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Abstract: Machinery diagnostics in the industrial field have assumed a fundamental role for both
technical, economic and safety reasons. The use of sensors, data collection and analysis has increas-
ingly advanced to investigate the health of machinery, predict the presence of faults and recognize
their nature. The amount of data necessary for this purpose means that it is often necessary to
implement dimension reduction methods to pre-process the useful features for the classification.
Furthermore, the use of a multi-class dataset could involve data clustering in its multi-dimensional
space. This study proposes a novel dimensionality reduction method, consisting of the combination
of two different techniques. It aims at improving the quality of the features and, consequently,
the classification performance with high-dimension clustered datasets. In addition, a case study is
analyzed thanks to the data published by the Prognostics and Health Management Europe (PHME)
society on the Data Challenge 2021. The results show an excellent recognition of the machine state of
health both in terms of damage detection and identification. The performance indices also show an
improvement in classification compared to other dimension reduction methods.

Keywords: dimensionality reduction method; machine diagnostics; prescriptive maintenance;
novelty detection; clustered dataset; principal component analysis; Mahalanobis distance; SCARA
robot; big data

1. Introduction

In the industrial field, machine diagnostics has assumed an important role both be-
cause it allows the quality of products to be improved and because it permits a significantly
reduction in maintenance costs and machine downtimes. It is also for this reason that
data-based monitoring techniques are rapidly evolving. Maintenance is moving from
corrective (run-to-failure) and preventive approaches to condition-based monitoring tech-
niques (i.e., predictive maintenance). In addition to investigating the diagnostics and
prognostics of industrial systems, many studies have recently focused not only on damage
identification but also on damage recognition (i.e., prescriptive maintenance). Prescriptive
maintenance requires a considerable amount of data to identify the type of arisen defects.
The dimensionality of the dataset—especially in terms of the number of features—tends
consequently to take on substantial sizes. In addition to this criticality, it is often difficult
to record data during the operation of the machinery in the presence of defects (actual or
simulated). Indeed, while the class inherent to the healthy condition usually contains many
elements, the damages are expensive and difficult to obtain, as well as to diversify. Finally,
since the training dataset includes acquisitions related to different machinery conditions, it
is likely that, following an appropriate pre-processing, the data are grouped into clusters
within a multidimensional space. All these characteristics could potentially further compli-
cate the analysis since the use of some classification techniques (usually adopted in similar
cases) is not optimal for datasets with the aforementioned properties. Therefore, proper
pre-processing of this typology of data [1] is all the more fundamental to improve their
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quality and to apply clustering and classification techniques. It is also significant to adopt
noise reduction techniques, to decrease the number of irrelevant variables and to minimize
the cardinality of the set of features. These procedures allow the effects of the curse of
dimensionality [2], the time requirements and the computational effort to be reduced.

The above arguments highlight the importance of Dimensionality Reduction Methods
(DRMs) and the literature presents several techniques to achieve a feature space reduction.
Huang et al. analyzed and classified the classical techniques for dimensionality reduction
in [3], while the authors of [4] and [5] explored linear and nonlinear DRMs, respectively.
Some of the techniques known in the literature were compared according to their speed and
accuracy in [6]. Instead, Nguyen et al. [7] introduced guidelines for the correct application
of DRMs and the interpretation of the related results. Among the most commonly known
DRMs, it is worth mentioning the Principal Component Analysis (PCA) [8,9], the Kernel
Dimensionality Reduction [10] and the Kernel PCA [11]. Feature selection methods—such
as wrapper, embedded, filter and outlier detection methods [12]—exist in addition to DRMs.
Nevertheless, while the features selection has the purpose of choosing the best features
among those of the original space (without creating new features, but eliminating the
dependent variables), the features reduction allows a novel space with reduced dimension-
ality to be obtained through original features combinations. In addition to the described
techniques, the Novelty Indices (NIs), obtainable by applying the Novelty Detection (ND)
could also be considered as a feature space with a reduced dimensionality. Among the
existing diagnostic techniques of mechanical systems [13–17] present in the literature, the
Novelty Detection is a classification method which aims to recognize the abnormal values.
The latter values are directly correlated to fault detection of a generic industrial system
when the confounding factors are excluded. Some examples of a ND-based diagnostic tech-
nique for prescriptive maintenance have been proposed in [18–22]. In particular, the study
in [22] highlighted how such ND-based diagnostic techniques can also be used as DRMs.
However, these existing dimensionality reduction techniques include some limitations (e.g.,
the over-positioning of clusters for the PCA and the absence of an angular reference of NIs
calculated thanks to the Mahalanobis distance).

This study introduces a novel DRM that allows datasets to be pre-processed with the
above-described characteristics (i.e., high dimensionality in terms of features, grouping
into clusters and potentially, insufficient abnormal condition data). The proposed method
could be decomposed into two complementary techniques which provide a multivariate
space reduction. The first phase consists of a modified PCA for clusters recognition,
which is named Clusters Component Analysis (CCA) hereafter. The second additional
phase—which allows nonlinear behaviors to be included—is based on Novelty Indices
(NIs) calculated through the Mahalanobis Distance (MD). These techniques are based on
widely known and used methods (such as PCA and ND through an MD-based index). In
addition to reducing the dimensionality in terms of features, they also aim at overcoming
some limitations of the above techniques. The first CCA phase is essential to subsequently
compute MD-based indices. Indeed, a dimensionality reduction is required when dealing
with the covariance matrix, such as in the computation of Mahalanobis distances. The
most common issue is obtaining a singular covariance matrix due to an excessive number
of features compared to the available samples. However, a traditional PCA application
may result in an inadequate pre-processing for certain datasets. In fact, in the literature
there are several studies in which alternative methods to PCA or PCA modifications
have been proposed to adapt and optimize the technique to specific cases. For instance,
Ebeling et al. [23] proposed a combined cluster and principal component analysis to reduce
data complexity. Ding et al. [24] developed an adaptive dimension reduction method,
focusing on Expectation-Maximization (EM) and the K-means algorithm.

In principle, the combination of the proposed methods can be applied to any high-
dimensional clustered dataset and is not restricted to any specific field. Future work will
be dedicated to numerically verify the performance of the procedure with other datasets.
Nevertheless, their application to a case study—related to the diagnostics and health
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monitoring of an industrial system—is presented and demonstrated. In particular, the
Prognostics and Health Management Europe (PHME) society [25] has published a dataset
on the Data Challenge 2021 [26] which is used as a reference. In addition to showing the
applicability of these techniques, this dataset is used to validate the proposed models.
For this purpose, the performance indices described in [22] and obtained through five
different types of classifiers [27,28] are used as a reference. The final comparison between
the proposed and the existing methods shows the accuracy improvements that each phase
generates when the dataset presents clustered data.

The article is structured as follows. Section 2 recalls the test bench and dataset descrip-
tion. Section 3 reports the most relevant DRMs existing in the literature and on which the
proposed techniques are based. Section 4 describes the proposed methodology for each
approach. Finally, the results and conclusions are reported in Sections 5 and 6, respectively.

2. Test Bench and Dataset Description

The proposed DRM was developed as a general-purpose method with high-dimension
clustered dataset conditions. The dataset distributed for the Prognostics and Health Man-
agement Europe (PHME) society Data Challenge 2021 [26] was used to validate the pro-
posed models both because it satisfies the mentioned conditions of application, and because
the comparison with the reference method turned out to be more understandable.

PHME’s dataset contains signals of a different nature related to a real industrial
system—shown in Figure 1—for the quality control of electronic components. A 4-axis
SCARA robot is the main component of the quality control line under analysis. Its di-
agnostics are possible thanks to the implementation of a Supervisory Control And Data
Acquisition (SCADA) system. Recently, several SCADA datasets have become available
for scientific purposes thanks to the growth of the attitude to these data. Natili et al. an-
alyzed several pros and cons of using SCADA systems for fault diagnosis in [29]. The
current SCADA system is composed of 50 sensors. These sensors record signals to mon-
itor the machinery state of health in real-time. The complexity and heterogeneity of the
systems in question makes the features extraction and the space dimensions reduction
more challenging.
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Figure 1. Equipment: 4-axis SCARA-robot picking up electrical fuses with a vacuum gripper, from
a feeder to a fuse-test-bench for a large-scale quality-control. Arrows represent the main phases
involved in the quality-control process: (1) picking up, (2) thermal camera control, (3) sorting, (4),
(5) transport and (6) storage.
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The recorded dataset contains 50 acquisition channels. Each of them refers to a time
window equal to 10 s and is described through some specific characteristics (vCnt = number
of samples recorded; vFreq = Sampling frequency; vMax = Maximum recorded value;
vMin = Minimum recorded value; vTrend = trend of the historical series and value = Aver-
age value). Each of the 70 performed tests (50 tests concerned healthy conditions, while
five conditions with different failures had a cardinality of four each) lasts from 1 to 3 h
approximately. A proper pre-processing of the data collected during these experiments
allowed a final X matrix of size m × n and rank L <= min(m, n), to be obtained where
m = 70 represents the total number of tests and n = 240 columns is the number of features.
The data included in the X matrix was standardized on the mean value and on the standard
deviation of the healthy class. Vector C of size 1 × m contains the labels and describes the
condition of the machinery per each test. In the following, the convention whereby Class 0
indicates healthy conditions of the machinery is adopted. On the other hand, the various
damages are defined as Class k, where k enumerates the types of damage.

To conclude, the proposed methods were applied to the X matrix in order to reduce
its initial size m × n. It is worth noting that the proposed DRM is relevant when n > k.
Please refer to [22] for a more detailed description of the test bench and the structure of
the dataset.

3. Existing Dimensionality Reduction Methods

This section contains brief references to the techniques on which the novel DRM
proposed in this study is based. PCA and MD are mentioned with their limitations inherent
to the case study.

3.1. Linear DRM: Principal Component Analysis

Principal component analysis is a multivariate statistical technique used in numerous
disciplines to analyze and extract relevant information from confusing data arrays. PCA
gives the possibility to reduce the dimensionality of data systems, usually described by
various inter-correlated variables. Its main objective is to reduce the complexity of high-
dimensional data by expressing their information through new orthogonal variables, called
Principal Components (PCs) and which act as weighted averages of the features. It is worth
recalling that the PCs of our mean centered dataset X are the eigenvectors of the covariance
matrix Σ, mathematically defined as:

Σ =
1

n− 1
XXT (1)

.
The solution of the eigenproblem corresponds to:

ΣA = AΛ (2)

where A is the m×m orthogonal matrix whose columns are the eigenvectors and Λ is the
diagonal matrix containing the m eigenvalues λj of the covariance matrix (usually sorted
with descending magnitude).

In addition to its predominant function of selecting features and simplifying the dataset,
PCA can also be considered as an unsupervised learning method similar to clustering. For
these reasons, PCA is probably the most popular multivariate statistical analysis [30].

However, although the PCA greatly helps the analysis and interpretation of data, it
does not always allow patterns to be correctly recognized. As highlighted in [31], PCA also
has some limitations due to its assumptions. The main limitations are shown in Figure 2 and
are (a) the difficulties in recognizing nonlinear data models, (b) the inability to recognize
nonorthogonal patterns and (c) the over-positioning of obscured clusters. Furthermore,
even in the favorable cases, there may still be open problems such as the choice of the
number of components to consider. Although in [28] there are some guidelines to solve
this issue—such as the identification of a threshold with respect to the eigenvalues of the
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covariance matrix calculated through the elbow test or equal to their average value—a lot
of important information could be ignored.
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Finally, since PCA exploits the covariance matrix Σ, any outlier could influence its
performance. Analogously, the heteroscedasticity (i.e., the variance between the variables
is significantly different) could also affect PCA results.

Section 4.1 proposes an alternative analysis specifically adopted to solve the limitations
concerning the recognition of the clusters characterizing PCA. The aim of this method is
the maximization of cluster recognition in cases where traditional PCs are not performing
well. In addition to allowing a dimension reduction of data through a linear combination
of features, this technique also aims at recognizing the optimal number of required features
(considering a training dataset) and at minimizing the relative loss of information. In the
application example below, this alternative PCA is used as a supervised learning method.

3.2. Nonlinear DRM: Mahalanobis Distance

The Mahalanobis distance is a measure based on the correlations between features,
a characteristic that distinguishes it from Euclidean distance. The MD calculated in the
space of the original variables considers the covariance matrix of the dataset of interest. In
particular, the Mahalanobis distance of a centered dataset X is defined as:

MD(X) =
√

XTΣ−1X (3)

The multi-collinearity of the dataset (i.e., the high dimensionality of the data matrix in
terms of potentially correlated and redundant features) causes the calculation of a singular
(or almost singular) covariance matrix. For this reason, a dimension reduction through
features selection or combination is usually necessary before the MD calculus. In addition
to this problem regarding the inversion of the covariance matrix, MD is affected by the same
PCA limitations. Indeed, MD is not able to properly distinguish nonlinear, nonorthogonal
and obscured patterns and—at the same time—is influenced by outliers and heteroscedastic
dataset. As part of pattern recognition, MD can be used as input for further classification
and clustering techniques, as shown in [22,32].

Moreover, the novelty indices based on the MD have a further limitation. Since it is a
distance, a single MD-based NI does not allow the recognition of the angular positioning of
data within a multidimensional space, thus confusing some of them or potentially some
clusters. Figure 5 precisely shows this aspect through an exemplary representation of a
multivariate space containing three approximately equally spaced clusters. In particular,
the chart representing the MD calculated with respect to Class 0 does not allow the data
belonging to Classes 1 and 2 to be distinguished, although they are easily identifiable in
the multivariate space. This is precisely the consequence of the highlighted limitation.
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One of the proposed methods uses the MD and aims at reducing the dimensionality of
the dataset without losing this angular information and, consequently, at improving the
classification model.

4. Proposed Methodology

This section presents the methodology adopted for each phase of the proposed tech-
nique to reduce the dimensionality of the data. A flowchart is presented in Figure 3 to
summarize and clarify the proposed method. The described procedures are applied to the
case study in Section 5.
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It should be noted that—in the context of the diagnostics and health monitoring of me-
chanical systems—data are generally collected using suitable sensors (e.g., accelerometers,
load cells and temperature sensors) positioned on the machinery of interest both during its
operation in optimal conditions and with the presence of (alternatively simulating) faults,
defects, damages and failures. Therefore, each performed test is classified through a specific
label describing the condition of the machinery.

4.1. Clusters Component Analysis (CCA)

The main objective of this novel method is to reduce the size of the multivariate data
matrix while minimizing the loss of information and, above all, allowing the recognition of
clusters, which could be confused by PCA in particular conditions.

First of all, to reduce the outlier influence, it would be advisable to identify the outliers
related to each class by means of a Hampel filter [33], which replaces the detected values
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with the median. In this way, the outliers are identified locally (according to the distribution
of data per each class) rather than globally (considering the entire dataset). It allows false
outlier removal to be avoided, caused by classes characterized by high recorded values, or
not identifying them all correctly.

If the variance between the variables is significantly different or if unalike quantities
or units of measurement are used, standardization may be required. Moreover, since the
measured variables could differ significantly between classes, it is important to normalize
the data with respect to Class 0. In this way, the set of data referring to the healthy condition
of the machinery is centered with respect to the reference system of the n-dimensional
space. The choice of standardizing all data with respect to Class 0 relies on the fact that
healthy conditions are the reference in terms of machinery diagnostics.

To ensure that clusters, representing the test classes with damages, are arranged in
a multidimensional space in such a way as to maximize their separation and facilitate
their recognition, it is necessary to calculate the n-dimensional vk vectors (represented in
Figure 4) that connect the centers of the Classes k clusters with the center of the Class 0
cluster (i.e., the origin of the reference system).
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The (k− 1)n size matrix V, containing vk vectors, could allow transforming initial
data from Rn → Rk :

Y = VXT (4)

where Y is a (k− 1)m matrix and represents a new set of data obtained as a combination of
features, which can be geometrically interpreted as a projection of the initial points along
the vk vectors. In this way, data representing the m tests belong to a (k − 1)-dimensional
space (reduced with respect to the initial n-dimensional space if k < n− 1). In addition
to the dimension reduction of the dataset, the loss of information resulting from this
transformation is theoretically zero, as each initial n feature contributes with a different
weight to the creation of the new features contained in Y.

However, despite minimizing the loss of information, the contribution of some initial
features could be redundant, as their projection would be considered on more vectors vk.
It is necessary to make the vk vectors orthogonal to each other to solve this redundancy
of contributions and subsequently normalize them to avoid the stretch effects of the new



Machines 2023, 11, 36 8 of 19

(k − 1)-dimensional space. For this purpose, the Gram–Schmidt algorithm [34] was adopted.
It allows a set of orthogonal unit vectors starting from a generic set of linearly independent
vectors to be obtained. Numbering the vectors vk by sorting them in descendent magnitude
(e.g., v1 is the vector connecting the farthest cluster with respect to the health one), the
projection of the i-th vector vi on vk is defined as:

projvk (vi) =
〈vi, vk〉
〈vk, vk〉

vk (5)

where 〈, 〉 is the scalar product. An orthonormal basis can be obtained by iterating the
following calculations for each vector of the V matrix:

u1 = v1 ; e1 = u1
‖u1‖ (6)

u2 = v2 − proju1(v2) ; e2 = u2
‖u2‖ (7)

u3 = v3 − proju1(v3)− proju2(v3) ; e3 = u3
‖u3‖ (8)

uk = vk −
k−1
∑

j=1
projuj(vk) ; ek =

uk
‖uk‖ (9)

where {uk} is the orthogonal base obtained from {vk} and {ek} the orthonormal one.
The new transformation from Rn → Rk is described by the E matrix with (k− 1) × n
dimensions and containing orthogonal versors ek:

Yo = EXT (10)

Consequently, it is possible to eliminate the redundancy of information present in
the transformed data and contained in Σ thanks to the orthogonalization of the {vk}
vectors. Therefore, it is possible to perform an automatic features selection of the initial
data, passing from n to k− 1 features. The diagnostic information lost in this transformation
is minimal since the new features contained in Y0 are a linear combination of the original
ones, contained in X. After calculating the appropriate transformation matrix E on the
training dataset, it is possible to use the same transformation on a validation dataset or on
data extracted and processed in real-time to correctly classify the operating condition of a
specific machine. It is worth noting that the proposed CCA could be considered similar
to PCA since both of them provide a reduced orthogonal space. However, CCA initially
considers the vectors connecting the centers of clusters instead of the maximum variance
directions as PCA does.

4.2. MD-Based Multi-Novelty Indices (MNI)

This second new method exploits ND principles using NIs based on the Mahalanobis
distance. As mentioned in Section 3.2, MD is calculated by inverting the covariance matrix
Σ referred to the class of interest. Given the high number of features in the diagnostic
field, an (almost) singular covariance matrix is likely to be obtained. For this reason, it
is necessary to use a dimension reduction method and, in this case, the CCA is used as
described in Section 4.1. After transforming the original data, a matrix in the optimized
CCs variables is obtained (in this case, the matrix obtained has dimensions m × (k− 1),
where m represents the tests performed and k the number of classes of the dataset).

At this point, it would be easy to calculate a MD-based novelty index with reference
to the healthy class data. The entire dataset is not used as a reference for the calculus of
the covariance matrix since the multidimensional space would be deformed considering
the variance of all data (belonging to both the healthy class and those with damage). In
fact, the directions with maximum variance could highly vary due to the concentration
of the clustered data. This would result in a deformation of the multidimensional space
that is not consistent, consequently influencing the calculated MDs. While considering
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this aspect, the calculation of a single MD may not allow the correct recognition of all
clusters, as the distance value does not consider the angular position of the data within
the multidimensional space. This statement can be explained by Figure 5, in which three
clusters are approximately equally spaced with respect to the MD in a 2D space. By
calculating the MD of all points with respect to Class 0, Classes 1 and 2 are recognized but
are not distinguishable from each other. The proposed method consists of the iterative
calculation of the MD with respect to all the classes, thus obtaining k NIs. Each k-th
NIs set behaves as a one-class classification, failing to distinguish the other classes from
each other. However, if each MD manages to solve a two-class problem, the use of k
MD would allow the unique recognition of k clusters. Two groups of data would not
be recognized only if they are indistinguishable (i.e., the point clouds lie in the same
portion of the multidimensional space). This technique would allow the n features of the
original matrix to be reduced to k features, in case the number of clusters k is lower than n.
Figure 6 shows an example of the new reduced space obtained thanks to the MD iteratively
calculated with respect to each cluster. It can be noted that every cluster is well separated
and distinguishable.
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Although k− 1 features are obtained before iteratively calculating the MDs thanks
to CCA, these NIs exploit the covariance matrices inherent to each class and, therefore,
take into account the distribution of the data. The resulting deformation of the space
could potentially increase the distance between clusters. It consequently improves data
recognition, as well as classification accuracy.

However, the dimensionality reduction carried out before the calculation of the MDs
may not be sufficient as the mk number of performed tests per each class may not be
high enough compared to the number of clusters k present in the dataset. The covariance
matrix would be singular again in such a case. The imbalance of data consists precisely
in having a higher amount of data for one class than for the others, a fact that often
occurs in the field of diagnostics of mechanical systems where the data recorded with
the machinery in healthy conditions considerably exceed those obtained in anomalous
conditions or with damage. As explained in [35], supervised learning performance is not
systematically affected by class imbalance, but it would appear to depend mainly on the
lack of sufficient data for minority classes and other factors such as class overlap. For
this reason, before proceeding with the calculation of the MDs referring to each class, it is
possible to apply some methods for balancing machine learning training data. A possible
application consists of over-sampling methods (called ROS, which aim to balance the classes
by inserting samples in the minority classes) possibly in combination with under-sampling
(called RUS, which, on the contrary, aims to balance the classes by eliminating samples
from the majority ones) [36]. The methods used in this work are among those most used in
practice: Synthetic Minority Over-sampling Technique (Smote) [37] for the over-sampling
and Tomek Links [38] for the under-sampling. The first method generates new examples of
minority data by interpolating the different data of the same class. Even if class balancing
is improved, further problems may arise. In fact, given that minority classes extend more
in space, some examples of the majority and minority classes could become confused, thus
worsening the recognition of clusters. For this reason, an under-sampling method, such as
Tomek Links, could be applied later to eliminate noise or borderline points and to achieve
a cleanup of the dataset. In addition to these methods, the creation of pseudo-points to
balance the classes was also tested, simply by the duplication of the samples of the minority
classes. This method does not add any information to the data. However, if the clusters are
sufficiently separable, it could not aggravate the error and, at the same time, would allow
the calculation of the covariance matrix for the minority classes.

Nevertheless, data balancing methods may not be sufficient to avoid a singular covari-
ance matrix, especially in cases where the amount of data on the damage classes is very
limited. Indeed, the number of tests considered to generate the covariance matrix must
be large enough to derive the variance and covariance values of the new k-dimensional
space. These values are used to transform the space and calculate the MDs. In this study, if
a singular covariance matrix is obtained despite the application of data balancing methods,
a simplification of the MD to the extreme case—reducing it to the Euclidean Distance
(ED)—has been adopted.

5. Results and Discussion

This section shows the results obtained on the PHME dataset [26] described in [22]
with the application of the proposed DRM. After implementing each phase as described
in Section 4 and obtaining the features in the new space with reduced dimensions, five
of the main classification models were applied: Linear Discriminant Analysis (LDA) [39],
k-Nearest Neighbor (kNN) with k = 2 given the reduced amount of data for the minority
classes [40], Decision Trees [41], Gaussian Naive Bayes and Kernel Naive Bayes [42]. The
results were computed in terms of performance indices. It was decided to use those adopted
in [22]—which are accuracy, missed alarms, false alarms, class errors rate, performance
index, Frobenius norm and Area Under the Curve (AUC)—in order to effortlessly compare
the two different methods.
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The data used for this study were pre-processed with the same procedure adopted
in [22]. The same holds true for the performance indices and the use of the Monte Carlo Cross-
Validation method (MCCV) [43] to obtain the results convergence after N = 50 iterations.

5.1. CCA Results

One goal of this research was to find a possible method to solve the clusters recognition
problem related to PCA. In fact, in some particular cases dictated by the dispersion of data
in the multivariate space, PCA can confuse clusters. In addition to this, PCA has a further
complication due to the chosen number of features (i.e., the number of dimensions to be
considered without excessively losing the information of the initial dataset). The proposed
CCA aims at increasing the distance of the different clusters in the new space generated
with reduced dimensions, thus allowing a better recognition of the test classes. Furthermore,
the reduction in the number of dimensions is a function of the number of classes defined
by the study of the specific machinery and the relative loss of information is theoretically
about zero since all the initial features contribute to the new ones with different weights.

The goodness in clusters recognition and the improvement for this purpose compared
to the traditional PCA can be measured initially by observing the MDs obtained with the
ideal conditions class data (Class 0). Given that they only consider the distance with respect
to the Class 0 center and not the angular position of the data, it is necessary to remember
that the results obtained in terms of MD are mainly used to compare the improvement in
terms of increasing the distance (and, therefore, recognition) of the data with respect to
the reference class and not in a precise classification viewpoint. As can be seen in Figure 7,
the clusters separation increased considerably with all the calculation alternatives. It is
also possible to notice a better recognition of the classes themselves in addition to a greater
spacing of the clustered data.
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Figure 7. On the left, a comparison of the MDs calculated using a traditional PCA pre-processing
and the proposed CCA pre-processing to improve the recognition of clusters. Vertical lines divide the
different classes of damage. On the right, the improvement due to CCA in terms of higher separation
of clusters in the new reduced space is shown. Please note that the vertical line distinguishes health
and damaged classes to highlight how CCA kept the position of the reference Class 0 almost unvaried,
while it increased the separation of the clusters representing the different damages.

The comparison with respect to the MD cannot always be made with the entire initial
n-dimensional dataset, as occurred with the dataset under analysis, since the covariance
matrix is ill-conditioned when m < n, a status that often occurs when the considered
features are in a large number. Indeed, this is a further simplification shared by both PCA
and the proposed CCA. In particular, observing Figure 8, it is possible to notice how CCA
kept the position of the reference Class 0 almost unvaried, while it increased the separation
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of the clusters representing the different damages with respect to PCA. This means a greater
distance between clusters and, therefore, a potentially better recognition.
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Figure 8. Data arrangement with respect to three of the reduced dimensions by CCA (the reference
class is the health one, outliers were removed and the vectors were orthogonalized).

Moreover, it is possible to propose a comparison through the performance indices.
The performance indices calculated using (1) the original dataset with n features, (2) the
first k− 1 features obtained applying the traditional PCA and (3) the features calculated
with the proposed CCA are reported in Tables 1–3. The performance indices obtained by
the PCA were considered as the reference to compare the results of the proposed technique.
Given that the proposed method reduced the number of features to k− 1, the first and most
relevant k− 1 features processed through PCA were considered in such a way as to make
the comparison homogeneous and consistent.

Table 1. Performance indices obtained with the original dataset with n features. It is worth noting
that LDA and GNB were not applicable due to the high dimensionality of the dataset.

Index LDA KNN Decision
Tree

Gaussian
N.B.

Kernel
N.B.

Accuracy - 81.5% 76.9% - 71.4%
Missed
Alarms - 15.5% 6.5% - 28.6%

False Alarms - 1.5% 7.1% - 0.1%
Class Errors - 1.5% 9.6% - 0.0%
P.I. - 66.79% 60.39% - 50.95%
Frobenius N. - 2.35 2.04 - 3.16
AUC - 0.99 1.00 - 1.00

Table 2. Performance indices obtained with the most relevant k− 1 features calculated with tradi-
tional PCA.

Index LDA KNN Decision
Tree

Gaussian
N.B.

Kernel
N.B.

Accuracy 78.2% 76.7% 74.6% 60.0% 74.3%
Missed
Alarms 14.1% 13.3% 16.2% 10.2% 13.6%

False Alarms 7.2% 6.5% 6.3% 22.8% 6.6%
Class Errors 0.5% 3.5% 3.0% 7.0% 5.5%
P.I. 62.0% 60.0% 56.8% 38.7% 56.7%
Frobenius N. 2.10 2.08 2.34 1.97 2.13
AUC 0.85 0.97 0.90 0.89 0.99
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Table 3. Performance indices obtained using k− 1 features calculated with the proposed CCA. The
variations with respect to the reference PCA method (in Table 2) are shown in brackets. Please note
that the percentage variations highlighted in green represent an improvement (increase in precision
and decrease in errors), while those in red indicate a worsening in terms of performances.

Index LDA KNN Decision Tree Gaussian N.B. Kernel N.B.

Accuracy 98.4% (+20.3%) 94.2% (+17.5%) 80.9% (+6.3%) 89.4% (+29.4%) 86.6% (+12.3%)
Missed
Alarms 1.3% (−12.8%) 5.7% (−7.6%) 5.0% (−11.1%) 2.1% (−8.1%) 6.6% (−7.0%)

False
Alarms 0.2% (−7.0%) 0.1% (−6.4%) 4.3% (−2.0%) 7.1% (−15.7%) 4.4% (−2.2%)

Class
Errors 0.0% (−0.5%) 0.0% (−3.5%) 9.8% (+6.8%) 1.4% (−5.5%) 2.4% (−3.1%)

P.I. 96.9% (+34.9%) 88.7% (+28.7%) 66.3% (+9.5%) 80.2% (+41.5%) 75.4% (+18.7%)
Frobenius
N. 0.33 (−1.8) 1.12 (−1.0) 1.91 (−0.4) 0.59 (−1.4) 1.38 (−0.8)

AUC 1.00 (+0.2) 1.00 (0.0) 0.97 (+0.1) 0.99 (+0.1) 0.99 (0.0)

According to the results in Tables 1–3, it is possible to state that the proposed CCA
greatly improved data classification while decreasing data dimensionality. It is also possible
to notice how, compared to the traditional PCA, a high degree of information deriving
from the initial features was maintained. Furthermore, the number of selected features was
chosen automatically based on the classes contained in the dataset, eliminating potential
issues or errors arising in the standard PCA. For these reasons, CCA could be used as a
selector of features in some particular cases in which the PCA is not able to assign (or does
not perform optimally the assignment of) the data to the different labels.

However, as previously mentioned, this method requires the labels referring to a train-
ing dataset to generate the roto-translation matrix E for the desired transformation. Hence,
unlike traditional PCA, this cannot be regarded as an unsupervised learning method.

5.2. CCA+MNI Results

Since it is not possible to compute MNIs without initially reducing the original features
space, the results of implementing the combination of the proposed techniques (CCA+MNI)
are shown in this section. The performance indices obtained using only the proposed
method highlight how the solely computation of MNIs affected the classification.

Just to recap, this second phase of the proposed method aims at reducing the dimen-
sionality of the dataset by exploiting NIs based on MD. Conceptually, the proposed method
resembled Gaussian Mixture Models (GMM), probabilistic models that describe points
through the composition of a finite number of parameterized Gaussians. In fact, in the
particular case in which the probability of a given x belonging to a Class k P(x|k) with the
covariance matrices Σk and the probabilities P(k) are equal for all classes, then the so-called
Bayes’ maximum-a-posteriori (MAP) rule for classification corresponds to the Mahalanobis
distance between the generic point x and the mean value of the reference class [44]. MD can
also be considered as a particular case of the Gaussian mixture distance having a unique
combination of Gaussians. Although these two methods are conceptually similar, they do
not necessarily perform in the same way. When the Gaussian Mixture distance is defined
as a distance function calculated using a GMM, it is shown in [45] how the latter gave
better results than MD with some datasets in terms of precision for data clustering tasks.
However, Li et al. compared the Gaussian mixture distance with a single MD calculated
by considering the covariance matrix of the entire dataset (and not of a single class). With
the proposed method based on multi-MD, on the other hand, we wanted to improve the
classification accuracy and reduce the dimensionality in terms of the number of features at
the same time. In addition to this, the iterative calculation of the MDs uses the covariances
related to each class k and, unlike the GMMs, it is not necessary to use and optimize the
parameters connected to the distributions and to the combination of the Gaussians. For this
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reason, the calculation of MD-based NIs highly simplifies the extraction of features as the
creation of a Gaussian mixture model is complex due to the evaluation and optimization of
the parameters.

The iterated calculation of MDs with respect to each class allows the problem of the
directionality of the MD with consequent better recognition of the clusters to be eliminated.
Figure 9 shows the tests with respect to the first three MDs (i.e., calculated with respect to
Class 0, 2 and 3) and it is possible to observe a good separation of these classes. As can be
seen from Figure 10, while with the use of a single MD it was possible to separate some
classes from the healthy one (without, however, distinguishing them perfectly from each
other), the simultaneous use of k distances allowed not only better recognition conditions
but also the distinction of all types of damage. The classification results achieved using k− 1
NIs as input are shown in Table 4. Please remember that the Mahalanobis distances were
calculated after the pre-processing through CCA, as described in the previous subsection,
and applying both SMOTE and Tomek Links methods for balancing the data.

Table 4. Performance indices obtained applying the proposed CRM entirely (CCA+MNI). SMOTE
and Tomek Links methods were considered in the analysis for the data balancing. The variations
with respect to the solely CCA pre-processing (in Table 3) are shown in brackets. Please note that
the percentage variations highlighted in green represent an improvement (increase in precision and
decrease in errors), while those in red indicate a worsening in terms of performances.

Index LDA KNN Decision Tree Gaussian N.B. Kernel N.B.

Accuracy 97.6% (−0.8%) 97.3% (+3.1%) 98.2% (+17.3%) 98.3% (+8.9%) 97.8% (+11.2%)
Missed
Alarms 1.1% (−0.2%) 2.4% (−3.3%) 0.0% (−5.0%) 0.0% (−2.1%) 0.6% (−5.9%)

False
Alarms 1.3% (+1.0%) 0.3% (+0.2%) 0.0% (−4.3%) 1.2% (−5.8%) 0.0% (−4.4%)

Class
Errors 0.0% (0.0%) 0.0% (0.0%) 1.8% (−8.0%) 0.5% (−0.9%) 1.6% (−0.9%)

P.I. 95.3% (−1.6%) 94.7% (+6.0%) 96.4% (+30.1%) 96.6% (+16.4%) 95.6% (+20.2%)
Frobenius
N. 0.18 (−0.2) 0.38 (−0.7) 0.27 (−1.6) 0.10 (−0.5) 0.29 (−1.1)

AUC 1.00 (0.0) 1.00 (0.0) 1.00 (0.0) 1.00 (0.0) 1.00 (0.0)
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By comparing the obtained results in terms of performance indices (as shown in
Figure 11), it is possible to observe how the proposed CRM—both CCA and the CCA+MNI
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combination—allowed the dimensionality of the dataset to be reduced by improving the
classification and recognition of classes. It is worth noting that the combination of the
proposed techniques always improved the classification performance with the only LDA
exception. This could be explained by the fact that LDA—being a linear classifier—is able to
better distinguish the clusters through the features produced by CCA (linear method) rather
than through the MNIs (obtained through a nonlinear method). In addition to increasing
accuracy and reducing false and missed alarms, the described method also allows errors in
class recognition to be reduced. This means that it is possible to trace the type of damage
present on the machinery and act in a specific way (prescriptive maintenance), as well as
allowing good predictive maintenance.
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6. Conclusions

This study concentrated on the problem of data dimensionality with a particular focus
on applications in the field of mechanical machinery diagnostics. Although there are still
numerous analyses such as PCA—one of the most widely used multifunctional multivariate
statistical analyses—they do not always allow data patterns to be distinguished in all
verifiable situations. For this reason, a novel DRM (consisting of the combination of two
different techniques) was presented. This allowed datasets with particular characteristics
to be pre-processed: high dimensionality in terms of number of features and data grouped
in clusters. If these assumptions are valid, the proposed method can be applied to any
high-dimensional clustered dataset without any limit to the application field. However,
future developments could consider a numerical verification using different datasets. It
was further demonstrated through an application example that the proposed model also
allows work with datasets with insufficient information about the abnormal conditions,
since the dataset could generally constitute a limitation of the data-driven models. In fact,
data-driven approaches often require a large amount of labelled data for (semi-)supervised
learning and it is not always easy to find a sufficient quantity of data, especially for
damaged conditions

The first phase of the proposed method—named Clusters Component Analysis
(CCA)—is based on the same principle of PCA, but allows better clusters recognition,
as observed by the performance indices obtained for different classifiers. Firstly, CCA
allows the dataset to be simplified in terms of dimensionality reduction. In detail, the
number of selected features is automatically defined by the number of classes considered in
the dataset. Furthermore, this procedure also minimizes the loss of information considering
the weighted contribution of all the initial features. However, unlike the traditional PCA,
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this method requires each acquisition to be associated with a label. For this reason, CCA
can be considered as a (semi-)supervised learning method.

The second phase of the proposed method exploits several novelty indices (hence the
name Multi-Novelty Indices) based on the Mahalanobis distance to improve the classifica-
tion. Indeed, the calculation of a single MD may not always allow the correct recognition
of all the clusters since, being a distance, it cannot consider the angular position of the data
within the multidimensional space.

Finally, it should be noted that several models existing in the literature (e.g., developed
in [22]) are parametric, unlike the proposed one. Indeed, while the choice of parameters for
the routine of a Genetic Algorithm (GA) could be more complex and expensive, CCA and
MNI calculus are more immediate and straightforward to apply as they are not parametric
models. Although the results proposed in the previous method [22] were satisfactory, the
present CCA and MNI methods provided an additional improvement in accuracy and
performance index equal to 5.0% and 9.4%, respectively, on average, using the same dataset
and pre-processing.

In general, the proposed DRM showed very good performance indices for the differ-
ent classifiers (accuracy equal to 98% on average) and improvements compared to other
techniques. The dimensionality of the reduced space depends on the number of fault
classes present in the dataset. A further common advantage (and strictly linked to the
reduction of dimensionality) concerns memory occupation for data acquisition, which can
be considerably reduced. All the results shown are inherent to applications in the field of
diagnostics of mechanical systems. Indeed, a pre-established class (inherent to the ideal
conditions of a machine) has always been used as a reference for models. This does not
mean that different classes cannot be used alternatively, but this investigation is left to
future works.
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Abbreviations and Nomenclature

AUC Area Under the Curve
C Labels vector
CCA Clusters Component Analysis
DRM Dimensionality Reduction Method
ek Orthonormal vectors obtained from vk
E Matrix containing ek vectors
ED Euclidean Distance
GA Genetic Algorithm
GMM Gaussian Mixture Model
k Type of damage
kNN k-Nearest Neighbors
LDA Linear Discriminant Analysis
m Number of tests
MCCV Monte Carlo Cross Validation
MD Mahalanobis Distance

https://github.com/PHME-Datachallenge/Data-Challenge-2021
https://github.com/PHME-Datachallenge/Data-Challenge-2021
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MNI Multi-Novelty Indices
n Number of features
N Number of MCCV iterations
ND Novelty Detection
NI Novelty Index
PCA Principal Component Analysis
ROS Random Over-Sampling
RUS Random Under-Sampling
Σ Covariance matrix
SCADA Supervisory Control and Data Acquisition
SMOTE Synthetic Minority Over-sampling Technique
uk Orthogonal vectors obtained from vk
vk Vectors connecting the centers of the clusters
V Matrix containing vk vectors
X Features matrix
Y New features matrix (after proposed DRM via V transformation)
Y0 New features matrix (after proposed DRM via E transformation)
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6. Zubova, J.; Kurasova, O.; Liutvinavičius, M. Dimensionality Reduction Methods: The Comparison Of Speed And Accuracy. Inf.

Technol. Control 2018, 47, 151–160. [CrossRef]
7. Nguyen, L.H.; Holmes, S. Ten Quick Tips for Effective Dimensionality Reduction. PLoS Comput. Biol. 2019, 15, e1006907.

[CrossRef]
8. Sophian, A.; Tian, G.Y.; Taylor, D.; Rudlin, J. A Feature Extraction Technique Based on Principal Component Analysis for Pulsed

Eddy Current NDT. NDT Int. 2003, 36, 37–41. [CrossRef]
9. Wold, S.; Geladi, P.; Esbensen, K.; Öhman, J. Multi-Way Principal Components-and PLS-Analysis. J. Chemom. 1987, 1, 41–56.

[CrossRef]
10. Fukumizu, K.; Bach, F.R.; Jordan, M.I. Dimensionality Reduction for Supervised Learning with Reproducing Kernel Hilbert

Spaces. J. Mach. Learn. Res. 2004, 5, 73–99.
11. Schölkopf, B.; Smola, A.; Müller, K.-R. Nonlinear Component Analysis as a Kernel Eigenvalue Problem. Neural Comput. 1998,

10, 1299–1319. [CrossRef]
12. Chandrashekar, G.; Sahin, F. A Survey on Feature Selection Methods. Comput. Electr. Eng. 2014, 40, 16–28. [CrossRef]
13. Jardine, A.K.S.; Lin, D.; Banjevic, D. A Review on Machinery Diagnostics and Prognostics Implementing Condition-Based

Maintenance. Mech. Syst. Signal Process. 2006, 20, 1483–1510. [CrossRef]
14. Daga, A.P.; Garibaldi, L.; Fasana, A.; Marchesiello, S. ANOVA and Other Statistical Tools for Bearing Damage Detection. In

Proceedings of the International Conference Surveillance, Fez, Morocco, 23 May 2017; pp. 22–24.
15. Daga, A.P.; Garibaldi, L. Machine Vibration Monitoring for Diagnostics through Hypothesis Testing. Information 2019, 10, 204.

[CrossRef]
16. Castellani, F.; Garibaldi, L.; Daga, A.P.; Astolfi, D.; Natili, F. Diagnosis of Faulty Wind Turbine Bearings Using Tower Vibration

Measurements. Energies 2020, 13, 1474. [CrossRef]
17. Daga, A.P.; Garibaldi, L.; He, C.; Antoni, J. Key-Phase-Free Blade Tip-Timing for Nonstationary Test Conditions: An Improved

Algorithm for the Vibration Monitoring of a SAFRAN Turbomachine from the Surveillance 9 International Conference Contest.
Machines 2021, 9, 235. [CrossRef]

18. Worden, K. Structural Fault Detection Using a Novelty Measure. J. Sound Vib. 1997, 201, 85–101. [CrossRef]
19. Daga, A.P.; Fasana, A.; Garibaldi, L.; Marchesiello, S. On the Use of PCA for Diagnostics via Novelty Detection: Interpretation,

Practical Application Notes and Recommendation for Use. In Proceedings of the PHM Society European Conference, Turin, Italy,
1 July 2020; Volume 5, p. 13.

20. Pimentel, M.A.; Clifton, D.A.; Clifton, L.; Tarassenko, L. A Review of Novelty Detection. Signal Process. 2014, 99, 215–249.
[CrossRef]

http://doi.org/10.1177/1475921704041866
http://doi.org/10.1142/S0218001419500174
http://doi.org/10.5755/j01.itc.47.1.18813
http://doi.org/10.1371/journal.pcbi.1006907
http://doi.org/10.1016/S0963-8695(02)00069-5
http://doi.org/10.1002/cem.1180010107
http://doi.org/10.1162/089976698300017467
http://doi.org/10.1016/j.compeleceng.2013.11.024
http://doi.org/10.1016/j.ymssp.2005.09.012
http://doi.org/10.3390/info10060204
http://doi.org/10.3390/en13061474
http://doi.org/10.3390/machines9100235
http://doi.org/10.1006/jsvi.1996.0747
http://doi.org/10.1016/j.sigpro.2013.12.026


Machines 2023, 11, 36 19 of 19

21. Japkowicz, N.; Myers, C.; Gluck, M. A Novelty Detection Approach to Classification. In Proceedings of the Fourteenth Joint
Conference on Artificial Intelligence, Montreal, QC, Canada, 20–25 August 1995; pp. 518–523.

22. Viale, L.; Daga, A.P.; Fasana, A.; Garibaldi, L. From Novelty Detection to a Genetic Algorithm Optimized Classification for the
Diagnosis of a SCADA-Equipped Complex Machine. Machines 2022, 10, 270. [CrossRef]

23. Ebeling, B.; Vargas, C.; Hubo, S. Combined Cluster Analysis and Principal Component Analysis to Reduce Data Complexity for
Exhaust Air Purification. Open Food Sci. J. 2013, 7, 8–22. [CrossRef]

24. Ding, C.; He, X.; Zha, H.; Simon, H.D. Adaptive Dimension Reduction for Clustering High Dimensional Data. In Proceedings of
the 2002 IEEE International Conference on Data Mining, Maebashi City, Japan, 9–12 December 2002; pp. 147–154.

25. Data Challenge-PHME21. Available online: https://github.com/PHME-Datachallenge/Data-Challenge-2021 (accessed on 22
March 2022).

26. Biggio, L.; Russi, M.; Bigdeli, S.; Kastanis, I.; Giordano, D.; Gagar, D. PHME Data Challenge. In Proceedings of the European
Conference of the Prognostics and Health Management Society, Virtual Event, 28 June–2 July 2021.

27. Sammut, C.; Webb, G.I. Encyclopedia of Machine Learning; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011.
28. MacKay, D.J.; Mac Kay, D.J. Information Theory, Inference and Learning Algorithms; Cambridge University Press: Cambridge, UK, 2003.
29. Natili, F.; Daga, A.P.; Castellani, F.; Garibaldi, L. Multi-Scale Wind Turbine Bearings Supervision Techniques Using Industrial

SCADA and Vibration Data. Appl. Sci. 2021, 11, 6785. [CrossRef]
30. Abdi, H.; Williams, L.J. Principal Component Analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [CrossRef]
31. Lever, J.; Krzywinski, M.; Altman, N. Points of Significance: Principal Component Analysis. Nat. Methods 2017, 14, 641–643.

[CrossRef]
32. De Maesschalck, R.; Jouan-Rimbaud, D.; Massart, D.L. The Mahalanobis Distance. Chemom. Intell. Lab. Syst. 2000, 50, 1–18.

[CrossRef]
33. Pearson, R.K. Outliers in Process Modeling and Identification. IEEE Trans. Control. Syst. Technol. 2002, 10, 55–63. [CrossRef]

[PubMed]
34. Schmidt, E. Zur Theorie Der Linearen Und Nichtlinearen Integralgleichungen. In Integralgleichungen und Gleichungen mit Unendlich

Vielen Unbekannten; Springer: Berlin/Heidelberg, Germany, 1989; pp. 190–233.
35. Batista, G.E.; Prati, R.C.; Monard, M.C. A Study of the Behavior of Several Methods for Balancing Machine Learning Training

Data. ACM SIGKDD Explor. Newsl. 2004, 6, 20–29. [CrossRef]
36. Elhassan, T.; Aljurf, M. Classification of Imbalance Data Using Tomek Link (t-Link) Combined with Random under-Sampling

(Rus) as a Data Reduction Method. Glob. J. Technol. Optim. S 2016, 1, 1–11. [CrossRef]
37. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority over-Sampling Technique. J. Artif. Intell.

Res. 2002, 16, 321–357. [CrossRef]
38. Tomek, I. Two Modifications of CNN. IEEE Trans. Syst. Man Cybern. 1976, SMC-6, 769–772.
39. Tharwat, A.; Gaber, T.; Ibrahim, A.; Hassanien, A.E. Linear Discriminant Analysis: A Detailed Tutorial. AI Commun. 2017,

30, 169–190. [CrossRef]
40. Kataria, A.; Singh, M.D. A Review of Data Classification Using K-Nearest Neighbour Algorithm. Int. J. Emerg. Technol. Adv. Eng.

2013, 3, 354–360.
41. Myles, A.J.; Feudale, R.N.; Liu, Y.; Woody, N.A.; Brown, S.D. An Introduction to Decision Tree Modeling. J. Chemom. 2004,

18, 275–285. [CrossRef]
42. Wickramasinghe, I.; Kalutarage, H. Naive Bayes: Applications, Variations and Vulnerabilities: A Review of Literature with Code

Snippets for Implementation. Soft Comput. 2021, 25, 2277–2293. [CrossRef]
43. Xu, Q.-S.; Liang, Y.-Z. Monte Carlo Cross Validation. Chemom. Intell. Lab. Syst. 2001, 56, 1–11. [CrossRef]
44. Torra, V.; Narukawa, Y. On a Comparison between Mahalanobis Distance and Choquet Integral: The Choquet–Mahalanobis

Operator. Inf. Sci. 2012, 190, 56–63. [CrossRef]
45. Li, X.Q.; King, I. Gaussian Mixture Distance for Information Retrieval. In Proceedings of the IJCNN’99. International Joint Conference

on Neural Networks. Proceedings (Cat. No. 99CH36339), Washington, DC, USA, 10–16 July 1999; Volume 4, pp. 2544–2549.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/machines10040270
http://doi.org/10.2174/1874256401307010008
https://github.com/PHME-Datachallenge/Data-Challenge-2021
http://doi.org/10.3390/app11156785
http://doi.org/10.1002/wics.101
http://doi.org/10.1038/nmeth.4346
http://doi.org/10.1016/S0169-7439(99)00047-7
http://doi.org/10.1109/87.974338
http://www.ncbi.nlm.nih.gov/pubmed/36172277
http://doi.org/10.1145/1007730.1007735
http://doi.org/10.4172/2229-8711.S1:111
http://doi.org/10.1613/jair.953
http://doi.org/10.3233/AIC-170729
http://doi.org/10.1002/cem.873
http://doi.org/10.1007/s00500-020-05297-6
http://doi.org/10.1016/S0169-7439(00)00122-2
http://doi.org/10.1016/j.ins.2011.12.005

	Introduction 
	Test Bench and Dataset Description 
	Existing Dimensionality Reduction Methods 
	Linear DRM: Principal Component Analysis 
	Nonlinear DRM: Mahalanobis Distance 

	Proposed Methodology 
	Clusters Component Analysis (CCA) 
	MD-Based Multi-Novelty Indices (MNI) 

	Results and Discussion 
	CCA Results 
	CCA+MNI Results 

	Conclusions 
	References

