
Citation: Liu, X.; Zhang, B.; Liu, N.

The Graph Neural Network Detector

Based on Neighbor Feature

Alignment Mechanism in LIDAR

Point Clouds. Machines 2023, 11, 116.

https://doi.org/10.3390/

machines11010116

Academic Editors: Antonios

Gasteratos and Ioannis Kostavelis

Received: 12 December 2022

Revised: 8 January 2023

Accepted: 12 January 2023

Published: 14 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

The Graph Neural Network Detector Based on Neighbor
Feature Alignment Mechanism in LIDAR Point Clouds
Xinyi Liu 1,2, Baofeng Zhang 1,2 and Na Liu 2,*

1 The School of Computer Science and Engineering, Tianjin University of Technology, No. 391 Bin Shui Xi Dao
Road, Tianjin 300384, China

2 Tianjin Key Laboratory for Control Theory and Applications in Complicated System, Tianjin University of
Technology, No. 391 Bin Shui Xi Dao Road, Tianjin 300384, China

* Correspondence: liuna@email.tjut.edu.cn

Abstract: Three-dimensional (3D) object detection has a vital effect on the environmental awareness
task of autonomous driving scenarios. At present, the accuracy of 3D object detection has significant
improvement potential. In addition, a 3D point cloud is not uniformly distributed on a regular
grid because of its disorder, dispersion, and sparseness. The strategy of the convolution neural
networks (CNNs) for 3D point cloud feature extraction has the limitations of potential information
loss and empty operation. Therefore, we propose a graph neural network (GNN) detector based on
neighbor feature alignment mechanism for 3D object detection in LiDAR point clouds. This method
exploits the structural information of graphs, and it aggregates the neighbor and edge features to
update the state of vertices during the iteration process. This method enables the reduction of the
offset error of the vertices, and ensures the invariance of the point cloud in the spatial domain. For
experiments performed on the KITTI public benchmark, the results demonstrate that the proposed
method achieves competitive experimental results.

Keywords: LIDAR; 3D object detection; point cloud; GNN

1. Introduction

Three-dimensional (3D) object detection has a vital effect on the environmental aware-
ness task of autonomous driving scenarios. It is a critical technology to identify and predict
potential dangers, which ensures the safety of vehicles and pedestrians on the driving road.
The purpose of 3D object detection is to discover important information about the object
in the driving scenario, such as 3D coordinates, length, width, height, and rotation angle
of the horizontal plane. At present, the accuracy of 3D object detection has significant
improvement potential. The existing methods utilize various data forms for 3D object
detection, which include monocular vision [1], stereo vision [2], RGB-D images [3], and
point clouds [4].

Compared with monocular and stereo vision methods with RGB images, the point
cloud has a more robust performance. Point cloud data enable the decoupling of objects and
backgrounds, which is more conducive to information mining. In particular, point clouds
could provide very accurate 3D coordinate information in foggy or night scenes, while,
with RGB images, it is difficult to determine coordinate positions by pixel information
in these scenes. A common information data format in autonomous driving scenarios is
the 3D point cloud obtained from LiDAR sensors, which assist autonomous vehicles in
obtaining accurate predictions. Therefore, this work utilizes the LiDAR point cloud as
input data for the study of 3D object detection.

Three-dimensional point cloud data are not uniformly distributed on a regular grid
because of their disorder, dispersion, and sparseness. The strategy of the regular grid
for 3D point cloud feature extraction has the limitations of potential information loss and
empty operation [4]. Therefore, the 3D point cloud is converted into a graph representation

Machines 2023, 11, 116. https://doi.org/10.3390/machines11010116 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines11010116
https://doi.org/10.3390/machines11010116
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0002-6258-7527
https://doi.org/10.3390/machines11010116
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines11010116?type=check_update&version=2

Machines 2023, 11, 116 2 of 18

for model training in this work. However, it may contain the problem that a non-fixed
number of neighbors and the feature information of edges are not used effectively when
processing with convolution operation in the graph representation structure. To address
the aforementioned limitations of convolutional neural networks in 3D point clouds, some
methods have transformed sparse point clouds into compactly shaped three-dimensional
representations by using voxelization [5,6], while others have performed 3D object detection
by directly processing point clouds [7,8].

However, the two mentioned methods remain computationally challenging. Therefore,
this work considers utilizing the graph neural network (GNN) [9] instead of the convolu-
tional neural network (CNN) [10] for 3D object detection. Multilayer Perceptrons (MLPs)
are used to handle some disordered property problems [11]. In addition, the amount of 3D
point cloud provided by LiDAR is comparatively heavy, which generates a large computa-
tional cost in model detection. To improve the processing speed of the model, voxelization
strategies are used in some methods to reduce the density of the point cloud [6]. However,
the voxelization strategy used in the above method requires sampling a fixed number of
points for each voxel, which results in extra capacity and computational cost. Moreover,
this method affects by the random drop operation, which might result in unstable detection
results in the model.

In summary, we propose a graph neural network framework based on neighbor
feature alignment mechanism for 3D object detection in LiDAR point clouds. The neighbor
feature represents the vertices in the graph that have a connection relationship with the
centroid. The proposed method retains the richer feature information of the point cloud by
constructing a graph. Considering that LiDAR point clouds have a large amount of data,
we propose a dynamic sparsification method for reducing the point cloud density. Secondly,
aiming to effectively utilize the vertex and edge feature information in the graph, we
propose a neighbor feature alignment mechanism for feature extraction. The experiments
on the public benchmark KITTI dataset demonstrate that the proposed method achieves a
competitive detection performance.

The main contributions of this paper are as follows:

(1) We propose a novel graph neural network framework based on neighbor feature
alignment mechanism for 3D object detection. This framework converts the input
point cloud into a graph and uses a graph neural network for feature extraction, which
implements the 3D object detection in LiDAR point clouds.

(2) A neighbor feature alignment mechanism is proposed. This method exploits the
structural information of graph, and it aggregates the neighbor and edge features
to update the state of vertices during the iteration process. This method enables the
reduction of the offset error of the vertices, and ensures the invariance of the point
cloud in the spatial domain.

(3) We conduct extensive experiments on the public benchmark KITTI dataset for au-
tonomous driving. The experiments demonstrate that the proposed method achieves
competitive experimental results.

2. Related Works

LiDAR is an indispensable sensor in unmanned systems, which could provide the
dense 3D point cloud for accurately representing the shape and location of the object in
3D space. Therefore, the environment perception algorithm based on LiDAR point cloud
has become an emphasis of current research in unmanned systems. The object detection
algorithms based on LiDAR point clouds can be categorized as multi-view-based methods,
voxel-based methods, point-based methods, and the combined point-voxel methods.

The voxel-based methods. VoxelNet [6] has quantified the point clouds into grid
data, which can automatically learn usable information from the point clouds in an end-
to-end process, being more efficient than the manual way of designing features. The
main problem of this method is that the intermediate layer adopted the 3D convolution,
which has excessive computation resulting in the operation speed not satisfying the real-

Machines 2023, 11, 116 3 of 18

time requirement. SECOND [12] adopted a sparse convolution strategy to avoid invalid
computation in the empty region, which improved the operation speed and reduced the
usage of the graphics memory at the same time. CIA-SSD [13] also adopted 3D sparse
convolution for feature extraction. The difference is that CIA-SSD took the mean value
of the points in the grid as the starting features, further reduced the computational effort
by continuously decreasing the spatial resolution, and finally stitched the features in the
Z-direction to obtain a 2D feature map. PIXOR [4] proposed a manual design to compress
the 3D Voxel to 2D Pixel. This method avoided the problem of excessive computation by
using 3D convolution, but the information in the height direction was lost, which resulted
in a decrease in detection accuracy. PointPillar [14] also adopted the method to quantize
the 3D point cloud into 2D grids. However, different from the PIXOR manual feature
design method, PointPillar directly stacked the points within each grid, then learned the
features by using a similar way to PointNet [7], and finally mapped the learned feature
vectors back onto the grid coordinates. Despite the excellent operating speed achieved,
the information of the individual voxel internal points is partially lost after voxelization,
decreasing accuracy.

The point-based methods. PointNet++ [8] adopted a clustering method to hierarchi-
cally extract neighbor-hood features and to gain the object candidates. This method is
relatively inefficient and also hard to perform the parallel acceleration. Therefore, the sub-
sequent work has gradually taken several aspects from the 2D object detection algorithm
to address the issues in PointNet++. PointRCNN [15] was first explored in this direction,
which combined the point cloud processing and 2D object detector Faster RCNN. This
method utilized a two-stage strategy, the first stage produced the bounding box scheme; in
addition, the second stage refined the specification of the 3D boxes. However, this method
is computationally intensive and inefficient. In addition, 3D-SSD [16] proposed a novel
clustering method that considers both the similarity of points in the geometric space and
feature space to find its neighborhood points, and used MLP to predict the category and
3D bounding box. With the above improvements, the operation speed of 3D-SSD could
achieve 25FPS. The representation by graph is also a method for unstructured point cloud
data. However, the graph neural network is relatively complex, and despite its rapid
development in recent years, there are only a few works on 3D object detection. Point-
GNN [17] is one of the more typical works. A graph model is built based on a predefined
distance threshold, then each vertex is updated to obtain information about neighboring
points, which is used to detect object classes and locations. This method demonstrated the
effectiveness of graph neural networks in 3D LiDAR point cloud object detection. RGN [18]
added a branch of direction vectors to improve the prediction accuracy of virtual centroids
and 3D candidate boxes.

The combined point-voxel methods. The voxel-based method has higher speed and
lower accuracy. The Point-based method has a slower speed but relatively higher accuracy.
To make the algorithm pursue the optimal balance between speed and accuracy, point-
voxel-based fusion methods are proposed. The basic idea is to utilize low-resolution
voxels to extract contextual features (such as PV-CNN [19]), generate object candidates ,
or both (such as PV-RCNN [20] and SA-SSD [21]).PV-RCNN [20] is a two-stage detection
method, which is a low operation speed affected by ROI Pooling. SIENet [22] employed
an additional branch that considers the voxel grid as an additional point to address the
relatively sparse point cloud of distant objects. Despite the performance improvement in
accuracy, the operation speed is similar to PV-RCNN. Voxel R-CNN [23] adopted the voxel
to feature extraction, which has a more compact structure.

The voxel-based methods greatly rely on the quantization parameters, which could
easily cause the problems of information loss or a large number of invalid operations.
Despite the current point-based methods being able to improve the limitations of voxel
quantization, the current time consumed in point cloud data construction is still high,
the main reason being that the point-based methods are more difficult for extracting the
neighborhood contextual features.

Machines 2023, 11, 116 4 of 18

Some recent methods obtain contextual information by introducing attention mecha-
nisms. MSA-Net [24] proposes the context channel refine block and the context spatial refine
block to extract the context in channel and spatial aspects, respectively. CSDA-Net [25]
obtained complete contextual information by using different squeeze operations. T-Net [26]
processed sparse correspondences in a permutation-equivariant way and captured both
global and channel-wise contextual information.

3. Proposed Method
3.1. Framework Overview

The framework of the proposed method is shown in Figure 1. This method adopts a
LiDAR point cloud as input, and mainly consists of a graph representation module, feature
extraction module, and prediction module.

Figure 1. Framework overview.

The graph module utilizes the mapping function to determine the number of grids and
points, which obtains the sparse point cloud with retaining enriched information. Then,
the vertex and edge features of the graph representation are constructed by searching the
neighbors with a fixed radius.

The feature extraction module achieves information transfer by sharing structural
features between vertices and edges. In the iteration process, to update the vertices and
reduce the offset error, the aggregated feature vectors are computed with the neighbor and
edge features. In addition, to avoid repeated grouping and sampling, the edge features of
each layer are reused for feature learning.

The prediction module calculates a weighted sum using the location and scale infor-
mation, which is used to correct the scores of the classification. Then, the bounding box
regression prediction is calculated by combining all overlapping bounding boxes of the
prediction object.

Machines 2023, 11, 116 5 of 18

3.2. The Point Cloud Processing Module

The LiDAR point cloud with a large number of points usually consists of tens of
thousands of points. Constructing a graph representation with all points as vertices intro-
duces a huge computational cost, which may lead to an unsatisfactory processing speed
in the model. Therefore, we propose to construct the graph with the point cloud after the
down-sampling process. It is worth noting that the voxelization here is only used to reduce
the density of the point cloud, and it is not used as a representation of the point cloud for
feature extraction.

Therefore, point clouds are sparsely processed in several research works. A common
method of point cloud down-sampling is structural voxelization. In this method, the
point pi is assigned to the corresponding voxel vj according to its spatial coordinates. The
down-sampling point cloud is achieved by sampling a fixed number of points in each voxel
grid, as shown in Equations (1) and (2):

Fv(pi) =

{
∅, pj is dropped
vj, otherwise

(1)

Fp(vj) =

{
∅, vj is dropped
{pj | ∀pj ∈ vj}, ∀j

(2)

where Fv(pi) denotes the mapping of the voxel vj where each point pi is located, and Fp(vj)
denotes the mapping of the set of points in the voxel vj.

In the structure voxelization method, if the number of assigned points in the voxel
grid exceeds the default value, the extra points are dropped. Otherwise, the remaining part
will be filled to zero. However, the LiDAR point cloud is a non-Euclidean structure, and
the distribution in the point cloud is random and disorderly. If the point cloud is processed
using structural voxelization, the critical information might be discarded with high density,
as well as adding ineffective space and computational cost with sparse density. Therefore,
balancing the density of points and detection accuracy in LiDAR point cloud detection has
significant investigative importance.

To address the mentioned limitations, we propose a dynamic sparsification method
for point cloud processing, as shown in Figure 2.

Figure 2. The dynamic sparsification-based point cloud processing. Firstly, we define the expression
of the voxel grid as vi ∈ Rn×C1 . Secondly, to ensure the invariance of the point cloud structure in
the spatial domain, the local voxel feature vloc ∈ Rn×C2 is obtained by mapping the voxel feature
vi ∈ Rn×C1 using MLP. This feature includes the number of voxel grids and the number of points
contained in the grid. Then, according to the number of points contained in the grid sort the voxel
grid, the binary mask D̂ is obtained. Finally, the local voxel feature expression vloc and the binary
mask D̂ are aggregated to obtain the global voxel feature vglobal ∈ Rn×C2 .

We define the point cloud as P = {p0, p1, · · · , pN}. Instead of sampling points to a
fixed voxel, we propose to preserve the entire mapping relationship between points and
voxels, as shown in Equations (3) and (4):

Fv(pi) = vj ∈ Rn×C1 (3)

Machines 2023, 11, 116 6 of 18

Fp(vj) = {pj | ∀pj ∈ vj} ∀j (4)

We analyze the random sampling method for reducing the density of the point cloud,
which will not ensure that the point cloud preserves the complete critical information.

Firstly, the constructed voxel feature vi ∈ Rn×C1 is mapped to the local voxel feature
vloc, which contains information about the number of dynamic voxel grids, as shown in
Equation (5):

vloc = MLP(vj) ∈ Rn×C2 (5)

Secondly, the local voxel feature vloc ∈ Rn×C2 is aggregated with the binary mask
D̂ ∈ Rn×C2 , and the global voxel feature vglobal is obtained for dynamic sparse point cloud
processing, as shown in Equation (6):

vglobal = Agg(vloc, D̂) ∈ Rn×C2 (6)

where Agg() denotes the function that aggregates the available feature information.
Finally, the global voxel feature vglobal ∈ Rn×C2 is embedded in Fp(vi) as shown in

Equations (7) and (8):
Fv(pi) = vglobal ∈ Rn×C2 (7)

Fp(vi) = {pj | ∀pj ∈ vglobal} ∀j (8)

This method eliminates the fixed memory requirements of downsampling operations,
and it does not randomly discard points and grids. It can solve the problem of loss of
critical information and null operations caused by sparsity and density imbalance in 3D
point clouds. The dynamic sparsification method enables dynamic and efficient resource
allocation to manage all points and voxels. The ability to generate a deterministic voxel
embedding assures more stable detection results with dynamic sparsification.

The point cloud structure only contains information about points, and there is no infor-
mation about the edges inherently. Therefore, when constructing the graph representation,
the definition of edge features needs to be added manually by using the vertex features in
the point cloud.

As shown in Figure 3, we are given a point cloud P = {p0, p1, · · · , pN} ∈ Rn×C, which
is used to construct a graph representation G(V, E). We create an edge E by taking pi as a
vertex V and connecting the point to the neighbor within its fixed radius r.

Figure 3. Construction strategy for edge features in the graph. Red indicates the vertex, and blue
indicates its neighbors.

We convert the graph representation to a fixed radius nearest neighbor search problem.
The runtime complexity O(cN) problem is efficiently solved by using a list of cells to find
pairs of points within a fixed distance, which contains the maximum number of neighbors
within the radius, as shown in Equation (9):

E = {(pi, pj) | ‖xj − xi‖2 < r} (9)

Machines 2023, 11, 116 7 of 18

3.3. The Feature Extraction Module

We introduce a graph neural network (GNN), which employs standard information
transfer to extract features from graph representations. GNNs can maintain the symmetry of
the graph information. The vertices are sorted in a different way, which can also guarantee
that the prediction results do not change. In the t-th iteration, we set the vertex feature
vector to be St and the edge feature vector to be Et.

FNRG [27] exploited the consistency of local neighborhood structures to deal with
outliers, which is effective for the outlier removal problem. The main reason is that the
correspondences preserve local neighborhood structures of feature points. The importance
of the neighbor feature structure is demonstrated.

The proposed neighbor feature alignment mechanism is introduced by the example
shown in Figure 4. We assume a connection relationship between the centroid s3 and
its neighbors (s1,s2 and s4) by denoting s as a vertex and e as an edge. In this case, e(2,3)
indicates that there is a connection between the centroid s3 and its neighbor s2. In this
example, we can observe the message passing and state updating process of the vertex.

Figure 4. GNN based on neighbor feature alignment mechanism in a single iteration.

The details of our proposed neighbor feature alignment mechanism are introduced
as follows.

The classical GNN feature extraction process is shown in Figure 5, where both func-
tions ht() and f t() are Multi-Layer Perceptron (MLP) functions. All vertex features share a
multilayer perceptron function, and all edge features share a multilayer perceptron function.
In the t+1-th iteration process, the feature vectors of both vertices and edges are updated,
and the structure of the graph will not change.

Figure 5. The classical GNN.

However, it can be noticed that there is a problem in the GNN model illustrated in
Figure 5, that is, the structural information of the graph is not used in the feature extraction.
Although GNN transforms the feature vectors of vertices and edges, there is no information
sharing between vertices and edges.

Firstly, we propose to share feature information between vertex and edge features by
encoding neighbors, as shown in Figure 6.

Machines 2023, 11, 116 8 of 18

Figure 6. The encoding neighbor method.

In the t+1-th iteration, the updated form of each vertex is as shown in Equation (10):

st+1
i = ht(st

i) = MLPt
h(s

t
i) (10)

GNN uses the feature of the vertex to compute the feature of the neighbor, which is
used to represent the iterative update process of edge features, as shown in Equation (11):

et+1
i = f t(xj − xi, st

i) = MLPt
f ([xj − xi, st

i]) (11)

However, we use the GNN of Figure 6 for iteration, which can only achieve the
encoding of the local neighbor feature, and the original global structure might be lost.
Therefore, we propose to use the global structural features aggregated with the local
neighbor features in the iteration update process, as shown in Figure 7.

Figure 7. The feature aggregation method.

However, encoding by aggregating local and global information can ensure the infor-
mation sharing between vertex and edge features, allowing the structural features of the
graph to be maximally used. However, the input variables of the function f t() increase
when the vertices are shifted, which causes the relative coordinates of the local information
to change.

Motivated by the above, we propose a neighbor feature alignment mechanism, as
shown in Figure 8.

The GNN based on the neighbor feature alignment mechanism used the structural
information from the previous layer of iteration for aligning the relative coordinates, which
reduces the sensitivity of local information to the vertex feature offset.

Figure 8. The neighbor feature alignment mechanism.

Machines 2023, 11, 116 9 of 18

Firstly, we define the coordinate offset representation of the vertex feature as shown in
Equation (12):

∆st
i = ht(st

i) = MLPt
h(s

t
i) (12)

In the t+1-th iteration process, the edge features are updated by combining with the
coordinate offsets of the vertex features, the weighted sum of the local neighbor information,
and the global structure information, as shown in Equation (13):

et+1
i = f t(xj − xi + ∆st

i , st
j) = MLPt

f ([xj − xi + ∆st
i , st

j]) (13)

The state of the vertex features is updated by aggregating the edge features and the
global structure information, as shown in Equation (14):

st+1
i = gt(ρ({ f t(xj − xi + ∆st

i , st
j) | (i, j) ∈ E}), st

i) (14)

where xi and xj denote the neighbor features, ∆st
i denotes the coordinate offset of the vertex,

and st
i denotes the state value of the vertex features from the t-th iteration. The function

f t() is used to compute the edge features between vertices, ρ() is used to aggregate the
edge features of each vertex, gt() updates the state values of the vertices by the aggregated
edge features, and ht() computes the offset using the center vertex state values from the
previous iteration. It is noted that the offset can be disabled in GNN here by setting ht() to
zero. Practically, the functions f t(), gt() and ht() are implemented using the MLP, and ρ()
is chosen to be the mean value.

In summary, the message passing and state updating process of our proposed GNN
based on the neighbor feature alignment mechanism is shown in Figure 9.

Figure 9. The message passing and state updating process of our method.

3.4. The Prediction Module

In the model prediction stage, we use the output vector of the last layer in the network
for prediction. The vertices are represented with feature vectors in the graph, so the network
shares a fully connected layer in all vertices, and the classification prediction results are
obtained by the Softmax function.

Loss Function

The classification loss is used to calculate the multiclass probability distribution for
each vertex. We denote the point cloud as {pc1, pc2, · · · , pcM}, where M denotes the total
number of object classes, including the background classes. In the point cloud-based 3D
object detection, then the corresponding object category is assigned to this vertex. If a

Machines 2023, 11, 116 10 of 18

vertex is located outside of any bounding box, it is classified as the background class. We
use the average cross-entropy to calculate the classification loss, as shown in Equation (15):

Lcls = −
1
N

N

∑
i=1

M

∑
j=1

[yi
cj log(1− pi

cj) + pi
cj log(1− yi

cj)] (15)

To calculate the location loss, firstly, the ground truth and the prediction bounding
box are parameterized respectively, as shown in Figure 10. We denote the ground truth and
prediction bounding box as shown in Equation (16):

cgt = (xgt, ygt, zgt, lgt, wgt, hgt, θgt)
cpre = (xpre, ypre, zpre, lpre, wpre, hpre, θpre)

(16)

where (xgt, ygt, zgt), and (xpre, ypre, zpre) denotes the center coordinate of ground truth and
prediction, respectively. lgt,wgt,hgt and lpre,wpre,hpre denotes the length, width, and height
of ground truth and prediction, respectively. θgt and θpre denote the orientation angle of
ground truth and prediction, respectively.

Figure 10. The parameterization of the bounding box.

Then, we transform the original coordinate cgt into the coordinate of GNN vertex ∆gt,
as shown in Equation (17):

∆xgt = (xgt−xgt
v)

dgt ∆ygt = (ygt−ygt
v)

dgt ∆zgt = (zgt−zgt
v)

dgt

∆lgt = log lgt

dgt ∆wgt = log wgt

dgt ∆hgt = log hgt

dgt

∆θgt = θgt dgt =
√
(lgt)2 + (wgt)2

(17)

Note that the prediction coordinate uses the same transform strategy.
In general, the Mean Absolute Error (MAE) and the Mean Square Error (MSE) are

used to calculate the location loss. However, the model using MAE as the loss function will
ignore the outliers, and the model using MSE as the loss function will be biased toward the
outliers. Therefore, we propose to calculate the difference between the ground truth and
the prediction bounding box with Huber loss[], which is more robust to outliers, as shown
in Equation (18):

Lδ(∆pre − ∆gt) =

{
(∆pre−∆gt)2

2 , i f | ∆pre − ∆gt |≤ δ

δ | ∆pre − ∆gt | − δ2

2 , otherwise
(18)

Machines 2023, 11, 116 11 of 18

Then, we calculate the average location loss for all vertices contained in the bounding
box, as shown in Equation (19):

Lloc =
1
N

N

∑
i=1

Iobj ∑
∆∈∆bi

Lδ∆pre − ∆gt (19)

where the vertex is located within the bounding box, Iobj is set to 1, and the loss between
the ground truth and the prediction bounding box is calculated. If the vertex is outside any
bounding box or it belongs to a category that does not need to be located, Iobj is set to 0.

Finally, the loss function in this paper is denoted as Equation (20):

L = αLcls + βLloc + γLreg (20)

where α,β, and γ denote the trade-off parameters, respectively. Lreg denotes L2 regulariza-
tion, for preventing over-fitting.

4. Experiments and Analysis

The car category has the highest percentage in the KITTI dataset, and we focus on the
car category for evaluation. The training set is used for model training, and the validation
set is used to evaluate the detection performance of the model.

We will analyze the performance of our method from different perspectives. Firstly,
the effectiveness of our method is verified by comparing it with advanced methods in 3D
object detection. Secondly, the performance of our method is analyzed by using different
iterations and activation functions. Finally, the importance of each module for improving
the detection performance is evaluated by a series of ablation studies.

4.1. Dataset and Experimental Details
4.1.1. Datasets

Our method is evaluated quantitatively and qualitatively on the KITTI Object Detec-
tion Benchmark [28]. The camera exposure time in the KITTI dataset is controlled by the
laser, which triggers the camera shutter when the laser is scanned into the view range of
the camera. Therefore, the experiments are conducted only using the view of the camera.
For model training and testing, the experiments use the LIDAR point cloud in the lateral
range of ±20 m and the distance of 30 m in front of the car.

There is no labeling data in the KITTI test set. Therefore, we have divided the 7481 train-
ing samples into training and validation sets, in which the training set contains 3712 sam-
ples, and the validation set contains 3769 samples.

4.1.2. Experimental Details

The experimental platform is NVIDIA RTX 3090, CUDA 11.1, Ubuntu 18.04, Python
3.6, and Tensorflow 1.18.1. We use the Tensorflow framework to construct the GNN model.
In the training stage, the input sample batch size is selected as 4. The GNN is trained
end-to-end, and the trade-off parameters of the loss function are set to α = 0.1, β = 10,
γ = 5 × 10−7, respectively . The optimizer uses Adam. The maximum number of input
edges for each vertex is limited to 256 in the training process, and all input edges are used
in the inference process.

We conduct experiments in three categories (car, pedestrian and cyclist) to verify the
performance of our method. Considering the large scale differences between the different
categories, for instance, the length of car is about 3–4 m, while the length of pedestrian
and rider is about 0.5–1 m and 1.5–2.0 m, respectively. Therefore, we adopt two different
experimental setups in the training stage. The specific details are as follows.

For the car category, the initial learning rate of 0.125 and the decay rate of 0.1 are
used in the training, and the number of training steps is set to 1,400,000 steps. The length,
height, and width of the median in the bounding box are set to 3.88 m, 1.5 m, and 1.63 m,

Machines 2023, 11, 116 12 of 18

respectively. The graph of the car category is constructed with r = 4 m. The dimensionality
of the input feature vectors of functions f t() and gt() is set to (300, 300).

For the pedestrian and cyclist categories, the initial learning rate of 0.32 and the decay
rate of 0.25 are used in the training, and the number of training steps is set to 1,000,000 steps.
The length, height, and width of the median in the bounding box of the pedestrian are set
to 0.9 m, 1.8 m, and 0.7 m, respectively. In addition, the length, height, and width of the
median in the bounding box of the cyclist are set to 1.8 m, 1.8 m, and 0.6 m, respectively.
The graph is constructed with r = 1.6 m. The dimensionality of the input feature vectors of
functions f t() and gt() is set to (256, 256).

4.2. Comparison with Other Advanced Methods

We evaluate three categories of car, pedestrian, and cyclist from the KITTI dataset.
The performance between our method and other advanced methods is compared in terms
of three detection difficulty cases, Easy, Moderate, and Hard, with 3D object detection
performance AP3D and 3D location performance APBEV as evaluation metrics.

As shown in Table 1, the results of our methods are compared with the other state-of-
the-art methods in the performance of 3D object detection (AP3D). We classify all methods
into voxel-based methods, point-based methods, and point and voxel fusion methods.
Some unpublished experimental results are indicated by “-”, and the best experimental
results for each are shown in the underlined.

Table 1. The performance of 3D object detection AP3D (%).

Method Modality Car Pedestrian Cyclist
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

voxel-based methods
VoxelNet [6] LiDAR only 77.47 65.11 57.73 39.48 33.69 31.50 61.22 48.36 44.37
PointPillars [14] LiDAR only 79.05 74.99 68.30 52.08 43.53 41.49 75.78 59.07 52.92
CIA-SSD [13] LiDAR+Image 89.59 80.20 72.87 - - - - - -
Voxel-RCNN [23] LiDAR only 90.90 81.62 77.06 - - - - - -
SE-SSD [29] LiDAR only 91.49 85.54 77.15 - - - - - -
SMS-Net [30] LiDAR only 89.34 79.04 77.76 - - - - - -
MA-MFFC [31] LiDAR only 92.60 84.98 83.21 - - - - - -

point-voxel methods
F-PointNet [32] LiDAR+Image 81.02 70.39 62.19 51.21 44.89 40.23 71.96 56.77 50.39
PV-RCNN [20] LiDAR+Image 90.25 81.43 76.82 52.17 43.29 40.29 78.60 63.71 57.65
VIC-Net [33] LiDAR only 88.25 80.61 75.83 43.82 37.18 35.35 78.29 63.65 57.27
HVPR [34] LiDAR only 86.38 77.92 73.04 53.47 43.96 40.64 - - -

point-based methods
PointRCNN [15] LiDAR only 86.69 75.64 70.70 47.98 39.37 36.01 74.96 58.82 52.53
3DSSD [16] LiDAR only 88.36 79.57 74.55 54.64 44.27 40.23 82.48 64.10 56.90
Point-GNN [17] LiDAR only 88.33 79.47 72.29 51.92 43.77 40.14 78.60 63.48 57.08
IA-SSD [35] LiDAR only 88.34 80.13 75.04 46.51 39.03 35.60 78.35 61.94 55.70

Ours LiDAR only 90.63 80.26 74.02 51.43 43.84 40.42 77.36 60.83 57.39

We can observe from Table 1 that, for the car category, our method outperforms all
other point-based methods for easy and moderate detection and achieves 90.63% and
80.26%, which outperforms the second-best method +2.27% and +0.13%, respectively. For
the pedestrian category, our method outperforms all other point-based methods in difficult
detection by 40.42%, which outperforms the second-best method by +0.19%. In addition,
the detection performance of moderate, despite not reaching the best, is very close to
the state-of-the-art methods. For the cyclist category, our method outperforms all other
point-based methods in difficult detection performance by 57.39%, which outperforms the
next best method by 0.31%. Despite the pedestrian and cyclist categories, which do not
achieve the best results in moderate detection, both of them achieve the best in difficult

Machines 2023, 11, 116 13 of 18

detection. This indicates that our method can deal well with complex and variable road
conditions, and the detection performance is resistant to disturbance.

As shown in Table 2, the results of our method are compared with other advanced
methods in terms of 3D location performance (APBEV). The best experimental results of
each are shown in the underlined.

Table 2. The performance of 3D location performance APBEV (%).

Method Modality Car Pedestrian Cyclist
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

AVOD [36] LiDAR+Image 88.53 83.79 77.90 58.75 51.05 47.54 68.06 57.48 50.77
F-PointNet [32] LiDAR+Image 88.70 84.00 75.33 58.09 50.22 47.20 75.38 61.96 54.68
PointPillars [14] LiDAR only 88.35 86.10 79.83 58.66 50.23 47.19 79.14 62.25 56.00
STD [37] LiDAR only 89.66 87.76 86.89 60.99 51.39 45.89 81.04 65.32 57.85
Point-GNN [17] LiDAR only 93.11 89.17 83.90 55.36 47.07 44.61 81.17 67.28 59.67
SMS-Net [30] LiDAR only 90.34 87.89 87.01 - - - - - -

Ours LiDAR only 96.07 90.79 89.01 58.99 56.01 51.30 81.72 62.53 58.75

We can observe that, for the car category, the 3D location performance achieves 96.9%
and 92.18% in easy and moderate, respectively, which outperforms the next best methods
+3.51% and +3.01%, respectively. For the pedestrian category, our method achieves 56.01%
and 51.30% in moderate and hard, respectively, which outperforms the next best methods
+4.62% and +3.49%, respectively. Despite our method not achieving the best result in easy
detection, it is very close to the performance of the best result. For the cyclist category,
our method achieves 81.72% in easy detection, which outperforms the next best methods
by +0.55%. We can find that the cyclist category is not as well detected as the car and
pedestrian categories, and one possible reason is the smaller sample of cyclists and the
insufficient vertex density that prevents a more accurate prediction, despite the detection
performance in the cyclist category not having the best result. However, our method is still
able to detect the cyclists well, as shown in Figure 11.

Figure 11. Qualitative results for cyclist and pedestrian categories on the KITTI dataset.

4.3. Ablation Study
4.3.1. The Ablation Study of Activation Function

One of the important properties of a neural network-based model is required to have
nonlinearity, which can prevent the model from being a deeply linear classifier. Therefore,
firstly, we analyze the effect of different activation functions on model performance. The
car category accounts for the highest percentage in the KITTI dataset, and in this section,
we focus on the performance evaluation in the car category detection. We use the 3D object
detection performance AP3D and 3D location performance APBEV as evaluation metrics,
and the best results for each are indicated in bold. The EXP.1-EXP.3 denotes the experiments
using ReLU, Leaky ReLU, and GELU as the activation layers of the model, respectively.

Machines 2023, 11, 116 14 of 18

The experimental results are shown in Table 3. We can observe that the EXP.3 achieves
90.79% and 80.26% detection results on APBEV and AP3D with moderate, respectively,
which is +5.16% and +2.93% improvement on EXP.1, and +2.42% and +4.22% improvement
on EXP.2, respectively. One possible reason is that the GELU activation function introduces
the idea of stochastic regularization, which can provide a better representation of the
neuronal input. Therefore, we use the GELU activation function in the activation layer.

Table 3. The ablation study for activation function on car category (%).

EXP. Activation APBEV AP3D
Easy Moderate Hard Easy Moderate Hard

1 ReLU 89.49 85.63 83.02 86.04 74.04 74.68
2 LeakyReLU 94.32 88.37 86.41 89.78 78.33 77.34
3 GELU 96.07 90.79 89.01 90.63 80.26 74.02

4.3.2. The Ablation Study for GNN Iteration

Varying the iteration number of the GNN can refine the state of the vertices in the
graph. In this section, we set the iteration number as 0, 1, and 2 to train the model,
respectively. T denotes the number of iterations. T = 0 indicates that one iteration is used,
and the initial vertex state is used to train the model directly. Moderate detection more
closely resembles the real road scenario, so we use the moderate of 3D object detection
performance AP3D and 3D location performance APBEV as the evaluation metric.

As shown in Table 4, we can observe that the model has the lowest accuracy at T = 0;
this is because the network only contains the state of the initial vertices, and the perceptual
field is not extended, which prevents the neighbor information from flowing in the edge
features of the graph. In the moderate detection results, T = 1 achieves 90.63% and 80.26%
for APBEV and AP3D, respectively, which represents +2.53% and +0.72% improvement
compared to T = 2. We can find that the detection performance has decreased with the
increase in model iterations, which is a possible reason that it is more difficult to train the
deep model.

Table 4. The ablation study for iteration number on car category (%).

Iteration APBEV AP3D
Easy Moderate Hard Easy Moderate Hard

0 90.08 79.92 75.64 85.10 74.28 70.68
1 96.07 90.79 89.01 90.63 80.26 74.02
2 95.70 88.26 86.76 89.85 79.54 72.59

4.3.3. The Ablation Study for the Proposed Module

In this section, we analyze the impact of the individual modules on the detection per-
formance. The ablation studies are conducted for the point cloud processing method, the
neighbors feature alignment method, and the positive correlation constrained method, re-
spectively. The effectiveness of the individual modules is verified on the public benchmark
KITTI dataset.

Point cloud processing. The experiments are performed with the same hyper-parameter
settings, and we only change the point cloud processing method. In this section, we use the
structural voxelization method [6], the dynamic voxelization method [38], and our dynamic
sparsification method for the experiments, respectively. The experiments are evaluated on
the KITTI dataset of the car category, which uses the inference time and AP3D as metrics.

As shown in Table 5, Ours w/SV, Ours w/DV, and Ours denote the point cloud process-
ing with the structural voxelization method, the dynamic voxelization method, and our
dynamic sparsification method, respectively. We can observe that Ours achieves 80.26%
AP3D in moderate detection, which represents a +3.86% improvement over Ours w/DV and
a +6.99% improvement over Ours w/SV.

Machines 2023, 11, 116 15 of 18

Table 5. The ablation study of point cloud processing method on car category (%).

Methods AP3D Time/msEasy Moderate Hard mAP

Ours w/SV 86.78 73.57 70.43 76.93 641
Ours w/DV 89.68 76.68 73.46 79.94 573
Ours 90.63 80.26 74.02 80.85 599

Moderate detection is generally assumed to be the closest to the real driving scenario.
The experimental results as shown in Table 5 illustrated that our method is more suitable
for the detection in the real driving scenario. In addition, our method achieves a significant
improvement in detection accuracy with the inference time close to the other methods.

Neighbors feature alignment mechanism. In this section, we conduct the ablation
study on the KITTI dataset car category, which validates the effectiveness of the neighbor
feature alignment mechanism. We use the 3D object detection performance AP3D as
evaluation metrics, and analyze the influence of the neighbor feature alignment method on
detection performance. The Ours w/o align denotes the GNN without the neighbor feature
alignment mechanism, and the Ours w/align denotes the GNN with the neighbor feature
alignment mechanism.

As shown in Table 6, we can observe that the method with neighbors feature alignment
(Ours w/align) achieves the best performance in all terms of AP3D. In the moderate, and
hard detection, the results achieve 90.53%, 80.26%, and 74.02%, respectively, which has
+4.95%, +1.82%, and +0.13% improvement compared to the method without neighbor
feature alignment (Ours w/o align). The experimental result demonstrates the effectiveness
of the neighbor feature alignment mechanism.

Table 6. The ablation study of neighbors feature alignment mechanism on car category (%).

Methods AP3D GainEasy Moderate Hard mAP

Ours w/o align 85.58 78.98 73.89 78.82 +0.0%
Ours w/align 90.53 80.26 74.02 81.60 ↑ 2.78%

4.4. Qualitative Results and Analysis

This section shows the detection results of our method on RGB images and 3D point
clouds, respectively. Our method only uses point cloud data for model training, therefore,
the predicted 3D bounding box results are projected to RGB images for visualization.

As shown in Figure 12, the visualization results of 3D object detection for the car
(green), the pedestrian (blue), and the cyclist (yellow) are visualized (point cloud and RGB
images) in the KITTI dataset, and the effectiveness of our method is analyzed by qualitative
analysis. In particular, row 1 is the visualization results of RGB images, and row 2 is the
visualization results of 3D point cloud. It is demonstrated that our method can address the
complex and variable road scenario, which is more resistant to interference and is satisfied
with the detection requirements of the real road scenario.

Machines 2023, 11, 116 16 of 18

Figure 12. The qualitative results on the KITTI dataset.

5. Conclusions

In this work, we have proposed a graph neural network detector based on neighbor
feature alignment mechanism for 3D object detection. This method used 3D point clouds
as input with an end-to-end detection framework, which mainly includes point cloud
processing, feature extraction, and prediction module. Firstly, we have proposed a dynamic
sparsification method to downsample the LiDAR point cloud, which ensures that the
critical information of the point cloud is not lost. Secondly, we have proposed a neighbors
feature alignment mechanism, which utilizes the structural information of the previous
layer to align the relative coordinates, which reduces the sensitivity of neighbors to vertex
offset. Finally, the experiments on the public benchmark have demonstrated that our
method has been significantly improved.

At present, there is no unified interface API for most 3D object detection datasets.
The data formats, coordinate definitions, acquisition methods, and evaluation metrics are
very dissimilar between the common datasets. Therefore, our current work is only for the
particular use case of KITTI dataset. In our subsequent research work, in the subsequent
work, we will try to extend this method to a general 3D object detection framework.

Author Contributions: Methodology, X.L. and N.L.; investigation, N.L.; writing—original draft
preparation, X.L.; writing—review and editing, B.Z. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the Research and Innovation Project for Postgraduates in
Tianjin (Artificial Intelligence) Grant No. 2020YJSZXB08,the Youth Program of Tianjin Natural Science
Foundation Grant No. 21JCQNJC00910, the State Key Program of Tianjin Natural Science Foundation
Grant No. 21JCZDJC00760, and the Key Training Project for Tianjin” Project plus Team” Grant
No. XC202054.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to acknowledge the research support from the School of
Computer Science and Engineering, the School of Electrical Engineering and Automation, and Tianjin

Machines 2023, 11, 116 17 of 18

Key Laboratory for Control Theory and Applications in Complicated System at Tianjin University
of Technology.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chen, X.; Kundu, K.; Zhang, Z.; Ma, H.; Fidler, S.; Urtasun, R. Monocular 3D Object Detection for Autonomous Driving. In

Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016;
pp. 2147–2156. [CrossRef]

2. Mousavian, A.; Anguelov, D.; Flynn, J.; Kosecka, J. 3D Bounding Box Estimation Using Deep Learning and Geometry. In
Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017;
pp. 5632–5640. [CrossRef]

3. Song, S.; Xiao, J. Deep Sliding Shapes for Amodal 3D Object Detection in RGB-D Images. In Proceedings of the 2016 IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 808–816. [CrossRef]

4. Yang, B.; Luo, W.; Urtasun, R. PIXOR: Real-time 3D Object Detection from Point Clouds. In Proceedings of the 2018 IEEE
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7652–7660. [CrossRef]

5. Engelcke, M.; Rao, D.; Wang, D.Z.; Tong, C.H.; Posner, I. Vote3Deep: Fast object detection in 3D point clouds using efficient
convolutional neural networks. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation, Singapore,
29 May–3 June 2017; pp. 1355–1361. [CrossRef]

6. Zhou, Y.; Tuzel, O. VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection. In Proceedings of the 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 4490–4499.
[CrossRef]

7. Charles, R.Q.; Su, H.; Kaichun, M.; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. In
Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017;
pp. 77–85. [CrossRef]

8. Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space; Curran Associates
Inc.: Red Hook, NY, USA, 2017.

9. Scarselli, F.; Gori, M.; Tsoi, A.C.; Hagenbuchner, M.; Monfardini, G. The Graph Neural Network Model. IEEE Trans. Neural Netw.
2009, 20, 61–80. [CrossRef] [PubMed]

10. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM
2017, 60, 84–90. [CrossRef]

11. Zhong, Z.; Xiao, G.; Wang, S.; Wei, L.; Zhang, X. PESA-Net: Permutation-Equivariant Split Attention Network for correspondence
learning. Inform. Fus. 2022, 77, 81–89. [CrossRef]

12. Yan, Y.; Mao, Y.; Li, B. SECOND: Sparsely Embedded Convolutional Detection. Sensors 2018, 18, 3337. [CrossRef] [PubMed]
13. Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Yu, P.S. A Comprehensive Survey on Graph Neural Networks. IEEE Trans. Neural

Netw. Learn. Syst. 2021, 32, 4–24. [CrossRef] [PubMed]
14. Lang, A.H.; Vora, S.; Caesar, H.; Zhou, L.; Yang, J.; Beijbom, O. PointPillars: Fast Encoders for Object Detection From Point

Clouds. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA,
15–20 June 2019; pp. 12689–12697. [CrossRef]

15. Shi, S.; Wang, X.; Li, H. PointRCNN: 3D Object Proposal Generation and Detection From Point Cloud. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019.

16. Yang, Z.; Sun, Y.; Liu, S.; Jia, J. 3DSSD: Point-Based 3D Single Stage Object Detector. In Proceedings of the 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 11037–11045. [CrossRef]

17. Shi, W.; Rajkumar, R. Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud. In Proceedings of the
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 1708–1716.
[CrossRef]

18. Feng, M.; Gilani, S.Z.; Wang, Y.; Zhang, L.; Mian, A. Relation Graph Network for 3D Object Detection in Point Clouds; Cornell
University: Ithaca, NY, USA, 2019; pp. 92–107.

19. Liu, Z.; Tang, H.; Lin, Y.; Han, S. Point-Voxel CNN for Efficient 3D Deep Learning; Cornell University: Ithaca, NY, USA, 2019.
20. Shi, S.; Guo, C.; Jiang, L.; Wang, Z.; Shi, J.; Wang, X.; Li, H. PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection.

In Proceedings of the 2020 IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020;
pp. 10526–10535. [CrossRef]

21. He, C.; Zeng, H.; Huang, J.; Hua, X.S.; Zhang, L. Structure Aware Single-Stage 3D Object Detection From Point Cloud. In
Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020;
pp. 11870–11879. [CrossRef]

22. Li, Z.; Yao, Y.; Zhibin, Q.; Yang, W.; Xie, J. SIENet: Spatial Information Enhancement Network for 3D Object Detection from Point
Cloud. arXiv 2021, arXiv:2103.15396.

23. Deng, J.; Shi, S.; Li, P.; Zhou, W.; Zhang, Y.; Li, H. Voxel R-CNN: Towards High Performance Voxel-based 3D Object Detection.
arXiv 2020, arXiv:2012.15712.

http://doi.org/10.1109/CVPR.2016.236
http://dx.doi.org/10.1109/CVPR.2017.597
http://dx.doi.org/10.1109/CVPR.2016.94
http://dx.doi.org/10.1109/CVPR.2018.00798
http://dx.doi.org/10.1109/ICRA.2017.7989161
http://dx.doi.org/10.1109/CVPR.2018.00472
http://dx.doi.org/10.1109/CVPR.2017.16
http://dx.doi.org/10.1109/TNN.2008.2005605
http://www.ncbi.nlm.nih.gov/pubmed/19068426
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1016/j.inffus.2021.07.018
http://dx.doi.org/10.3390/s18103337
http://www.ncbi.nlm.nih.gov/pubmed/30301196
http://dx.doi.org/10.1109/TNNLS.2020.2978386
http://www.ncbi.nlm.nih.gov/pubmed/32217482
http://dx.doi.org/10.1109/CVPR.2019.01298
http://dx.doi.org/10.1109/CVPR42600.2020.01105
http://dx.doi.org/10.1109/CVPR42600.2020.00178
http://dx.doi.org/10.1109/CVPR42600.2020.01054
http://dx.doi.org/10.1109/CVPR42600.2020.01189

Machines 2023, 11, 116 18 of 18

24. Zheng, L.; Xiao, G.; Shi, Z.; Wang, S.; Ma, J. MSA-Net: Establishing Reliable Correspondences by Multiscale Attention Network.
IEEE Trans. Image Process. 2022,31, 4598–4608. [CrossRef] [PubMed]

25. Chen, S.; Zheng, L.; Xiao, G.; Zhong, Z.; Ma, J. CSDA-Net: Seeking reliable correspondences by channel-Spatial difference
augment network. Pattern Recognit. 2022, 126, 108539. [CrossRef]

26. Zhong, Z.; Xiao, G.; Zheng, L.; Lu, Y.; Ma, J. T-Net: Effective Permutation-Equivariant Network for Two-View Correspondence
Learning. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada,
10–17 October 2021; pp. 1930–1939. [CrossRef]

27. Xiao, G.; Luo, H.; Zeng, K.; Wei, L.; Ma, J. Robust Feature Matching for Remote Sensing Image Registration via Guided
Hyperplane Fitting. IEEE Trans. Geosci. Remote. Sens. 2022, 60, 1–14. [CrossRef]

28. Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite. In Proceedings of
the Conference on Computer Vision and Pattern Recognition (CVPR), Washington, DC, USA, 16–21 June 2012.

29. Zheng, W.; Tang, W.; Jiang, L.; Fu, C.-W. SE-SSD: Self-Ensembling Single-Stage Object Detector From Point Cloud. In Proceedings
of the CVPR, Online, 19–25 June 2021; pp. 14494–14503.

30. Liu, S.; Huang, W.; Cao, Y.; Li, D.; Chen, S. SMS-Net: Sparse multi-scale voxel feature aggregation network for LiDAR-based 3D
object detection. Neurocomputing 2022, 501, 555–565. [CrossRef]

31. Liu, M.; Ma, J.; Zheng, Q.; Liu, Y.; Shi, G. 3D Object Detection Based on Attention and Multi-Scale Feature Fusion. Sensors 2022,
22, 3935. [CrossRef] [PubMed]

32. Qi, C.R.; Liu, W.; Wu, C.; Su, H.; Guibas, L.J. Frustum PointNets for 3D Object Detection from RGB-D Data. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018, pp. 918–927. [CrossRef]

33. Jiang, T.; Song, N.; Liu, H.; Yin, R.; Gong, Y.; Yao, J. VIC-Net:Voxelization Information Compensation Network for Point Cloud
3D Object Detection. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation, Xi’an, China, 30
May–5 June 2021; pp. 13408–13414. [CrossRef]

34. Noh, J.; Lee, S.; Ham, B. HVPR: Hybrid Voxel-Point Representation for Single-stage 3D Object Detection. In Proceedings of the
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 14600–14609.
[CrossRef]

35. Zhang, Y.; Hu, Q.; Xu, G.; Ma, Y.; Wan, J.; Guo, Y. Not All Points Are Equal: Learning Highly Efficient Point-Based Detectors For 3d
Lidar Point Clouds; Cornell University: Ithaca, NY, USA, 2022; pp. 18953–18962.

36. Ku, J.; Mozifian, M.; Lee, J.; Harakeh, A.; Waslander, S.L. Joint 3D Proposal Generation and Object Detection from View
Aggregation. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, Madrid, Spain,
1–5 October 2018; pp. 1–8. [CrossRef]

37. Yang, Z.; Sun, Y.; Liu, S.; Shen, X.; Jia, J. STD: Sparse-to-Dense 3D Object Detector for Point Cloud. In Proceedings of the
2019 IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27–28 October 2019; pp. 1951–1960.
[CrossRef]

38. Zhou, Y.; Sun, P.; Zhang, Y.; Anguelov, D.; Gao, J.; Ouyang, T.; Guo, J.; Ngiam, J.; Vasudevan, V. End-to-End Multi-View Fusion
for 3D Object Detection in LiDAR Point Clouds. In Proceedings of the Conference on Robot Learning, Auckland, NZ, USA, 14–18
December 2020; pp. 923–932.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TIP.2022.3186535
http://www.ncbi.nlm.nih.gov/pubmed/35776808
http://dx.doi.org/10.1016/j.patcog.2022.108539
http://dx.doi.org/10.1109/ICCV48922.2021.00196
http://dx.doi.org/10.1109/TGRS.2022.3157870
http://dx.doi.org/10.1016/j.neucom.2022.06.054
http://dx.doi.org/10.3390/s22103935
http://www.ncbi.nlm.nih.gov/pubmed/35632344
http://dx.doi.org/10.1109/CVPR.2018.00102
http://dx.doi.org/10.1109/ICRA48506.2021.9561597
http://dx.doi.org/10.1109/CVPR46437.2021.01437
http://dx.doi.org/10.1109/IROS.2018.8594049
http://dx.doi.org/10.1109/ICCV.2019.00204

	Introduction
	Related Works
	Proposed Method
	Framework Overview
	The Point Cloud Processing Module
	The Feature Extraction Module
	The Prediction Module

	Experiments and Analysis
	Dataset and Experimental Details
	Datasets
	Experimental Details

	Comparison with Other Advanced Methods
	Ablation Study
	The Ablation Study of Activation Function
	The Ablation Study for GNN Iteration
	The Ablation Study for the Proposed Module

	Qualitative Results and Analysis

	Conclusions
	References

