentation, to identify the features of linear structured
light and eliminate all noise except for linear structured light.

3.1. The DeeplabV3+ Neural Network Model, Based on MobileNetV2

The model backbone proposed in this paper is DeeplabV3+ [23]. DeeplabV3+ is
considered the new apex of semantic segmentation. In order to integrate multi-scale
information, DeeplabV3+ introduces the common encoder—decoder form of semantic
segmentation. In an encoder—decoder architecture, the resolution of features extracted
by the encoder can be arbitrarily controlled. By means of hollow convolution, precision
and time are balanced, and a larger range of information can be extracted without the loss
of information.

Figure 5 shows the structure diagram of DeeplabV3+. DeeplabV3+ adopted the Xcep-
tion series, acting as the backbone of the paper, while serial atrous convolution was used in
a deep convolutional neural network (DCNN) with a large number of model parameters.
In order to realize the rapid position location of welding seams, the image processing
system needs to have a fast reaction speed. In this paper, MobileNetV2 [24] is used as the
backbone network. Compared with MobileNet, MobileNetV2 has a higher accuracy and
a smaller model. The introduced inverted residual block means that less information is
lost when image features are activated by rectified linear unit (ReLU) activation functions
after dimensional upgrading. The structure is shown in the box at the top of Figure 5. After
the image is inputted with a standard convolution block and the inverted residual with a
linear bottleneck, we can achieve two effective feature layers, while the other side continues
to undergo 14 iterations of inverse residual convolution to achieve the input of a hollow
convolution block. We used parallel atrous convolution for an initial effective feature layer
that has been compressed four times, then extracted the features by atrous convolution at
different rates, merged them, and then compressed the features by 1 x 1 convolution. We
used a1 x 1 convolution to adjust the number of channels for the initial effective feature
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layer compressed twice, and then stacked it with the sampling results on the effective
feature layer after hollow convolution. After stacking, two depth-separable convolution
blocks will be carried out. By this point, we will have a final effective feature layer, which
is the feature concentration of the entire image.

/./ i Dﬂ 1x1 conv 0
// ﬁj 3x3 conv rate6 //“7‘
Resize 7 [
Inverted Residual Block ‘ < H,,] 3x3 conv rate12 i

[ﬂ 3x3 conv rate18 104x104x256

ﬂ”j Image pooling
e,

/
=

¥ 4 3x3 Upsample Resize
conv x4

104x104x48  104x104x304

Figure 5. The DeeplabV3+ structure diagram.

There are 2300 image data sets used in the experiment, among which 2000 are network
training data sets, 200 are verification data sets, and 100 comprise the the test data. Figure 6
shows both the original image and the image after neural network processing. It can be
seen that the Segnet model has a few missing structural light features, but the overall
structure is relatively clear. The Unet model shows many missing features of structural
light recognition and has been unable to recognize the second structural light, with low
accuracy. However, the method used in this paper can identify the features of structured
light completely, which is helpful to extract the center line of structured light. In order to
better compare the performance of this algorithm, several important evaluation indexes that
are commonly used in the field of neural network image segmentation algorithms are used
to measure the accuracy of image segmentation: pixel accuracy (PA), mean intersection
over union (MIoU), and average processing time per image (TIME). The comparison results
of the evaluation indicators are shown in Table 2. It can be seen that the Unet pixel accuracy
and average union intersection are 97.3% and 81.2%, respectively. The recognition effect
is poor, but the speed is fast. The Segnet model and the model used in this paper show a
small difference in speed of about 0.17 s, but the method used in this paper is superior to
other segmentation models in terms of pixel accuracy and an average union intersection of
98.9% and 87.9%, respectively. Therefore, the model used in this paper yields more accurate
and reliable segmentation results.

Table 2. Comparison of the results.

Type PA (%) MiIoU (%) TIME (s)
Segnet 98.1 84.7 0.176
Unet 97.3 81.2 0.145

DeeplabV3-MobilenetV2 98.9 87.9 0.172




Machines 2023, 11, 38

8 of 20

original Unet

Segnet Method of this article

Figure 6. The image processing results of the different models.

3.2. Image Preprocessing

After image binarization, the pixel value of the recognition area is retained, and the
value of other areas of the image is 0. The processing process is shown in Figure 7a—c.
After the structural light features are extracted by the neural network, in order to process
the image faster and reduce the amount of data, we cut the ROI according to the size of
the structural light region and divide the ROI region. For most image-processing projects,
the ROI of each image is not necessarily in a fixed area, and even the size of the ROI area
may be different. That is to say, the location and rectangular area of cutting should be
determined according to each image.

a b

Figure 7. Image-processing flow after neural network segmentation. (a) original image (b) binariza-

tion (c) image after recognition by the neural network (d) ROI extraction.

First, the image is binarized, then the maximum connected domain of the whole region
is extracted. After obtaining the maximum connected region, which is actually the region
where the linear structured light is located, the point closest to the edge of the image in
the connected domains of 0 degrees, 90 degrees, 180 degrees, and 270 degrees is found by
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traversing the entire image. Then, the whole connected area can be framed by creating a
rectangular box using these four points; the ROI extraction effect is shown in Figure 7d.

3.3. Centerline Extraction

After obtaining the processed ROI image, in order to obtain the pixel coordinates
of the weld feature point, P, we need to extract the center line of the linear structural
light in the ROI area. According to the characteristics of the linear structural light on the
right-angle weld, the intersection coordinates of the two linear structural lights will be
the pixel coordinates of the weld feature point P after being restored to the original image.
Coordinate extraction can be achieved via three steps: skeleton extraction, line extraction,
and intersection coordinates.

3.3.1. Skeleton Extraction

In the binarized image obtained after neural network segmentation, the structural
light part will be broken due to the incomplete network recognition of the unrecognized
part in Figure 7b,c and Figure 8, as well as the adaptive threshold of binarization (see
Figure 7b), resulting in discontinuity of the line segment, as shown in the enlarged area of
Figure 9a.

Figure 8. Line-structured light identifies the discontinuous regions.
(c) (d)
(©)

Figure 9. (a) Original figure; (b) with the Steger algorithm; (c) with the Zhang-Suen algorithm;

(e) ()

(d) morphological corrosion results; (e) the closing operation; (f) the closing operation, combined
with the Steger algorithm; (g) dilation, combined with the Zhang-Suen algorithm.
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At present, the mainstream skeleton extraction methods generally include the Steger
algorithm, refinement method, and gray centroid method. The gray centroid method is
often used for butt welds because the fillet weld linear structural light cannot guarantee
a fixed angle with the image boundary and cannot be processed by row and row pixels,
so the gray centroid method is not applicable. The Zhang-Suen algorithm [25] is one
representative refinement method. Thus, the Steger algorithm and Zhang-Suen algorithm
were employed to extract the centerline of the image, and the extraction results are shown
in Figure 9b,c, respectively. Under conditions of good recognition by the neural network,
the extraction effect was better, but the extraction effect for discontinuous structural light
was not efficient. The loss of discontinuous interval information would affect the extraction
of weld feature points in the next step.

In order to eliminate the influence of discontinuity, the closed operation method was
adopted, based on the operation of dilation, corrosion, etc., to carry out the closed operation
of dilation before corrosion. Dilation can be used to filter the negative pulse noise in
the image.

Let f(x) and g(x) be two discrete functions, defined for the two-bit discrete spaces F
and G, where f(x) is the input image and g(x) is the structural element. Then, the dilation
and corrosion of f(x) and g(x) are defined as:

(fog(x)= r;leag[f(x —y) + )] (5)
(fOg)(x) = ryrgg[f (x+y) —gW)] (6)

The closing operation of f(x) with respect to g(x) is defined as:

(feg)(x) = [(f @ 8)©g](x). @)

The results of the closing operation are shown in Figure 9e. The structural element
used is a regular octagon, and the distance from the edge to the center is 15 pixels. At
the beginning of the closing operation, a black edge of 20 pixels to the edge of the image
was added, to prevent the target pixel from being too close to the edge and having an
influence. The output aim is to remove the black edge. It can be seen from Figure 9e that
the closing operation eliminates the influence of the discontinuity of part of the structural
light. It is clear that the closing operation is useful for the extraction of discontinuous
region information, so our general idea is the method of closing operation and centerline
extraction. The Steger algorithm was used to extract the center line of Figure 9e, and its
effect is shown in Figure 9f. We can see that the extraction effect is relatively good, but
the calculation process of the Steger algorithm using a Hessian matrix is complicated. As
shown in Equation (8), a second partial derivative of each pixel in four directions is needed.

=[] ®

There is a large amount of data to be processed. As shown in Table 3, the closing
operation, combined with the Steger algorithm, takes 0.1753 s, which is a relatively long
time. At this point, the closing operation method plus the Zhang-Suen algorithm was
adopted. Since the closing operation is a combination of dilation corrosion operations,
and the Zhang-Suen algorithm is also a corrosion operation, we tried to directly combine
dilation and the Zhang-Suen algorithm into a new closed operation. The closed oper-
ation structure-function that we used before was a regular octagon, with a distance of
15 pixels from the edge to the center. Since the corrosion was deleted pixel by pixel, a
smaller structure-function could be used in the dilation operation to reduce unnecessary
calculations; therefore, the structure-function used in the dilation operation was a regular
octagon with a distance of 10 pixels from the edge to the center. The structure-function g(x)
of the Zhang—Suen corrosion algorithm is shown in Figure 10. P1 is the target pixel, and



Machines 2023, 11, 38

11 of 20

P2-P9 are numbered clockwise from the point above P1. In the first step, it is only when
P1-P9 meets the condition of Equation (9) that it will be marked for deletion:

2<m(P) <6

H(Pl)::l
P2><P4XP6=O (9)
P4><P6><P8:0

where m(P;) is the number of non-zero elements in the P2-P9 elements, and n(P;) is the
number of mode 01 elements in the queue, arranged in order from P2 to P9. In the second
step, it is only when P1-P9 meets the condition of Equation (10) that it will be marked
for deletion:
2<m(P;) <6
H(Pl) =1
Py X Py X Pg = 0
P, x P6 X Pg =0

(10)

Table 3. Comparison of the results.

Morphological Closing 1o
Type Erosions Steger Zhang-Suen Operation Steger Dilation Zhang-Suen
Time (s) 0.0128 0.0877 0.0361 0.1035 0.0477
Discontinuous area 2852087  336.9275 319.8760 354.5796

identification length

P9 P2 P3
P8 P1 P4
P7 P6 P5

Figure 10. The target pixel and its neighborhood.

We then cycle the above two steps until no pixel has been marked for deletion in both
steps. The number of iterations is set as 35 times in this paper.

The output result yields the skeleton after image refinement, as shown in Figure 9g. It
can be seen that the closing operation, combined with the Zhang—Suen algorithm, has a
better effect on the discontinuous region than the conventional closed operation, and the
extracted centerline information is also the most effective.

3.3.2. Line Extraction

After the linear-structured light skeleton is extracted, the Hough transform line de-
tection method is adopted to transform the image from the image space to the parameter
space. The transformation formula is shown in Equation (11):

—cos 0 0 _ .
" x+m:>p—xcos(9+ysm6. (11)

y=kx+b=y=

After the transformation, the relationship between the image space and parameter
space is as follows: a point in the image space is a curve in the parameter space, and each
collinear point in the image space corresponds to each curve where the parameter space
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intersects at a point. When the x and y values meet r = x- cos 6 4 y- sin § in traversing the
image, this point is considered to be a point on the detected line.

The spacing theta of the Hough transform along the 6-axis, the range of which is
[—90, 89], was set to 0.2, while the interval of RhoResolution of the Hough transform along
the p-axis was set to 0.5. The Hough space corresponding to the input image matrix was
obtained. The number of intersecting points of curves in the Hough space were counted.
By setting the minimum threshold of the statistics count to 0.3 times that of the maximum
number of statistics, where the threshold = 0.3MAX, short lines were prevented from
being detected.

By setting the threshold of the statistical number, the two lines corresponding to
the two points with the largest statistical value are the required two lines of structural
light, I; and I, where they set the parameter minlength = 150 for minimum line detection,
and the parameter minlinegap = 20 for minimum line spacing; that is, when the distance
between lines is less than 20, two lines will be merged. The final line extraction effect of
these methods is shown in Figure 11. The images correspond to Hough space as shown in
Figure 12.

(b) (c) (d) (e)

Figure 11. Linear extraction results after various skeleton extraction algorithms: (a) morphological
erosions; (b) the Steger algorithm; (c) the Zhang-Suen algorithm; (d) closing operation with the Steger
algorithm; (e) dilation with the Zhang—Suen algorithm.

-1000
-800
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-400
-200

200
400
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800
1000

-80 60 -40 -20 0 20 40 60 80
f

Figure 12. Dilation, combined with Zhang-Suen algorithm, corresponding to the Hough space.
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In order to compare the applicability of each method, the methods were evaluated
from two aspects. In the first instance, the processing time was used. The neural network
processing in the previous step consumed a great deal of data-processing time. In order
to obtain as large a welding speed interval as possible, the processing time of a single
image should be as short as possible. In the second instance, the effect of straight-line
extraction after skeleton extraction was analyzed. The more structural light information
that was extracted, the more accurate the positioning. The distance between the longest
point identified in the discontinuous region using each method and the intersection of two
straight lines was measured. The longer the distance, the more information this method
could extract from the discontinuous region, and the better the effect. The measurement
results are shown in Table 3. Compared with the original algorithm, the recognition ability
of the improved algorithm was improved. Compared with the closed operation that
was combined with the Steger algorithm, the dilation combined with the Zhang-Suen
algorithm used in this paper had a faster processing speed and better extraction effect on
the discontinuous regions of structured light, at the cost of a little precision. Therefore,
dilation, combined with the Zhang-Suen algorithm, is more suitable for the welding-seam
positioning system in this paper.

3.4. Extraction of the Key Feature Points

In order to identify and position the diagonal welds well, we need to know the position
of the weld point P; at the same time, in order to obtain a better welding torch angle for the
laser head and the attitude at the end of the robot arm, the position attitude and included
angle of the welded sheets A and B need to be identified. The attitude of the plate can
be obtained through the coordinates of any two points on the two continuous structural
lights. In Section 3.3.2, we calculated the I; and I, values of the structural light in the image
coordinate system, and the intersection coordinates of the two lines were the weld feature
point P. Equations (12) and (13) explain how the two lines were denoted.

ll : al ' xll + bl ' ]/11 + Cl = 0 (xllmin < xll < xllmax) (12)

ZZ ta - Xxp, + b2 Y, +c2=0 (xlzmin < X1, < xlzmax) (13)

The coordinate of the weld feature point P (xp, y)) is:

xp:<b1'62—b2‘cl)/z (14)
yp=(az-c1—ar-c2)/2Z (15)
Z:a1-b27a2-b1. (16)

A new coordinate system was established, with the P coordinate as the origin, and the
original line /; becoming that described in Equation (17).

L' ray- (xy, —xp) + b1 (y, —yp) +c3=0 (17)

In the new range of I, the point x, with the largest absolute value is taken, and the
corresponding point P, (x,,y,) is the point farthest from the feature point P on the line ;.
Similarly, the point P,(x,, ;) on line I, can be obtained. The effects of the three extracted
feature points P, P, and P, on the image are shown in Figure 13. According to the image
coordinates, the three-dimensional coordinates of the P, and P, points on the plate are
obtained. According to the coordinates of the two groups of P, P;, and P, the position
attitude and the included angle of sheet A and sheet B are obtained, so as to adjust the
position attitude and the laser beam incidence angle. The farther that P, and P, are from
P, the smaller the error is, and the more accurate the included angle between the plates
that is obtained.
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Figure 13. Extraction of the weld feature points.

4. Welding Torch Attitude

In the process of welding-seam tracking, it is necessary to pay attention to the adjust-
ment of the welding torch attitude and the distance between the end of the welding torch
and the welding point, so as to avoid a collision between the welding torch and the welded
part, and to ensure the quality of welding at the same time.

In Section 3.4, the three-dimensional coordinates of the feature point P of the weld and
the P, and P, on the two sheets were calculated. Based on the two sets of such data, we
can obtain the attitude of the welding torch. The mathematical model of the welding torch
angle [26] is shown in Figure 14. The first set of data for Pa1 (X a1, Ya1,Za1), P(X1,Y1,2Z1),
Pa2(Xa2,Ya2,Z42), and the normal vector of sheet A and sheet B, are shown in
Equations (18)—(20):

ny = P1Pg1 X PiPay = (ay,b1,c1) (18)
1y = P1Ppy X P1Pgy = (a3, b2, ¢2) (19)
N3y =ny X ny = (013, bg, Cg) (20)

where 7?3 represents the direction vector from P; to P, namely, the tangent vector in the
direction of weld travel. Plane C is the plane perpendicular to sheet A and sheet B, passing
through point P;. The Z-axis of the laser coordinate system is on this plane, and the
direction vector of the Z-axis bisects the dihedral angle between sheet A and sheet B. The
expression of plane C is shown in Equation (21).

a3(X —X1)+bs(Y—Y1)+c3(Z—-2Z1) =0 (21)
Hica = N1 X 13 (22)
ncp = Ny X 13 (23)

ngA is the direction vector of the intersection line between plane C and sheet A, and nag is
the direction vector of the intersection between plane C and sheet B. The unit vectors are
€cA and ecB:

€9 =eca teca (24)

]
2

Plaser:Pl —l—k-e% (25)

where Py, is the end coordinate of the manipulator after attitude modification; the Z-axis
of the end coordinate system is —ey, and k is the proportional coefficient of the distance
2
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between the laser head and the laser intersection, which is 150 in the experiment. The
welding torch attitude adjustment model is shown in Figure 15. The blue points are weld
feature points, while the red and green points are P, and Py, respectively. These three kinds
of feature points constitute the three-dimensional contour of the entire irregular fillet weld.
The vector shown by the arrow is rfg , pointing from the weld feature point to the origin
of the coordinate system of the end of the manipulator, corresponding to the weld feature
point. Welding along the modified welding-torch attitude can complete the welding of
irregular welds, avoid the collision between the welding torch and the workpiece, and
adjust the welding torch angle to achieve better welding quality.

y/mm

Figure 15. Model of the weld feature points and welding-torch angle. The red point is the feature
point on sheet A, the green point is the feature point on sheet B, the light blue point is the weld
feature point, and the dark blue arrow is the direction vector of the weld feature point pointing to
axis Z of the sixth axis of the manipulator.

5. Experiment and Analysis

In order to verify the weld identification and positioning system designed in this paper,
it was necessary to conduct a weld-positioning experiment. The experimental platform
shown in Figure 16 and a welded part made of 304 stainless steel were used to test the
identification and positioning performance of the proposed method in the context of a
downline structural light with high mirror-reflection effect. At the same time, in order to
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check that this method can correct the attitude of the torch and effectively avoid collision
with the welded parts, a Z-shaped bending structure of 90° fillet-welded stainless steel
plate was selected for testing.

Figure 16. The experimental platform.

The experimental steps of high-mirror reflector structured light location are as follows:

1. Check the surrounding environment of the welding robot, confirm that the barrier
is free, and begin the experiment. Install the auxiliary positioning tool shown in
Figure 17; the vertex of the positioning tool is the focus position of the laser beam and
it is also the most ideal position for the laser to hit the weld. At this time, images of
weld are collected to obtain the initial weld feature points. If the acquisition fails at
this point, repeat the previous steps.

2. Set the moving speed of the welding robot and start the program. During operation,
the laser head laser should always move with the welding seam and change the
robot’s attitude in real time. When moving to the end of the workpiece, the program
ends; save the position coordinates of the feature points during the program, while it
is running, for experimental analysis.

Figure 17. The auxiliary positioning tool.

In view of the errors between the actual model and the theoretical model, as well as
the welding part processing errors, in this paper, the contact measurement method was
used to determine the control data of the experimental results. At this point, we selected
the 4 vertices of any safe weld and any 6 points on the edge or surface of the plane on
the welding part and switched the robot arm to the tool coordinate system. The repeated
positioning accuracy of the robot arm was £0.03 mm. We installed the positioning tool as
shown in Figure 17, using the tool coordinate system to locate it, approached the selected
points from different directions, recorded the five groups of effective data, and took the
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average value. The set of plane points was obtained, then least-squares plane fitting was
carried out on these points to find the welding plane expression, so as to establish the
mathematical model of the welding parts. We positioned the coordinates of points on the
surface of the welding parts again and kept the error within 0.08 mm from the mathematical
model of welding parts.

The plane intersection line of the welding-part model is the characteristic curve of
the ideal weld, which was compared with the experimental data. We recorded the vertical
distance between the feature points and the ideal weld characteristic curves in the y and z
directions, the vertical distance between the PA and PB points and the fitting plane, and
the difference between the angle of the plane, obtained by each set of data, and the angle
between the model plane of welding parts. Fifty groups of experimental data were selected
to be compared with the model and error data, as shown in Figures 18-20, were obtained.

Error value

0 5 0 15 20 25 30 35 40 45 50
Weld feature points

Figure 18. Errors in the weld feature points in the Y and Z directions.
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Figure 19. The positioning errors of P; and P,
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Figure 20. The weld angle error.
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On the test piece, the maximum detection error of the weld feature point P in the
Y-axis and Z-axis directions is 0.3347 mm and 0.3135 mm, respectively, and the average
detection error are 0.1709 mm and 0.1768 mm, respectively. The maximum vertical error
of the feature point P, and P}, and the distance from board A and board B are 0.3876 mm
and 0.4341 mm, respectively, while the average vertical error is 0.2152 mm and 0.2400 mm,
respectively. The maximum angle error of the angle between plates is 0.3657°, and the
average angle error is 0.1836°.

The method proposed in this paper was analyzed through experiments, then it was
compared with the method proposed by the authors of [22] for calculating welding likeli-
hood degree by a convolution kernel, as shown in Table 4. The recognition rates of welds
under different reflective conditions were tested. The recognition rates of the welding
likelihood method and the method in this paper were both 100% in the ordinary fillet
weld test, 100% in the case of the highly reflective fillet weld, and 98.9% in this paper.
With highly reflective fillet welds, the average welding likelihood method takes 0.18 s per
image, while the method proposed in this paper takes 0.23 s. However, the maximum
positioning error of the welding likelihood method for weld feature points is 0.52 mm,
while the proposed method in this paper is 0.35 mm. In this paper, the maximum angle
error of the included angle between plates is 0.3657°. The weld likelihood degree method
cannot be employed because it does not consider adjusting the attitude of the welding
torch. In general, compared with the welding likelihood method, the proposed method
is slightly lower in recognition accuracy and speed, and the positioning accuracy of the
feature points is higher than that of the welding likelihood method, which can realize
the attitude adjustment of the welding torch, a task that the welding likelihood method
cannot accomplish.

Table 4. Comparison of the test results between the weld likelihood method and the method in this paper.

Methods Normal Fillet Highly Reflective  Time per Maximum Error of Maximum Angle
Weld Fillet Weld Picture Weld Feature Points between Plates

weld likelihood 100% 100% 0.18's 0.52 mm

method

method in this paper 100% 98.9% 0.23s 0.35 mm 0.3657°

The results show that the comprehensive positioning accuracy can reach 0.2471 mm,
and the measurement accuracy of the attitude between plates can reach within 0.4°, which
can realize the accurate identification and positioning of the welding seam and the attitude
correction of the welding torch and meet the welding accuracy requirements of a stainless-
steel right-angle weld.

6. Conclusions

In this paper, a neural network is proposed to filter the reflective noise in calculating
images, and the feature points are reconstructed into a 3D model after image processing.
The diagonal welds are identified and positioned, and the welding torch angle is corrected.
Under conditions where the workpiece surface has high reflectivity and the weld shape
is irregular, the problems of weld positioning and welding torch angle correction in the
context of reflection noise are solved. The main contributions of this paper include:

(1) Afillet weld positioning method is proposed that can effectively overcome the uneven
reflection of linear structure light intensity;

(2) A DeeplabV3+ model was used for the first time to identify linear structural light
and to filter reflective noise, while MobileNetV2 was used as the backbone network
to improve the efficiency of model recognition, compared with the traditional net-
work model;

(3) Based on the closed operation used in the TMM to eliminate the effect of binarization,
the expansion, combined with the Zhang-Suen method, was used to extract the
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skeleton of the discontinuous region, which improved the ability to filter negative
pulse noise. Compared with other mainstream skeleton extraction methods, the
improved method was proven to be superior to the traditional method;

(4) The attitude correction of a welding torch was studied, the three-dimensional recon-
struction mathematical model of the system was established, and the coordinates
of the welding seam and welding torch angle were obtained, according to the de-
duced formula;

(5) The positioning experiment was carried out on stainless steel and highly reflective
irregular fillet welds. The experimental results showed that the identified weld
feature points were continuous, and the welding torch angle was satisfactory, without
collision. The average detection error of the weld feature point P in the Y-axis and
Z-axis directions was 0.1709 mm and 0.1768 mm, respectively. The average angle
error of the angle between sheets was 0.1836°. The accuracy of the weld identification
model meets the requirements and verifies the effectiveness of the system.

In the experiment, the laser self-melting welding technique was used; the workpiece
surface was free of oil, the protective atmosphere of argon was sufficient, and the welding
splash was minimized. In future research, the proposed neural network needs to be further
optimized under splash interference.
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