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Abstract: The rapid propagation of Eichhornia crassipes has a threatening impact on the aquatic
environment. For most small water areas with good ecology, daily manual monitoring and salvage
require considerable financial and material resources. Unmanned boats have important practical
significance for the automatic monitoring and cleaning Eichhornia crassipes. To ensure that the target
can be accurately detected, we solve the problems that exist in the lightweight model algorithm, such
as low accuracy and poor detection effect on targets with small or unclear characteristics. Taking
YOLOV5m 6.0 version as the baseline model, given the computational limit of real-time detection,
this paper proposes to use EfficientNet-Lite0 as the backbone, use the ELU function as the activation
function, modify the pooling mode in SPPF, embed the SA attention mechanism, and add the RFB
module in the feature fusion network to improve the feature extraction ability of the whole model.
The dataset collected water hyacinth images from ponds and lakes in Guangxi, Yunnan, and the
China Plant Image Library. The test results show that efficient YOLOV5 reached 87.6% mAP, which
was 7.1% higher than that of YOLOV5s, and the average detection time was 62 FPS. The ablation
experiment verifies the effectiveness of each module of efficient YOLOV5, and its detection accuracy
and model parameters meet the real-time detection requirements of the Eichhornia crassipes unmanned
cleaning boat.

Keywords: Eichhornia crassipes detection; YOLOV5; deep learning; EfficientNet

1. Introduction

Eichhornia crassipes originated in northeastern Brazil in South America is now widely
distributed in North America, Asia, Oceania, Africa, and many other countries. It is
one of the most harmful aquatic floating plants on earth and can grow indefinitely un-
der suitable conditions, with a rapid propagation speed [1,2]. Eichhornia crassipes pop-
ulation outbreaks can reduce water quality, affect biodiversity, and destroy ecosystem
functions [3–5]. In Dianchi Lake, Yunnan Province, 60% of the local species were extinct,
due to the invasion of water hyacinth [6]. To prevent the irreparable loss of the ecological
system that is caused by the mass reproduction of Eichhornia crassipes, frequent manual
cleaning is needed. According to the obtained data, 10 and 5 million yuan are spent an-
nually in Wenzhou City, Zhejiang Province, and Putian City, Fujian Province to salvage
Eichhornia crassipes. In Lavaping Lake in central Java, Indonesia, to control the growth
of water hyacinth, excavators, multipurpose dredgers, amphibious weed harvesters, and
other machines are used for daily cleaning, and the annual consumption is as high as
500 million Indonesian shields [7]. Traditional water hyacinth treatments include physical,
chemical, and biological methods. The physical method uses an artificial machine to clean
or set fences to prevent the drift of Eichhornia crassipes. Zhang Li et al. [8] and Zhang
Zhiyong et al. [9] controlled the reproduction of Eichhornia crassipes by designing anti-wind
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fences. The scheme is effective but produces a considerable economic burden. Zheng
Bin et al. [10] used chemical methods to prevent and control the reproduction of Eichhornia
crassipes and proposed that the use of Clerodendrum trichotomum extract can make water
hyacinth leaves dry, rot, and die. However, chemical treatment methods result in pollution
and damage to the water ecological environment. Biological methods use the mutual
restriction of organisms to inhibit the extensive propagation of Eichhornia crassipes. There is
a hidden danger of introducing other exotic species, and the effect is slow. It is difficult to
reduce the damage caused by the invasion of Eichhornia crassipes in a short time [11].

With the increasingly rigorous ecological environment, it is urgent to protect the
safety of the water resource ecological system. The cleaning of Eichhornia crassipes has
attracted increasing attention from scholars. Most scholars have used remote sensing
technology to assist in formulating cleaning schemes. Ling Sun et al. [12] and Ling
Zhou et al. [13] proposed constructing a logistic model to simulate the diffusion pro-
cess of water hyacinths. Furthermore, they obtained the spatiotemporal diffusion model of
Eichhornia crassipes using differential equations. J.A. Mukarugwiro et al. [14] and Abeyou W.
Worqlul et al. [15] collected multispectral image data over the years by satellite to analyse the
range and distribution of invasive alien weeds over time. Ling Sun et al. [16] and Timothy
Dube et al. [17] used multiple sensors to collect information, and discriminant analysis (DA)
and partial least squares discriminant analysis (PLS-DA) were used to obtain the key infor-
mation needed for the water hyacinth eradication scheme. Kgabo H. Thamaga et al. [18]
realized the identification, detection, and plotting of the spatial distribution configura-
tion of invasive Eichhornia crassipes in small reservoirs using a combination of the Landsat
8 land imager (OLI) and Sentinel-2 multispectral instrument (MSI). Previous scholars mostly
analysed the situation of large water areas but did not fully understand the distribution of
Eichhornia crassipes in small freshwater systems, such as lakes, streams, and rivers. At the
same time, they lacked suitable satellite platforms and multispectral equipment that could
distinguish the water hyacinth from another plant species [19]. In most small freshwater
systems with better ecological environments, daily manual monitoring and fishing are only
performed to prevent the sudden emergence and rapid reproduction of Eichhornia crassipes,
which results in environmental pollution and consumes considerable human and financial
resources. In 2020, Zhongao Feng et al. [20] proposed using machine vision and image
recognition technology to design an intelligent monitoring device for the growth of water
hyacinths and identify their growth state and scope, as well as to assist in the prevention
and control of agriculture. However, the scheme designed by the scholar can only realize
real-time monitoring in a small water space, which is limited. In recent years, with the
rapid development of machine vision, deep learning, and image processing technology, the
lightweight target detection algorithm has been realized. The monitoring and fishing tasks
of Eichhornia crassipes in small water systems will tend to be automated, and the research
and development of Eichhornia crassipes unmanned cleaning boats are necessary.

Currently, the target detection algorithm based on deep learning has developed more
maturely. Due to the different detection frameworks, target detection technology is divided
into one and two stages. The two-stage network obtains the approximate location, size,
and other information of the target through the network regression of the first stage. In the
second stage, the size, location, and category information of the target box are obtained
through the detection head, such as Fater-RCNN [21] networks and other improved ver-
sions. The core idea of the one-stage detection algorithm is that the input image is directly
regressed through the network to obtain the size, location, and category information of
the target box. Although the detection accuracy of the one-stage algorithm is generally
worse than that of the two-stage algorithm, the detection speed and training time of the
one-stage algorithm is shorter than those of the two-stage algorithm. For example, the
YOLO [22] algorithm has an excellent effect on real-time detection and recognition accuracy.
Its improved versions YOLOV3 [23], YOLOV4 [24], and YOLOV5 combine various means
and skills to further promote the detection performance of the algorithm.
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The one-stage algorithm has been applied to target detection tasks in various areas of
life. For real-time detection problems, JongBae Kim [25] and Luyao Du et al. [26] used image
brightness equalization, noise removal, and other image dataset preprocessing methods to
improve the accuracy of real-time detection of vehicles and lights. Xuelong Hu et al. [27]
proposed improving the connection mode of PAN in the aggregation network in the feature
fusion network based on the YOLOV4 algorithm. DenseNet was used to modify the residual
connection mode in the CSP (cross-stage partial networks) structure, so that the average accuracy
of real-time detection of underwater feed was improved from 65.4% to 92.61%. To achieve
the real-time detection of wild animals on the CPU platform, Tingting Zhao et al. [28] used
MobileNet to replace the backbone feature extraction network in YOLO. After the experiments,
the average accuracy was increased by 7.7%, and the FPS (frames per second) were increased
by 3 percent. Yuhao Ge et al. [29] used Shufflenetv2 and CBAM modules on the backbone of
YOLOV5s model and BiFPN in the neck network. Under the condition of 10.5 M parameters,
the detection accuracy of flowers, green tomatoes, and red tomatoes were 93.1%, 96.4%, and
97.7%, respectively. Wang Xuewen et al. [30] proposed a lightweight, small object, real-time
detection architecture LDS-YOLO and designed a new feature extraction module. This module
reuses features from front layers to achieve dense connections, thus reducing the dependence
on datasets. Finally, the AP is 89.11%, and the number of parameters is only 7.6 M.

With the continuous development of deep learning networks and demand for lightweight
models in the use of scenes, the abovementioned methods cannot meet the requirements of
high precision and FPS real-time detection of Eichhornia crassipes targets with variable shapes
in feature extraction and feature fusion. In this study, the YOLOV5 6.0 model was modified to
design a network model that can be used on an embedded platform and meet the real-time and
accurate detection of Eichhornia crassipes in different, complex, small water area environments
by unmanned Eichhornia crassipes cleaning boats. The contributions of this work are as follows.

(1) In the feature extraction network, with EfficientNet-Lite0 as the backbone, the activa-
tion function was modified from ReLU6 (rectified linear unit 6) to ELU (exponential
linear units), and MaxPool in SPPF (spatial pyramid pooling fast) was modified to
SoftPool and embedded into the SA (shuffle attention) attention mechanism module
to enhance the local information extraction ability of the algorithm.

(2) In the feature fusion network, the original FPN (feature pyramid networks) and PAN
(path aggregation network) were used as the baseline models, and the RFB (receptive field
block net) module was added to strengthen the extraction ability of network features.

(3) Efficient YOLOV5 algorithm was proposed for real-time detection. The detection
effect of different aggregation forms of Eichhornia crassipes in different environments
was better, and the detection accuracy reached 87.6%. Experiments show that efficient
YOLOV5 has the best comprehensive performance in terms of accuracy, detection
speed, and generalization ability.

2. Methods
2.1. Introduction of Unmanned Boats

The unmanned cleaning boat of Eichhornia crassipes mainly consists of five parts: the
energy, target detection, automatic control, navigation, and cutting parts. As shown in
Figure 1, the target detection part of the unmanned boat is composed of a Jetson-nano
embedded platform, monocular camera, and stable gimbal. The monocular camera adopted
an RGB three-color camera with a USB interface protocol, and its resolution was 640 × 480.
The camera was placed on the front stable gimbal, and its vision can be left or right±30◦. The
automatic control part adopted the STM32F407 control platform. When working, the control
platform received the target direction returned by the embedded platform and coordinate
data returned by the laser radar, adjusted the hull position by the PID (process identification)
control method, and navigated to the target for cutting. To ensure the real-time accuracy of
Eichhornia crassipes detection, this study evaluated the visual algorithm.
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Figure 1. Unmanned Eichhornia crassipe cleaning boat.

2.2. Overview of the Network Model

Efficient YOLOV5 uses the latest YOLOV5 6.0 as the baseline model. Considering
that the model applies to the embedded platform with limited computation, it needs to
achieve higher accuracy with less computation. The YOLOV5 algorithm was divided
into four versions (i.e., s, m, l, and x) according to the width and depth of the network
model. Comparing the training of YOLOV5s with YOLOV5m, from the data in Table 1 was
found that the model parameters and floating-point calculations trained by YOLOV5s were
small, which can meet the demand of real-time detection, though the accuracy was slightly
lower. The model trained by YOLOV5m had good accuracy, but it was difficult to achieve
the real-time detection ability in an embedded platform because of the large amount of
required calculations.

Table 1. Comparison of the training results of YOLOV5s and YOLOV5m.

Model Depth Multiple Width Multiple Params GFLOPs mAP@50 mAP@.5:.95 FPS

YOLOV5s 0.33 0.50 6.69 M 15.8 0.805 0.412 92
YOLOV5m 0.67 0.75 19.89 M 48 0.836 0.505 48

Based on the abovementioned comparison, it was determined that the depth and
width of the model have a great influence on the detection accuracy in the real-time
detection of Eichhornia crassipes. To ensure higher accuracy under the premise of real-time
detection, the improvement idea of efficient YOLOV5 is to take YOLOV5m as the baseline
model, replace the feature extraction network of the original model with the lightweight
network EfficientNet-Lite0, increase the attention mechanism, and improve the feature
fusion network based on FPN and PAN. In the YOLOV5-6.0 version, the author deleted the
previously used focus module and changed the SPP (spatial pyramid pooling) module to
the SPPF module.

As shown in Figure 2, the specific process of the efficient YOLOV5 algorithm is as
follows: the input image enters the backbone network to produce three feature maps with
different scales, EfficientNet-Lite0 is the backbone network, and the stem module defines its
activation function as ELU. There are 16 MBConv convolution blocks in the backbone network,
followed by the SPPF module. To reduce the loss of information, the pooling mode of SPPF
was modified to SoftPool, and the ultralightweight attention mechanism SA-Net integrating
airspace and channel attention was added at the end of the backbone network. In the feature
fusion network, efficient YOLOV5 improved the shortcomings of the original FPN and PAN
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by strengthening the information flow. The receptive field block (RFB) module was added to
the original top-down and cotton-up branches to enhance the multiscale modelling ability of
the feature fusion network. Finally, a lightweight model that can realize real-time detection
and higher precision on an embedded platform was obtained.
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2.3. Feature Extraction Network
2.3.1. EfficientNet-Lite0

The EfficientNet-Lite0, proposed by Google, was used as the baseline model for feature
extraction, which was improved based on the EfficientNet classification and recognition
network proposed by Tan et al. [31] in 2019. The basic idea of EfficientNet is to expand the
three dimensions of network width, depth, and resolution of the input image, according
to the proportion through the composite scaling method, in order to seek the optimal
parameters needed to maximize the recognition accuracy, as shown in Figure 3e. The
optimal combination was found without changing the number of model parameters. The
author proposed a compound scaling method, which uses the mixed factor ϕ to unify the
scaling factors. The specific formulas are as follows:

depth : d = αφ

width : w = βΦ

resolution : r = γΦ
(1)

s.t.
{

α·β2·γ2 ≈ 2
α ≥ 1, β ≥ 1, γ ≥ 1

(2)

α, β, and γ represent the distribution coefficients of network depth, width, and
resolution, respectively, which can be obtained and fixed by standard network search.
ϕ is the composite coefficient, whose value is adjusted according to available resources.
EfficientNet-B0 consists of 16 MBConv (mobile inverted bottleneck convolution), including
deep separable convolution, Swish activation function dropout layer, and the SE (squeeze-
excitation) attention mechanism module. The EffientNet-Lite0 used in this paper was
improved, based on EfficientNet-B0. Specifically, the SE module was removed, and ReLU6
was used to replace the Swish activation function to fix the stem and head modules at the
same time, when the model size was scaled to reduce the calculation amount. The specific
structure of MBConv is shown in Figure 4.
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2.3.2. ELU

In efficient YOLOV5, the activation function of EfficientNet-Lite is modified from
ReLU6 to ELU, its function image is shown in Figure 5. The purpose of the ReLU6 function
is to prevent the loss of accuracy. It has a small amount of calculation and fast convergence
speed. However, there may be problems, such as neuron death, and the gradient is always
0 during the training process. The formula is as follows (3). To solve this problem, we use
the ELU activation function proposed by Djork-Arne Clevert et al. [32], which combines
sigmoid and ReLU. The linear part on the right side of the ELU is the same as the ReLU
activation function to alleviate the gradient disappearance. At the same time, the soft
saturation on the left side can make the ELU more robust to input changes or noise. The
main advantage is that there is no problem with neuronal death. When the input is small,
it will be saturated to a negative value, thereby reducing the variation and information of
forwarding propagation. The formula is as follows (4).

ReLU6(x) = min(max(0, x), 6) (3)

ELU(x) =
{

x, x > 0
a(ex − 1), x ≤ 0

(4)

2.3.3. SoftPool

SPPF is a pooling method for multiscale feature fusion. The previous SPP module
needs to specify the size of three convolution kernels. After three pooling and splicing,
SPPF specifies a convolution kernel, and the output after each pooling will become the
input of the next pooling, which can make the calculation speed faster.

The commonly used pooling methods include max and average pooling. The main role
is to retain the main features and reduce the amount of calculation, but both methods have
the problem of losing the details of the image when pooling. SoftPool [33] can minimize the
loss of information in the process of pooling, while maintaining the function of the pooling
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layer, with low computational and memory consumption, as well as a good detection effect
for small targets. Therefore, SoftPool is selected here to replace MaxPool in SPPF.
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SoftPool retains the input feature attribute by the Softmax weighting method. In the
activation region, each activation factor obtains different weights, and the weighted summation
of activation factors in the pooling kernel is realized by nonlinear transformation. ai is the
activator, Wi is the weight, which is calculated as the ratio of the natural index of the activator to
the sum of the natural indices of all activators in the region, and ã is the output value, which is
obtained by weighted summation of all activation factors in the kernel domain.

Wi =
eai

∑ i∈RWi × ai
(5)

ã =∑ i∈RWi × ai (6)

Figure 6 is the bidirectional propagation process of SoftPool, and the region of 6 × 6
size is represented as activation map (a), where the forward calculation includes calculating
the weight Wi of the candidate 3 × 3 region and multiplying the weight Wi and activation
map (a) to obtain ã. The inverse calculation includes calculating the gradient value ∇ã and
multiplying it by the weight to obtain ∇ai.
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2.3.4. Shuffle Attention

The attention mechanism is a bionic visual mechanism that invests more attention
resources in regions of interest to improve the efficiency and accuracy of visual information
processing. The shuffle attention (SA) [34] mechanism, based on spatial and channel
attention, introduces feature grouping and channel replacement to increase the sensitivity
of the model to the characteristics of Eichhornia crassipes, as shown in Figure 7.
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Figure 7. Shuffle attention schematic.

Set the input feature X ∈ RC×H×W and split the input into g groups in the feature
grouping step. Each group of features needs to generate different importance coefficients
through spatial and channel attention modules. The upper half of the ink-green color is
divided into channel attention. To minimize the weight, SA uses the simplest combination
of GAP, scale, and Sigmoid. The lower part of light blue is the realization of spatial attention.
The group norm (GN) is used to process XK2, in order to obtain statistical information at
the spatial level, and then FC(·) is used to enhance it. In the aggregate step, it is fused to
obtain X′K =

[
X′K1, X′K2

]
∈ RC/2G×H×W . Finally, the channel shuffle is used for intergroup

communication, and the output is the same size as the input.

2.4. Feature Fusion Network

In the feature fusion network, YOLOV5 adopts the pattern of FPN and PAN, which
enhances the local modelling ability of the feature hierarchy by establishing a botton-up
feature fusion network. However, the FPN and PAN models do not consider the semantic
information difference between different layers of feature fusion, and there is a problem of
multiscale information loss. To compensate for this defect, the RFB [35] module is added,
and the residual branch is used to add different levels of spatial context information to
the top-down branch, in order to reduce the loss of context information in the high-level
feature map, as shown in Figure 8.
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The starting point of the RFB module simulates the receptive field of human vision to
strengthen the feature extraction ability of the network. The specific method is to add cavity
convolution to the inception. As shown in Figure 9, the convolution layers of convolution
cores with different sizes constitute a multibranch structure, and the dilated convolution
layer is introduced. The convolution layer outputs of different sizes and proportions are
merged, and each branch covers different regions, which are fused to provide multiscale
feature information.
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3. Experiments and Results
3.1. Implementation Details
3.1.1. Dataset Production

A total of 870 images of Eichhornia crassipes in different scenes are used as training
datasets. The dataset includes pictures of Eichhornia crassipes flowers collected from the
Chinese plant image database and photos of Eichhornia crassipes growth in different ponds
and lakes. In this experiment, the image labelling software, i.e., makesense.ai, was used
to label the image at the pixel level. The labelling data included the category and location
information of the detected object, and 7571 labels were obtained. The picture collection
and labels were made into COCO datasets. Due to the different aggregation forms of
Eichhornia crassipes and large changes in characteristics, in order to ensure the accuracy of
detection and facilitate the next cleaning, the collected images of Eichhornia crassipes were
divided into four categories. The four categories are: Ei 0 Eichhornia crassipes individual
form; Ei 1 Eichhornia crassipes aggregation form, which is also the most common form of
Eichhornia crassipes growth; Ei 2 Eichhornia crassipes extremely dense form; and Ei flower
Eichhornia crassipes flower morphology, as shown in Figure 10. The dataset was divided
into training and testing sets, according to the proportions of 0.9 and 0.1.

3.1.2. Training and Inference Details

Based on the PyTorch deep learning framework, in the comparison and ablation
experiments, the baseline model was YOLOV5–6.0, backbone network was EfficientNet-
Lite0, and neck network was FPN and PAN. The learning rate was set to 0.01, and the
weight attenuation was 0.0005. By default, one GPU was used to train the model for
200 epochs. The experimental environments were Ubuntu18.04, PyTorch1.9, CUDA11.6,
and cuDNN v8.2. The CPU version was Intel Xeon Sliver 4144, and the video card was
P4000. The indicators in the COCO detection and evaluation standard were used for
performance evaluation, including the average accuracy (mAP) of 0.5 for the IoU threshold,
average accuracy (mAP @.5:.95) at different thresholds (from 0.5 to 0.95, step size 0.05),
number of parameters (params), floating-point arithmetic (GFLOPs), and number of frames
per second (FPS).
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3.2. Result Comparison

We compared efficient YOLOV5 with mainstream target detection algorithms, such as
Faster RCNN and SSD. The experimental results are shown in the abovementioned Table 2.
The average accuracy of the two-stage algorithm was higher in different thresholds, but the
long training time and slow detection speed did not meet the requirements of real-time
monitoring. The YOLOV4-tiny algorithm only used a feature pyramid in the feature fusion
layer and abandoned the Mish activation function. The simple model and the minimum
number of parameters make it the highest FPS value, in comparison to various algorithms,
which meets the requirements of the embedded platform. However, the mAP values of
the YOLOV4-tiny and SSD algorithms were too low to ensure the accuracy of detection in
practical applications. As shown in Figure 11, the closer the algorithm was to the upper left
corner, the better its performance. Efficient YOLOV5 appeared in the upper left corner, and
its parameters were also acceptable in the range of the embedded platforms. The detection
accuracies of various categories of Eichhornia crassipes were the highest. Overall, it can meet
the design goal of real-time detection of Eichhornia crassipes by unmanned boats.

Table 2. Comparison of various detection algorithms.

Model mAP@50 mAP@.5:.95 Params GFLOPs FPS
AP50 of Classes

Ei 0 Ei 1 Ei 2 Ei Flower

Faster-RCNN 0.840 0.564 41.14 M 193.79 7 0.879 0.831 0.699 0.953
SSD 0.517 0.276 25.06 M 31 40 0.475 0.564 0.261 0.818

YOLOV4-tiny 0.505 0.254 6.057 M 6.945 131 0.356 0.601 0.352 0.710
YOLOV5s 0.805 0.412 6.69 M 15.8 92 0.827 0.839 0.603 0.951
Efficient
YOLOV5

(ours)
0.876 0.495 12.97 M 23.3 62 0.880 0.904 0.753 0.967
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The comparison experiment was performed under the framework of YOLOV5, in
order to compare the various backbone networks and neck networks, as well as to add
different modules

To prove the effectiveness of the design components, in Table 3, the MobileNet [36],
GhostNet [37], ShuffleNet [38], PP-LCNet [39], and EfficientNet lightweight network mod-
els are selected for feature extraction network comparison. GhostNet uses the Ghost module
to achieve light weight by reducing the redundant feature map, and the detection effect of
Eichhornia crassipes was not good. MobileNetv3Small, ShuffleNetV2, and PP-LCNet all use
depthwise separable convolution as basic modules, with good results in the lightweight
and FPS values, but with no more than 80% accuracy. Relatively speaking, EfficientNet can
achieve 87.6% accuracy, while the FPS values are not significantly reduced.

Table 3. Comparison of various feature extraction networks.

Backbone mAP@50 mAP@.5:.95 Params GFLOPs FPS
AP50 of Classes

Ei 0 Ei 1 Ei 2 Ei Flower

MobileNetv3Small 0.724 0.359 12.04 M 20.6 66 0.752 0.735 0.488 0.921
GhostNet 0.793 0.405 14.32 M 22.5 49 0.856 0.848 0.525 0.941

ShuffleNetV2 0.717 0.35 11.86 M 20.4 63 0.756 0.746 0.423 0.941
PP-LCNet 0.676 0.323 12.07 M 20.9 72 0.716 0.707 0.407 0.875

EffientNet-Lite0
(ours) 0.876 0.495 12.97 M 23.3 62 0.880 0.904 0.753 0.967

In Table 4, the influence of adding different modules on the detection performance
is compared. The attention mechanisms of CBAM [40], CA [41], ECA [42], and SA mostly
adopt the method of combining spatial and channel attention, which is similar in accuracy
and has no large gap. Embedding the transformer [43] module with a self-attention
mechanism reduces the detection accuracy of Eichhornia crassipes. Although the ECA
attention mechanism has little increase in the amount of calculation, it has a few effects on
improving the performance of the detection network, and the SA module performs better
in this regard. In Table 5, FPN, FPN, PAN, and BiFPN [44] were selected for feature network
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fusion comparison. The performance of FPN and PAN was 87% mAP, with 60 FPS, and
86.4% BiFPN, with 63 FPS. Both of them have considerable advantages for common FPN
feature network fusion. However, there is a botton-up branch in FPN and PAN, which is
more conducive to increasing the RFB module, in order to use multiscale means to increase
the performance of the model.

Table 4. Comparison of various modules added in efficient YOLOV5.

Module mAP@50 mAP@.5:.95 Params GFLOPs FPS
AP50 of Classes

Ei 0 Ei 1 Ei 2 Ei Flower

CBAM 0.872 0.493 13.05 M 23.3 48 0.861 0.902 0.754 0.971
coordinate attention 0.874 0.494 13.02 M 23.2 50 0.869 0.899 0.749 0.980

Efficient channel
attention 0.875 0.497 12.97 M 23.1 54 0.874 0.903 0.753 0.972

Transformer 0.856 0.495 16.35 M 25.6 43 0.867 0.898 0.688 0.972
shuffle attention

(ours) 0.876 0.495 12.97 M 23.3 62 0.880 0.904 0.753 0.967

Table 5. Comparison of various feature fusion networks.

Neck mAP@50 mAP@.5:.95 Params GFLOPs FPS
AP50 of Classes

Ei 0 Ei 1 Ei 2 Ei Flower

FPN, 0.657 0.285 7.85 M 17.2 71 0.702 0.655 0.451 0.820
FPN, and PAN 0.870 0.492 10.24 M 20.9 60 0.879 0.911 0.732 0.961

BiFPN 0.864 0.496 13.01 M 23.3 63 0.885 0.901 0.701 0.968
FPN, PAN, and RFB

(ours) 0.876 0.495 12.97 M 23.3 62 0.880 0.904 0.753 0.967

Figure 12 shows the comparison of the test results of the faster RCNN, SSD, YOLOV4-
tiny, YOLOV5s, and efficient YOLOV5 on homemade datasets. The SSD and YOLOV4-tiny
algorithms had more missed detections, and the detection effect was poor. In the images
with multiple Eichhornia crassipes aggregation targets, the faster RCNN and YOLOV5s
algorithms also had a certain degree of missed detection. Efficient YOLOV5 could detect
all targets with a good recall rate and more accurate frame selection of targets. Figure 13
shows the detection effect of efficient YOLOV5 in different environments, and the detection
accuracy of Eichhornia crassipes with extremely dense and large coverage was slightly poor.
For the main target Ei 1 Eichhornia crassipes, the detection was accurate in different complex
water environments. In some water areas, there are aquatic plants, floating lotus, and
deciduous crops, similar to the shape and color of Eichhornia crassipes. At the same time,
there was occlusion and overlap of Eichhornia crassipes targets. Efficient YOLOV5 can still
achieve accurate detection without errors.

3.3. Ablation Experiment

To confirm the performance advantages of efficient YOLOV5, based on YOLOV5
with EfficientNet as the backbone, four groups of ablation experiments were designed: 1,
without changing activation function; 2, removing SoftPool from SPP; 3, removing the SA
attention mechanism; 4, removing the RFB module. To accurately compare the performance
of the designed modules, migration learning was not used in the ablation experiments.

From Table 6, it is concluded that the ELU function contributed the most to the whole
network performance, and the mAP increased by 4.2%. The ELU function eliminated the
problem of neuron death, to some extent, and increased the global modelling ability of
the model. The SoftPool and RFB modules had a certain impact on FPS and params, but
also increased the mAP value by 0.5% and 0.6%, respectively. From a numerical point of
view, adding the SA attention mechanism did not seem to change the network performance
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much; however, in the actual detection, as shown in Figure 14, the use of the attention
mechanism reduced the missed detection and false detection to a certain extent.
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Table 6. Ablation experiment results.

Method mAP@50 mAP@.5:.95 Params GFLOPs FPS
AP50 of Classes

Ei 0 Ei 1 Ei 2 Ei Flower

W/o ELU 0.834 0.445 12.96 M 23.2 63 0.85 0.86 0.734 0.894
W/o SoftPool 0.871 0.491 12.97 M 23.2 68 0.875 0.89 0.752 0.967
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(ours) 0.876 0.495 12.97 M 23.3 62 0.880 0.904 0.753 0.967
Machines 2022, 10, x FOR PEER REVIEW 19 of 22 
 

 

 
Figure 14. Comparison of detection effects before and after using the SA attention mechanism. 

4. Conclusions 
In recent years, given the practical application needs of the daily monitoring and 

cleaning of Eichhornia crassipes in small water areas such as streams, small lakes, and or-
namental ponds, an unmanned boat was proposed to replace the manual method, and an 
efficient YOLOV5 was designed for the real-time detection of Eichhornia crassipes. Overall, 
the contributions of this study are as follows. To train the object detection network, im-
ages of Eichhornia crassipes in different environments, weather, and geographical loca-
tions were collected as datasets. For the network model, based on the YOLOV5 model, 
EfficientNet-Lite was used to replace the backbone network, and the activation function 
was changed to ELU. The SoftPool and SA modules were embedded into the feature ex-
traction network, and RFB modules were added to the neck network to enhance the 
multiscale feature fusion ability. Experiments were performed on the working machine. 
The obtained results show that the aggregation morphology of Eichhornia crassipes could 
be accurately detected in different complex water environments. Compared with the 
YOLOV5s model, the mAP was increased by 7.1%. For the Ei1 and Ei2 categories with the 
most overlapping and dense situations, the AP was increased by 6.5% and 15%, respec-
tively. The ablation experiment of efficient YOLOV5 confirmed the effectiveness of the 
added module. The number of parameters of the model was only 12.97 M, and the FPS 
was 62 when using the P4000 video card. Under the premise of ensuring the perfor-
mance, the developed approach can meet the requirement of the real-time and accurate 
detection of Eichhornia crassipes on Jetson nano. 

However, the growing water environment of Eichhornia crassipes is complex, and the 
growth aggregation morphology is diverse, which creates certain difficulties in the cali-
bration of datasets and extraction of features in training. The detection accuracy of Eich-
hornia crassipes in some environments, especially in its extremely dense environments, is 
insufficient. In the future, we should further increase the dataset, enhance the network 
feature extraction and fusion ability (while ensuring the lightweight nature of the model), 
and promote the application of the Eichhornia crassipes unmanned cleaning boat to more 
water environments. 

Figure 14. Comparison of detection effects before and after using the SA attention mechanism.



Machines 2022, 10, 754 15 of 17

4. Conclusions

In recent years, given the practical application needs of the daily monitoring and
cleaning of Eichhornia crassipes in small water areas such as streams, small lakes, and
ornamental ponds, an unmanned boat was proposed to replace the manual method, and an
efficient YOLOV5 was designed for the real-time detection of Eichhornia crassipes. Overall,
the contributions of this study are as follows. To train the object detection network, images
of Eichhornia crassipes in different environments, weather, and geographical locations were
collected as datasets. For the network model, based on the YOLOV5 model, EfficientNet-Lite
was used to replace the backbone network, and the activation function was changed to ELU.
The SoftPool and SA modules were embedded into the feature extraction network, and RFB
modules were added to the neck network to enhance the multiscale feature fusion ability.
Experiments were performed on the working machine. The obtained results show that the
aggregation morphology of Eichhornia crassipes could be accurately detected in different
complex water environments. Compared with the YOLOV5s model, the mAP was increased
by 7.1%. For the Ei1 and Ei2 categories with the most overlapping and dense situations,
the AP was increased by 6.5% and 15%, respectively. The ablation experiment of efficient
YOLOV5 confirmed the effectiveness of the added module. The number of parameters of
the model was only 12.97 M, and the FPS was 62 when using the P4000 video card. Under
the premise of ensuring the performance, the developed approach can meet the requirement
of the real-time and accurate detection of Eichhornia crassipes on Jetson nano.

However, the growing water environment of Eichhornia crassipes is complex, and
the growth aggregation morphology is diverse, which creates certain difficulties in the
calibration of datasets and extraction of features in training. The detection accuracy of
Eichhornia crassipes in some environments, especially in its extremely dense environments,
is insufficient. In the future, we should further increase the dataset, enhance the network
feature extraction and fusion ability (while ensuring the lightweight nature of the model),
and promote the application of the Eichhornia crassipes unmanned cleaning boat to more
water environments.
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