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Abstract: Surface defect inspection is vital for the quality control of products and the fault diagnosis
of equipment. Defect inspection remains challenging due to the low level of automation in some
manufacturing plants and the difficulty in identifying defects. To improve the automation and
intelligence levels of defect inspection, a CNN model is proposed for the high-precision defect
inspection of USB components in the actual demands of factories. First, the defect inspection system
was built, and a dataset named USB-SG, which contained five types of defects—dents, scratches, spots,
stains, and normal—was established. The pixel-level defect ground-truth annotations were manually
marked. This paper puts forward a CNN model for solving the problem of defect inspection tasks, and
three strategies are proposed to improve the model’s performance. The proposed model is built based
on the lightweight SqueezeNet network, and a rich feature extraction block is designed to capture
semantic and detailed information. Residual-based progressive feature integration is proposed to
fuse the extracted features, which can reduce the difficulty of model fine-tuning and improve the
generalization ability. Finally, a multi-step deep supervision scheme is proposed to supervise the
feature integration process. The experiments on the USB-SG dataset prove that the model proposed
in this paper has better performance than that of other methods, and the running speed can meet the
real-time demand, which has broad application prospects in the industrial inspection scene.

Keywords: defect inspection model; industrial application; convolutional neural network; rich
feature extraction; residual-based progressive integration

1. Introduction

Defect detection is an important part of a product’s quality control [1,2]; more and
more manufacturers are paying more attention to the surface quality of products and have
put forward more stringent requirements. The purpose of surface defect detection is to
find whether defects on the surfaces of products are related to functional defects and the
aesthetics of products. Defects will affect product yield, resulting in reduced production
efficiency and waste of raw materials. In addition, a product’s surface defects will affect
users’ intuitive feeling. Defects in some critical facilities, such as vehicles, buildings,
precision equipment, etc., may lead to severe economic losses and casualties. Good product
quality is an essential prerequisite for manufacturers to achieve a high market share. Many
enterprises still rely on human resources for product surface quality inspection. Depending
on human resources will not only bring an economic burden to enterprises, but efficiency
and accuracy cannot be guaranteed. Heavy work will also harm the health of workers.
Therefore, it is of great significance to propose a scheme that can replace human resources
and realize automatic and intelligent defect inspection tasks [3].

With the rapid development of information technology, machine vision has been
applied in many industrial production and inspection fields, including those of fabrics [4],
glass [5], multicrystalline solar wafers [6], and steel [7]. In order to solve the above problems,

Machines 2023, 11, 124. https://doi.org/10.3390/machines11010124 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines11010124
https://doi.org/10.3390/machines11010124
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0002-9587-4135
https://orcid.org/0000-0002-1847-4920
https://orcid.org/0000-0002-8917-719X
https://doi.org/10.3390/machines11010124
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines11010124?type=check_update&version=2


Machines 2023, 11, 124 2 of 19

researchers have proposed detection methods from various aspects. Song, K. et al. proposed
a feature descriptor template named AECLBPs in a steel surface inspection system [7].
K. L. Mak proposed a novel defect detection scheme based on morphological filters for
automated defect detection in woven fabrics [8]. X. Kang et al. proposed a universal and
adaptive fabric defect detection algorithm based on sparse dictionary learning [9]. Lucia,
B. et al. proposed a feature extraction phase by using Gabor Filters and PCA for texture
defect feature detection [10]. These defect feature extractors were artificially designed, and
researchers could quickly select the defect feature extractors according to their experience.
Therefore, defect detection performance depends heavily on manually defined defect
feature representations. New changes in the feature morphologies of defects will lead to a
reduction in the defect recognition performance [11].

In the last decade, due to the rapid development of the Internet, big data, and the
computing equipment industry, convolutional neural networks (CNNs) have become a new
trend for machine-vision-related tasks [12]. Due to the computing power of convolutional
neural networks, they are trained on large amounts of data. A CNN can allow artificially
designed feature extractors to be avoided and can automatically learn a large number
of useful detailed and semantic features. Therefore, a network model can obtain good
generalization performance. CNNs have been applied to many research fields, such as
object detection [13,14], human posture recognition [15], super-resolution [16], autonomous
driving [17], etc.

These findings have inspired researchers to apply CNNs to vision-based industrial
inspection tasks. CNN-based defect inspection tasks can be divided into two categories:
defect classification and defect localization.

(1) Defect classification approaches: Yi Li et al. proposed an end-to-end surface defect
recognition system that was constructed by using the symmetric surround saliency map
and a CNN [18]. Fu et al. proposed a defect classification CNN model, which emphasized
the training of low-level features and incorporated multiple receptive fields to achieve
fast and accurate steel surface defect classification [11]. T. Benbarrad et al. studied the
impact of image compression on the classification performance of steel surface defects with
a CNN [19]. Myeongso Kim et al. proposed a CNN-based transfer learning method for
defect classification in semiconductor manufacturing [20].

(2) Defect localization approaches: Unlike in defect classification, defect location
can provide specific location information of defects in the detected target, which is a
task requiring a higher accuracy of defect identification. Ren et al. presented a CNN
model for performing surface defect inspection tasks, and feature transferal from pre-
trained models was used in the model [21]. T Wang et al. proposed a CNN model
for product quality control [22]. Mei Zhang et al. proposed a one-class classifier for
image defect detection [23]. Yibin Huang et al. proposed a compact CNN model for
surface defect inspection, and the model consisted of a lightweight (LW) bottleneck and a
decoder [24]. D. Tabernik et al. proposed a segmentation-based CNN model for segmenting
surface anomalies [25]. Saliency detection aims to detect the most interesting object in an
image [26–30], which is close to the target of defect inspection. Yibin Huang et al. proposed
a deep hierarchical structured convolutional network for detecting magnetic tile surface
defect saliency [31].

In the construction of a defect location model, to obtain the location information of
defects, it is necessary to combine an encoder and decoder and fuse low-level features
in the decoding process to generate a higher-resolution feature map. Designing a more
effective feature extraction and fusion architecture is a hot research direction for defect
location. U-Net is a widely used encoder–decoder architecture [32], and it was first applied
to biomedical image segmentation. A typical U-Net structure consists of a contracting path
to capture semantic context information and a symmetric expanding path that enables
precise localization. Inspired by this structure, many researchers have designed similar
architectures for the defect inspection task.
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Semantic information is crucial in object recognition tasks, including defect localization,
which is related to the physical meaning of the target. Semantic information is richer in a
convolutional neural network’s deeper layer. On the contrary, the shallow layer has weaker
semantic information. Some existing methods have built models by designing decoder
structures based on high-level semantic features [24,25]. On this basis, some researchers
used these semantic features at individual scales to create a decoder structure. Researchers
have paid little attention to features with weaker semantic information at the individual
scale. It is worth noting that these features have more detailed information, and they are
helpful clues for capturing accurate defect location information. In addition, some existing
defect localization CNN models do not use high-level semantic and detailed low-level
features well.

To settle these problems, we propose a novel CNN model for obtaining fast and accu-
rate pixel-level defect localization. Our model is constructed on a pre-trained lightweight
SqueezeNet model. We propose three effective techniques for achieving the effective extrac-
tion of semantic and detailed information, fusion, and supervision. The proposed model is
applied to our defect inspection system. To verify the validity of this model, a pixel-level
defect dataset, USB-SG, was collected and labeled in this paper, and it contained a total of
683 images with five defect types. Comparative experiments verify the effectiveness and
superiority of the proposed model. The proposed model runs at a speed of over 30 FPS
when processing 200× 200 images on an NVIDIA 1080TI GPU, which could satisfy the
demand for a real-time defect inspection task. The main contributions of this paper can be
summarized as follows:

• To improve the automation and intelligence levels of defect inspection, this paper
proposes a defect inspection system based on a CNN. The proposed model is built
based on a lightweight SqueezeNet model.

• We design three effective techniques to improve the performance of the proposed
model. Firstly, rich feature extraction blocks are used to capture both semantic and
detailed information at different scales. Then, a residual-based progressive feature
fusion structure is used to fuse the extracted features at different scales. Finally,
the fusion results of defects are supervised in multiple fusion steps.

• To verify the effectiveness of the proposed model, we manually labeled a pixel-level
defect dataset, USB-SG, which included markings of the defect locations. The dataset
included five defect types—dents, scratches, spots, stains, and normal—with a total of
684 images.

• Our approach could obtain higher detection accuracy compared with that of other
machine learning and deep-learning-based methods. The running speed of this
model was able to reach real time, and it has wide application prospects in industrial
inspection tasks.

The rest of this paper is organized as follows. In Section 2, the defect inspection system
and proposed dataset are introduced. The proposed method is introduced in Section 3. The
implementation details, ablation study, and experimental comparisons of our proposed
model are presented in Section 4. Finally, Section 5 concludes the paper.

2. Defect Inspection System and Proposed Dataset

This section presents the details of the defect inspection system and proposed dataset.
The complete structure of the proposed model is shown in Figure 1.

2.1. Defect Inspection System

The defect detection system proposed in this paper is intended to solve the actual
product defect requirements of production plants. The core of the defect inspection system
is the design of a high-performance defect inspection model that can find possible defect
areas on the surfaces of products and further obtain visual and digital surface quality
monitoring results. The defect inspection system was set up to acquire workpiece surface
defect images, as shown in Figure 1. The hardware configuration included the inspected
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specimens, light sources, CCD cameras, a lens, computers, etc. The sample to be tested here
was the universal serial bus (USB) connector. Since this part undergoes cutting, bending,
and other machining methods during the production process, there may be various types
of defects on the surface, which will affect the product’s quality. Considering the small
physical size of the defects—with some being even less than 0.5 mm—a 2448 × 2048
resolution monochrome industrial camera was used to obtain high-resolution images of
defects. To build the image acquisition system, it was necessary to adjust the distance
between the camera lens and the specimen and to select the appropriate light source type
and angle. In the process of the experimental setup, these components needed to be
adjusted to obtain the best sample surface recognition effect and, in particular, to highlight
the defect characteristics.

The image data recorded by the camera were transferred to a computer for process-
ing. Extraction of regions of interest (ROIs) was carried out on the obtained images; the
background region was removed, while the specimen region was retained. In order to
facilitate unified processing, all of the sample sizes were adjusted to 800 × 1000. Cropping
is a common data augmentation technique that has been applied in various defect inspec-
tion tasks [33,34]. In addition, there were two limitations to our defect inspection task.
Firstly, the number of defect samples was insufficient. Secondly, the size of many defects
was tiny, and it would be difficult to identify small defects if the resolution of the input
image was compressed. If the ROI image was input into the network with a resolution of
800 × 1000, the operation efficiency of the network would be reduced. Based on the above
considerations, the ROI image was not directly used as the input image, and we cropped
200 × 200 resolution image patches from the ROI image. In order to obtain valid defect
samples, the defective regions would be cropped. The generated defect image dataset was
trained on the proposed model by using a PC equipped with a GPU, and the model could
predict defective areas after training.

Figure 1. The defect inspection system and dataset generation process.

2.2. Pixel-Level USB-SG Defect Dataset

The dataset proposed in this paper was named USB-SG, and each sample in the
dataset was composed of an original image and the corresponding ground-truth map.
In the ground-truth map, the position of the defect was manually marked as the foreground.
The USB-SG dataset included five types of image samples: dented, scratched, spotted,
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stained, and normal samples (defect-free). Some samples of all defect types and their
ground-truth maps are shown in Figure 2.

It should be noted that the four types of defects had their own characteristics. Dents
appeared as small and deep indentations; scratches appeared as slender traces; spots
appeared as round or oval color attachments; stains appeared as large areas of lil or other
materially affected areas. It was observed that the size and morphology of the different
types varied, such as those of dents and stains. It is worth noting that some defects’ practical
physical sizes were quite small—even less than 0.5 mm. Therefore, achieving high-accuracy
inspection in the defect dataset was challenging. The purpose of adding normal samples to
the dataset was to enable the detection model to learn the topographies of normal regions
so as to distinguish between defect and defect-free features. The numbers of the five
defect types are given in Table 1. The total numbers of dented, scratched, spotted, stained,
and normal samples were 116, 120, 68, 56, and 323, respectively. The whole dataset was
then randomly split into a training set and test set. In this way, it was guaranteed that
the training and test sets were obtained under the same conditions. This was helpful for
improving the performance and reliability of the model in the process of defect testing. The
ratio of the training set to the test set was about 80% to 20%.

Figure 2. The sample images and ground truth of the five types of defects.

Table 1. The numbers of samples in the training and test sets for the different types of defects in the
USB-SG dataset.

Defect Type Total Training Set Testing Set

Dent 116 93 23
Scratch 120 96 24

Spot 68 55 13
Stain 56 45 11

Normal 323 259 64
Total 683 548 135
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3. Proposed Method

In order to solve the problem of the defect inspection of universal serial bus (USB)
connectors, this paper proposes an end-to-end CNN, as shown in Figure 3. The proposed
model consisted of three main components, namely, (1) a rich feature extraction (RFE)
block, (2) residual-based progressive integration (RPI), and (3) multi-step deep supervision
(MsDS). The intrinsic connection of these three parts is as follows: The defect features
with semantic information and detailed information at different scales were obtained by
the RFE block, and then the extracted features were integrated through the RPI fusion
scheme. Furthermore, the fusion process was effectively supervised through the MsDS
strategy. The detailed structure and characteristics of each component are presented in the
following subsections.

Figure 3. The architecture of the modelling approach via rich feature extraction and residual-based
progressive integration.

3.1. Rich Feature Extraction

The proposed architecture was constructed based on the lightweight SqueezeNet
model. SqueezeNet was proposed by Iandola et al. [35] to keep a good balance between
performance and efficiency. The SqueezeNet model consists of a convolution layer and
eight Fire modules (Fire 2∼ Fire 9). These modules can be divided into four stages based on
the scale, as shown in Figure 3. Each single Fire module contains three convolution layers;
one is used to compress the number of channels to reduce the parameters, and the other
two are used to carry out feature learning and increase the receptive field. We intended
to build our convolutional neural network based on the SqueezeNet backbone. Feature
extraction is the basis of building convolutional neural networks; a comparison of the
different feature extraction strategies is shown in Figure 4.
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(a) (b) (c)

Figure 4. Comparison of the proposed feature extraction strategy and the two existing structures.
(a) Extraction of features by using the last layer in the deep stage [24,25]. (b) Extraction of features by
using the last layer in all stages [36,37]. (c) Proposed: Extraction of features by using all of the layers
in all stages.

Most existing object localization models have two primary schemes when extracting
features from the backbone network, as shown in Figure 4a,b. (a) The last convolution layer
feature of the last stage is used, and then the subsequent network structure is designed
based on this feature [24,25]. (b) The last convolution layer features at all stages are
used [36,37]. These methods extract the feature with the richest semantic information in the
backbone network or use the layer with the richest semantic information in each stage to
build the model. However, for object localization tasks, the positional accuracy of features is
also important. A model’s lower stages have more location-related information, while each
stage’s shallower layers contain more information overall. In this paper, we propose a rich
feature extraction (RFE) scheme that utilizes convolution layers with semantic and detailed
information at all stages. The illustration of the proposed RFE is shown in Figure 4c.

To illustrate how the layers are connected in RFE, the details of the generative process
of the proposed RFE block are shown in Figure 5. The Relu activation function is omitted for
brevity. The SqueezeNet backbone is composed of one convolutional layer, three pooling
layers, and eight Fire modules (Fire 2 ∼ 9). The ith RFE block was built based on the ith
Fire module. Fire i/Squeeze, Fire i/Expand 1 × 1, and Fire i/Expand 3 × 3 were the three
convolutional layers that constituted the Fire module. The arrows in Figure 5 refer to the
input–output relationship between the different layers in the model. For example, Fire
i/Expand 1 × 1 and Conv Si are connected to Sum i_1, which indicates that both of them
are the inputs of Sum i_1. The left side of Figure 5 shows the relationship between the
features and the depth. The shallow layers in the model are the low-level features, and the
deep layers are the high-level features. As the layers go deeper, the features contain more
semantic features and less detailed information. In the ith Fire module, Fire i/Squeeze is
located at a shallower position than those of Fire i/Expand 1 × 1 and Fire i/Expand 3 × 3.
Therefore, in order to obtain as rich of information as possible, it is necessary to make use
of them all. RFB takes all three convolutional layers as input. Conv Si is used to adjust
the channel numbers of Fire i/Squeeze. The summation layer is used to fuse the Conv Si
and Fire i/Expand layers. Sum i_1 and Sum i_3 are followed by Conv i_1 and Conv i_3,
respectively. Conv i_1 and Conv i_3 are fused together, and then convoluted by Conv Fi to
obtain the final output of the ith RFE block.
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Figure 5. The details of the generative process of the ith rich feature extraction block.

3.2. Residual-Based Progressive Integration

Through the feature extraction block, a series of extracted features were obtained,
among which RFE9 was a high-level feature with more semantic information, and RFE2
was a low-level feature with more detailed information. From RFE9 to 2, the semantic
information became weaker and the detailed information became stronger. The means of
effectively integrating them needs to be explored. Inspired by He [38], a residual-based
progressive integration (RPI) scheme is proposed. The illustration of the proposed RPI
is shown in Figure 6. The figure shows the details of the feature integration process of
the ith RFE and the neighboring i + 1 RFE. It should be noted that when i= 8, 4, and 1,
a deconvolution layer (named “DeConv Fm” in Figure 6) is added to improve the scale,
and the deconvolution layer doubles the size of the feature map to obtain defect features
with a higher resolution. Both the stride and the pad of the deconvolution layers were
set to 2. The ith +1 RFE was processed by a convolution layer and a residual module and
then summed with the ith RFE, thus feeding into the next integration step. The shortcut
connection in the residual module could provide richer paths, which was beneficial for
strengthening the gradient back-propagation, reducing the gradient dispersion, and effec-
tively improving the model’s generalization ability. In addition, the proposed RPI was
able to realize the progressive optimization process from coarse to fine prediction results
and effectively reduce the difficulty of training. The effectiveness of the proposed RPI is
provided in Section 4.3.
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Figure 6. A detailed structural diagram of the residual-based progressive integration scheme.

3.3. Multi-Step Deep Supervision

To promote the efficient fusion of the extracted features, we propose a multi-step deep
supervision scheme. Multi-scale supervision [36,37] is better than the most widely used
single supervision [24,25] because it can supervise the prediction results on multiple scales.
More supervision could accelerate the training and improve the detection performance.
It is worth noting that the feature integration process of our network consisted of several
steps that do not directly correspond to the scale. Based on the above observations, we
put forward a scheme that was different from multi-scale supervision—multi-step deep
supervision (MsDS), which can be supervised at each step—and the supervision process
was more refined and smooth.

Deconvolution layers were used to connect the fusion features of each step to produce
the predicted results. The channel number of the deconvolution layers was 1. The sigmoid
function was used to activate the features, and it was defined as

px(i) =
1

1 + e−x(i)
(1)

where x(i) is the pixel value of the deconvolution layer in the ith prediction branch. The cor-
responding cross-entropy loss function is defined as

Li =
1
N ∑

x(i)
−[yx(i) · log(px(i)) + (1− yx(i)) · log(1− px(i))] (2)

where yx(i) is the label of the pixel, yx(i) = 1 for the foreground, and yx(i) = 0 for the
background. N is the total number of image pixels.

The loss of the whole model is defined as

Lall =
M

∑
i=1

αiLi (3)

where αi is the loss weight of individual loss, αi = 1 for i = 1 to M, and M is the total
number of supervisions used in the proposed model, which corresponds to the maximum
value of i in Figure 6. In order to find the optimal number of loss functions, details of the
experiments are provided in Section 4.3.3.

4. Experiments

This section first introduces the details of the experimental setup and the evaluation
indicators. An ablation study was conducted in order to verify the effectiveness of the
proposed optimization strategy. Fair quantitative comparison experiments were organized
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to compare the performance with that of other existing detection models, which could
demonstrate the superiority of the proposed model.

4.1. Implementation Details

The dataset used in the experiment was USB-SG; detailed information on the training
set and test set is shown in Table 1, and no data augmentation techniques were used. All
of the experiments are carried out with the same dataset settings. The experiments were
implemented on the publicly available Caffe deep learning platform [39]. We chose the
stochastic gradient descent (SGD) policy to train the model. The weight decay was set to
10−4, and the momentum was set to 0.9. The batch size was set to 16, which meant that
16 sample images were computed per iteration. The base learning rate was set to 0.01.
The hardware for the experiments was Intel-i7 CPU and NVIDIA 1080Ti GPU.

4.2. Evaluation Index

To comprehensively evaluate the performance of the defect location model, four
indexes were used to analyze the detection results of the model. They were the precision,
recall, Fβ, mean absolute error (MAE), and Dice coefficient [40]. To better illustrate the
calculation process for these indexes, a diagram of the predicted results and ground truth
is shown in Figure 7.

Figure 7. A diagram of the predicted results and ground truth.

S1 was included in the predicted region, but not included in the ground truth; S2 was
included in both the predicted region and the ground truth; S3 was included in the ground
truth, but not included in the predicted region. The Dice coefficient was defined as

Dice = 2S2/(S1 + 2S2 + S3) (4)

The precision and recall were calculated as

Precision = S2/(S1 + S2) (5)

Recall = S2/(S2 + S3) (6)

Because precision and recall are inversely correlated, precision is generally more
important than recall. Fβ was used to keep a balance between precision and recall, and it
was defined as

Fβ =
(1 + β2)× Precision × Recall

β2 × Precision + Recall
(7)

Fβ was set to 0.3 in our experiment. The mean absolute error (MAE) was used to
measure the difference between the predicted result and the ground truth, and it was
defined as

MAE =
1

W × H

W

∑
x=1

H

∑
y=1
|S1 − S3| (8)
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It is noted that the model with the highest Fβ and lowest MAE had the best perfor-
mance.

4.3. Ablation Study

In this part, we discuss the three proposed model optimization strategies in detail and
organize systematic experiments to verify their effectiveness.

4.3.1. Rich Feature Extraction

The proposed RFE block could extract semantic and detailed information at all stages,
which is helpful in accurately capturing the defects. In Section 3.1, we explained the
differences between the proposed method and two existing schemes. The experimental
comparisons are shown in Table 2. For a fair comparison, all of the models were constructed
with the SqueezeNet backbone. It can be seen from the experimental results that the
proposed RFE had a higher Fβ/Dice coefficient and lower MAE-1/MAE-2 than the other
two schemes (SQ-a and SQ-b). It can be concluded that the proposed RFE block was more
effective than the other two existing schemes.

Table 2. A comparative evaluation of different feature extraction strategies. SQ-a: Extraction of
features by using the last layer in the deep stage [24,25]. SQ-b: Extraction of features by using the
last layer in all stages [36,37]. Proposed SQ-RFE: Extraction of features by using all of the layers in
all stages. The precision, recall, Fβ, MAE-1, and Dice coefficient were calculated by using the dent,
scratch, spot, and stain test set. The MAE-2 was calculated by using all of the defect types in the
test set.

Model Precision Recall Fβ MAE-1 MAE-2 Dice

SQ-a 0.5954 0.7140 0.5958 0.0185 0.0098 0.5587
SQ-b 0.6572 0.6788 0.6340 0.0174 0.0094 0.6057

SQ-RFE 0.6888 0.7061 0.6702 0.0167 0.0088 0.6515

4.3.2. Residual-Based Progressive Integration

To explore the effectiveness of RPI, two pairs of comparisons are conducted. The ex-
perimental comparisons are shown in Table 3. Firstly, a widely used feature fusion method,
Unet [32] (SQ-Unet), was compared with our SQ-RPI. The experimental results showed that
RPI could achieve higher values of Fβ (0.6781 vs. 0.6340) and the Dice coefficient (0.6515 vs.
0.6057) and a lower MAE (0.0170 vs. 0.0174, 0.0090 vs. 0.0094). Through the experimental
results of the second pair, it could be found that, on the basis of the proposed SQ-RFE
model, the addition of RPI could improve Fβ (0.6862 vs. 0.6702) and the Dice coefficient
(0.6640 vs. 0.6484) and could decrease the MAE (0.0158 vs. 0.0167, 0.0084 vs. 0.0088).
Through the comparative experiment on the two different baseline models (SQ-Unet and
SQ-RFE), it could be concluded that the proposed RPI was effective and robust. In addition,
it was proved that the structure of RPI had a good generalization ability and can be applied
to similar tasks.

Table 3. The comparative evaluation of the proposed model with/without the use of RPI.

Model Precision Recall Fβ MAE-1 MAE-2 Dice

SQ-Unet 0.6572 0.6788 0.6340 0.0174 0.0094 0.6057
SQ-RPI 0.6988 0.7069 0.6781 0.0170 0.0090 0.6515

SQ-RFE 0.6888 0.7061 0.6702 0.0167 0.0088 0.6484
SQ-RFE-RPI 0.7026 0.7042 0.6862 0.0158 0.0084 0.6640

4.3.3. Multi-Step Deep Supervision

In order to analyze the influence of MsDS on the model performance and find the
optimal amount of supervision, a series of comparative experiments were organized, and
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they are shown in Table 4. First, the model performance of SQ-REF-RPI without MsDS was
compared with that of SQ-REF-RPI-MsDS. Then, comparisons of the model performance of
SQ-REF-RPI-MsDS with different amounts of supervision M are provided.

It was observed that the application of MsDS on SQ-RFE-RPI improved the perfor-
mance, even with different amounts of supervision. In more detail, the model performed
best when the amount of supervision was M = 5. As the amount of supervision M in-
creased, the performance tended to deteriorate. It should be noted that the features of the
last predictions (predictions 9, 8, and 7) contained less detailed information; thus, they had
a greater difference from the ground truth. Paying more attention to the coarse predictions
in the training process will affect the performance of other predictions.

Table 4. The comparative evaluation of the proposed SQ-RFE-RPI and SQ-RFE-RPI-MsDS models
when using different total amounts of supervision. Note that only the predictions with the best
performance for each model are recorded in the table. The best results of for Fβ, the MAE, and the
Dice coefficient are shown in bold.

Model Precision Recall Fβ MAE-1 MAE-2 Dice

SQ-RFE-RPI 0.7026 0.7042 0.6862 0.0158 0.0084 0.6640
SQ-RFE-RPI-MsDS, M = 4 0.7174 0.7167 0.6983 0.0162 0.0086 0.6821
SQ-RFE-RPI-MsDS, M = 5 0.7413 0.6995 0.7057 0.0151 0.0080 0.6854
SQ-RFE-RPI-MsDS, M = 6 0.7168 0.7094 0.6988 0.0160 0.0085 0.6823
SQ-RFE-RPI-MsDS, M = 7 0.7131 0.7105 0.6918 0.0162 0.0086 0.6734
SQ-RFE-RPI-MsDS, M = 8 0.7189 0.7134 0.6921 0.0159 0.0084 0.6783
SQ-RFE-RPI-MsDS, M = 9 0.7114 0.7116 0.6811 0.0165 0.0087 0.6745

The above experimental results confirmed that the performance was best when there
were five supervisions in the model. In order to analyze the relationship between the
different predictions, five different predictions were computed, as shown in Table 5. It was
observed that from P5 to P1, Fβ and the Dice coefficient increased, and the MAE decreased.
This was because P1 had the most abundant semantic information and most detailed
information, which indicated that the process of learning defect features in the model was
from coarse to refined.

Table 5. The comparative evaluation of the proposed SQ-RFE-RPI-MsDS (M = 5) model in differ-
ent predictions.

Prediction Precision Recall Fβ MAE-1 MAE-2 Dice

P1 0.7413 0.6995 0.7057 0.015113 0.00799 0.6854
P2 0.7448 0.7039 0.7054 0.015135 0.00800 0.6801
P3 0.7442 0.6999 0.7036 0.015181 0.00803 0.6787
P4 0.7354 0.6981 0.7004 0.015306 0.00809 0.6768
P5 0.7275 0.6823 0.6924 0.015634 0.00826 0.6484

In addition to the quantitative analysis, visual comparison experiments for different
predictions were conducted, as shown in Figure 8. All four defect types were compared to
make the experiments more comprehensive. The first row contains dent-type defects. It
was observed that from Prediction 5 to 1, the defective regions became integral, the holes
were reduced, and the edges became smoother. A similar situation can be observed in the
third and fourth rows. The second row contains scratch-type defects, whose characteristic
morphology is slender stripes. From Prediction 5 to 1, it was noted that the disconnected
part was gradually connected so that the defect region became complete. In conclusion,
the proposed model could provide more accurate predictions by using RPI to integrate
semantic and detailed information.



Machines 2023, 11, 124 13 of 19

Figure 8. Visual comparisons of different predictions. Four types of defects (dents, scratches, spots,
and stains) are shown in order.

4.3.4. Loss Function

In our model, we chose the most commonly used cross-entropy as our loss function.
In recent years, the loss function has also been a hot topic for researchers. Xiaoya Li et al.
proposed Dice loss to associate training examples with dynamically adjusted weights to
de-emphasize easy-negative examples [41]. The Dice loss is defined as

DLi = 1− 2pxyx + b
p2

x + y2
x + b

(9)

where b indicates the weights, and it is usually set to 1; the rest of the variables were
mentioned in Section 3.3.

K. He et al. proposed focal loss [42]. When an image contains a large number of
negative data samples, most of the loss and gradient will be dominated by negative
samples. Focal loss prevents the vast number of easy negatives from overwhelming the
detector during training. The focal loss is defined as

FLi =
1
N ∑

x
−a[yγ

x · log(px) + (1− yx)
γ · log(1− px)] (10)

where a and γ are the weights, and the rest of the variables were mentioned in Section 3.3.
To explore the influence of the above two loss functions on the proposed model, we

conducted comparative experiments while using different loss functions. The setup was the
same for all experiments, except for the loss function. The experimental results are shown
in Table 6. Cross-entropy was adopted as the loss function in the proposed model due to
its stability and trainability. Dice loss was implemented by using the default parameter,
and focal loss was adopted with two sets of parameters: (1) a = 1 and γ = 0.5; (2) a = 1
and γ = 2. From the experimental results, it could be found that the performance when
using Dice loss was slightly lower than that when using cross-entropy. Focal loss (setting
a = 1 and γ = 0.5) achieved better performance than that of cross-entropy; when a = 1 and
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γ = 2, the performance became worse. This was because setting an appropriate weight
in focal loss, such as a = 1 and γ = 0.5, could suppress the loss of negative samples and
enhance the learning effect of positive samples. In the future, focal loss can be applied to
the proposed model to boost the defect detection performance.

Table 6. The comparative evaluation of the proposed SQ-RFE-RPI-MsDS model with different
loss functions.

Loss Function Precision Recall Fβ MAE-1 MAE-2 Dice

Cross-entropy 0.7413 0.6995 0.7057 0.0151 0.0080 0.6854
Dice loss 0.7125 0.7217 0.6973 0.0160 0.0085 0.6812

Focal loss (a = 1, γ = 0.5) 0.7478 0.7352 0.7088 0.0149 0.0078 0.6921
Focal loss (a = 1, γ = 2) 0.7141 0.7308 0.7002 0.0153 0.0084 0.6765

4.4. Comparisons with Other Models

To verify the effectiveness of the proposed model, we compared our model with
other defect/object localization models. To make the experimental comparison more
comprehensive, traditional non-deep learning (DL)-based and DL-based methods were
included. The non-DL-based methods included AC [27], BMS [28], FT [43], GMR [44],
HC [29], LC [45], MBP [46], MSS [47], PHOT [48], RC [29], Rudinac [49], SF [30], and
SR [50]. The deep-learning-based methods included the widely used U-Net [32], Rec [51],
SegNet [52], and LPBF-Net [53]. All of the experimental results were either reproduced
from the source code provided by the authors or implemented based on the original article.
A comparative evaluation of the different defect/object localization models on USB-SG
defect dataset is shown in Table 7.

These non-DL-based methods used hand-crafted feature extractors to realize object
detection/localization tasks. Among these artificial design feature extraction methods,
Rudinac, SF, and SR were the three best methods, as they had the highest Fβ and the
lowest MAE. It was observed that the Fβ values of almost all non-DL-based methods were
around 0.2, and the MAE values were around 0.05 ∼ 0.1. It could be concluded that the
performance of most of the detection methods was very poor, and these methods were not
adequate for the task of defect inspection. The reason behind this was that these methods
were based on hand-crafted feature extractors, which had a certain subjectivity. As a result,
the generalization ability and robustness of the models were limited. These deep-learning-
based methods (U-Net, Rec, SegNet, and LPBF-Net) performed better than the methods
mentioned above. U-Net is a very influential model that has been widely used in many
fields and scenes. Through the experimental comparison, it could be found that the model
proposed in this paper had higher Fβ values (0.7057 vs. 0.6388 vs. 0.6883 vs. 0.6862 vs.
0.6968), lower MAE (0.0151 vs. 0.0183 vs. 0.0162 vs. 0.0160 vs. 0.0157, 0.0080 vs. 0.0098 vs.
0.0085 vs. 0.0084 vs. 0.0082 ) and higher Dice coefficient values (0.6854 vs. 0.6217 vs. 0.6789
vs. 0.6797 vs 0.6806) than those of the other two deep learning models. This was because
this paper designed a proper defect feature extraction, integration, and supervision scheme
that can accomplish high-precision defect detection tasks.



Machines 2023, 11, 124 15 of 19

Table 7. The comparative evaluation of different defect/object localization models on the USB-SG
defect dataset. The best results for Fβ, the MAE, and the Dice coefficient are shown in bold. It should
be noted that higher values of Fβ and lower values of the MAE indicate better performance.

Model Precision Recall Fβ MAE-1 MAE-2 Dice

AC [27] 0.5328 0.4065 0.2249 0.0505 0.0268 0.1249
BMS [28] 0.2283 0.6310 0.2181 0.1202 0.1303 0.3583
FT [43] 0.1687 0.6428 0.1686 0.0702 0.0621 0.2091

GMR [44] 0.1914 0.2783 0.1259 0.5019 0.5169 0.2060
HC [29] 0.1880 0.6599 0.1821 0.0884 0.0862 0.3204
LC [45] 0.1579 0.6333 0.1586 0.0539 0.0306 0.0048

MBP [46] 0.1400 0.4490 0.1250 0.6497 0.7175 0.0979
MSS [47] 0.0770 0.2445 0.0715 0.0640 0.0407 0.0060

PHOT [48] 0.0766 0.4374 0.0767 0.0694 0.0481 0.0383
RC [29] 0.1813 0.5884 0.1906 0.0611 0.0423 0.3533

Rudinac [49] 0.1475 0.2553 0.1084 0.2458 0.2121 0.0637
SF [30] 0.1924 0.4672 0.1752 0.2090 0.1967 0.0724
SR [50] 0.1220 0.1898 0.0875 0.2180 0.2058 0.0720

U-Net [32] 0.6263 0.7805 0.6388 0.0183 0.0098 0.6217
Rec [51] 0.6782 0.8279 0.6883 0.0162 0.0085 0.6789

SegNet [52] 0.6779 0.8277 0.6862 0.0160 0.0084 0.6797
LPBF-Net [53] 0.6793 0.8159 0.6968 0.0157 0.0082 0.6806

Proposed 0.7413 0.6995 0.7057 0.0151 0.0080 0.6854

In addition to the quantitative comparison of Fβ, the MAE, and the Dice coefficient,
visual results are also compared in this paper to make the experimental evaluation more
comprehensive. The experimental results are shown in Figure 9, where the four defect
types are compared. The first column of the upper half of the graph is the input image,
the second is the annotated ground truth, the third is the results presented in this paper,
and the remaining part shows the results of other methods. It can be seen that the detection
results of many methods were pure black, such as those of AC, LC, MSS, and PHOT, which
indicated that these methods failed to find defective areas. Other methods, such as BMS, FT,
HC, and RC, found partial defect information, but they could not suppress non-defective
areas. In addition, some methods, such as GMR, Rudinac, and SF, failed to correctly identify
defective and non-defective areas, misidentifying non-defective areas as defective areas.
The proposed USB-SG defect dataset had the characteristics of large differences in defect
size. For example, the size of the dents was less than 0.5 mm, and the size of the stains was
usually more than 5 mm. The traditional hand-crafted feature-extractor-based methods
could not adapt to multi-scale features. In addition, there were difficulties such as weak
defect features and unclear edges, which also affected the detection performance.

Compared to traditional methods, deep-learning-based approaches performed better.
In the detection of dent-type defects, our model could completely detect the defective areas
and suppress the non-defective areas. U-Net and LPBF-Net misidentified the features of
the non-defective areas as defective. In the results for scratches, it could be seen that the
integrity of the model proposed in this paper was better, while Rec, U-Net, and SegNet
were worse. In the results for spots, it could be seen that Rec, SegNet, and LPBF-Net failed
to identify defective areas, and the integrity of U-Net’s results was not as good as that of
ours. In the detection results for stains, Rec could not find defective regions completely,
and some defective areas were misjudged as non-defective regions. Based on the above
comparison, it can be concluded that the proposed method had better detection results
than those of other methods and could accurately distinguish defective from non-defective
areas. However, the method proposed in this paper also has room for further improvement.
For example, the completeness of the spot sample detection results was not satisfactory.
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Figure 9. Visual comparisons of different defect/object localization models.

In order to test the computational efficiency of the model, the model was tested on a
computer equipped with an NVIDIA 1080Ti GPU. By calculating the average value many
times, it is found that the model could process more than 40 200× 200 pixel images per
second, thus achieving real-time speed. The processing speed of this model was much
faster than that of manual inspection and has broad application prospects in the field of
industrial surface defect inspection.

5. Conclusions

To improve the automation level of defect detection and promote the application
of intelligent detection methods in product quality monitoring, in this paper, a defect
inspection system was proposed to solve the problem of a defect inspection task for USB
connectors. A defect dataset, USB-SG, which contained pixel-level defect locations, was
collected and manually labeled. We proposed a defect inspection model that included
three model optimization techniques. Firstly, a rich feature extraction block was designed
to extract semantic and detailed information. Then, the feature fusion performance and
the generalization ability of the model were improved through residual-based progressive
integration. Finally, multi-step deep supervision was applied to improve the final predic-
tion performance. The experimental results showed that the proposed model had better
detection performance than that of other models; Fβ reached 0.7057, and the MAE was as
low as 0.008. In addition, our model could achieve real-time processing speeds (>40 FPS )
on an NVIDIA 1080Ti GPU. Our proposed defect inspection system has a wide range of
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application prospects in industrial inspection tasks and can be used as a model for related
researchers as technical support.

In the future, we plan to study further from two perspectives: First, considering
that it takes many human resources to annotate the pixel-level ground truth, we plan to
study a weakly supervised method to reduce the demand for manual annotations. Second,
we intend to investigate more general inspection systems that can be adapted to defect
inspection tasks for a variety of products.
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