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Abstract: Remaining useful life (RUL) prediction is recently a hot spot in industrial big data analysis
research. It aims at obtaining the health status of the equipment in advance and making intelligent
maintenance decisions. However, values missing is a common problem in real industrial applications
which severely restricts the performance and application scope of RUL prediction. To deal with this
problem, a novel prediction model called self-attention-based multi-task network (SMTN)is proposed.
The spatiotemporal feature fusion module utilizes the self-attention mechanism and long short-term
memory to fully exploit the information in space and time dimensions, multi-task learning module
tries to learn a complete representation from incomplete data by performing the missing values
imputation task, and the representation is simultaneously used for RUL prediction. Comparison
experiments conducted on the C-MAPSS dataset verified the effectiveness of the proposed SMTN.

Keywords: RUL prediction; self-attention; missing values; multi-task learning; remaining useful life

1. Introduction

Recently, prognostics and health management (PHM) has played a crucial role in
the complex and sophisticated modern industrial system, which helps to improve the
reliability of equipment [1–3], reduce the maintenance cost of industrial systems, and even
avoid severe safety accidents. Remaining useful life (RUL) prediction is important part
of PHM. RUL is defined as the time that the monitored equipment can work before it
fails completely [4]. The goal of RUL prediction is to model the degradation process and
predict the RUL of the system accurately, thus some measures can be taken before the
equipment fails completely. RUL prediction has attracted more and more attention from
researchers since it helps in improving the intelligent level of operation and maintenance
of industrial systems.

Generally, RUL prediction methods can be roughly classified into model-based meth-
ods, data-driven methods, and hybrid methods. Model-based methods build a physical
model based on the failure mechanism of the system, which describes the degradation
process. Thereby the RUL of the system can be predicted. Paris-Erdogan (PE) model
is the most widely used physical model in industrial RUL prediction, which is built to
describe the crack propagation process of a component [5]. However, as modern indus-
trial systems become more complex, it becomes more and more difficult to build accurate
physical models, and the researchers pay more attention to data-driven RUL prediction
methods. Data-driven RUL prediction aims to utilize machine learning methods to model
the degradation process of the system and extract informative degradation features from
the multi-source data, thus predicting the RUL of the system from the monitoring signals.
Hybrid methods try to integrate the advantages of both data-driven and model-based
approaches, however, they still face difficulties because still require physical knowledge to
model the system, so this approach covers the least publications in past research.

In recent years, thanks to the cheap and high-performance sensors and the develop-
ment of big data analysis technology, a large amount of monitoring data have become cheap
and easy to obtain. These informative monitoring data provide the possibility to construct
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data-driven RUL prediction methods. Thereby, the data-driven RUL prediction methods
have become the most promising RUL prediction method, and attracted many researchers’
focus on this field. Data-driven approaches attempt to use machine learning techniques to
learn the degradation patterns of machines from monitoring data [6]. Researchers have
proposed many data-driven RUL prediction methods including some typical methods such
as SVR-based methods [7], hidden Markov model (HMM) methods [8], convolutional neu-
ral network (CNN) [9] based methods [10,11], recurrent neural network (RNN) and long
short-term memory (LSTM) [12] based methods [13], etc. Deep learning-based methods
are currently a popular data-driven RUL prediction method. Deep learning techniques
can extract deep features from data without any manually operations. The auto extracted
features can be more specific to the task and loss less information, therefore it usually
performs well on RUL prediction. For example, in [10] the researchers proposed a novel
deep convolutional neural network-bootstrap-based integrated prognostic approach for
RUL prediction, which utilized a deep convolutional neural network–multilayer perceptron
(i.e., DCNN–MLP) dual network to simultaneously extract informative representations
hidden in both time series-based and image-based features and to predict the RUL. Despite
some shortcomings of deep learning technology, such as poor interpretability and high
requirements on data and computing resources, it is still been widely studied.

Transformer [14] is a popular model which has made excellent progress in both nat-
ural language processing (NLP) [15] and computer vision (CV) [16], where self-attention
mechanism is the crucial part of it. The self-attention mechanism can model the global
correlation of sequence data or image data, it has a larger receptive field and generalization
than CNN-based and RNN-based methods, which is the reason why the self-attention
mechanism performs well in both CV and NLP. Due to the outstanding performance of the
self-attention mechanism and its naturally suitable for modeling sequence data, many re-
searchers try to apply transformer and self-attention mechanism in RUL prediction [17–21].
In [18], the author proposed a two-stage RUL prediction method based on transformer.
Specifically, in the first stage, a feature pre-extraction mechanism is designed to replace
manual feature extraction and selection, which will retain more detailed information. In
the second stage, an adaptive transformer (AT) model is proposed to achieve RUL predic-
tion from low-level features which combines the advantages of the recurrent model and
the novel attention mechanism, which can adaptively and accurately model the complex
relationship between high-dimensional features and RUL compared to traditional recurrent
models. To overcome the shortcomings of CNN and RNN-based traditional methods,
ref. [20] proposed a full self-attention RUL prediction model without any CNN or RNN
module. This model consists of an encoder and decoder, the encoder utilized two paralleled
self-attention modules to explore the data from time and sensor aspects and adaptively
fuses the feature maps of the two aspects, and the fused feature map is sent to the decoder
for RUL prediction.

Although the above mentioned methods provide new ideas and perspectives for RUL
prediction, there are still some shortcomings. The problem of corruption data is a common
problem in industrial applications. In practice, the common used measure is to directly
discard samples with corrupted values and then perform RUL prediction, but this will lead
to few-shot problem in the training process. Simply filling the missing values is another
way to deal with this problem, such as mean value filling, last value filling, clustering-based
missing value filling etc. But these methods often lead to filling errors and are not quite
effective in the following prediction task. To deal with this problem, some researchers have
proposed a few studies [22–24]. For example, in [22], the author proposed an integrated
imputation and prediction scheme based on extreme learning machines. First, missing
value imputation is performed using single imputation and multiple imputation. Next,
the imputed data is used for RUL prediction using various prediction modules. In [23],
multivariate functional principal component analysis (MFPCA) is used for missing value
imputation and multi-sensor feature fusion, and the fused metrics are used in log-location-
scale regression for RUL prediction. The above methods are essentially two-stage methods,
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which include two stages: first performing the missing values imputation, and then use the
filled data for RUL prediction. There are some drawbacks in these methods: the missing
value imputation stage does not fully exploit the effective information in the available data,
which will lead to filling error, and this will lead to poorly RUL prediction performance.
What’s more, the goals of the two stages of these methods are inconsistent, that is, the
goal of the data imputation stage is inconsistent with the goal of the RUL prediction stage,
which will cause the model to fail to achieve optimal.

To handle the problems mentioned above, a novel deep learning model is proposed
in this work, which is named self-attention-based multi-task network (SMTN). There
are two main modules in SMTN to deal with the missing values problem, namely the
spatiotemporal feature fusion module and the multi-task learning module. The former
module aims at fully exploiting the deep information in the available data, and the latter
one tries to recover the complete representation for better RUL prediction. The novelty
of this work lies in proposing a novel multi-task deep learning framework dealing with
missing values in RUL prediction. The object of the proposed method is to predict the
RUL accurately with missing values in the input data, which is common in real world
applications. Specifically, in order to accurately predict RUL when there are missing values
in the input data, the missing value imputation task is implemented to extract features
containing complete degradation information, and such features are utilized for RUL
prediction. In order to fully exploit the information in incomplete data, a spatiotemporal
feature fusion mechanism combining self-attention mechanism and LSTM is proposed,
which can effectively fully extract information from complete and incomplete data. In
general, the novelty of the work is to propose a new paradigm that helps a lot in RUL
prediction under missing values. The contributions of this work are summarized as follows:

• A novel self-attention-based deep learning model is proposed which can effectively
handle the missing values problem in RUL prediction.

• Two mechanisms are designed in the proposed SMTN to deal with the missing values
in different ways, namely the spatiotemporal feature fusion module and multi-task
learning module.

• Extensive experimental studies verified the effectiveness of the proposed method.

The rest is organized as follows: the details of the proposed method are described in
Section 2, Section 3 shows the experimental studies and the results, and finally, Section 4
concludes this work.

2. Proposed Method

In this section, we describe the proposed method in detail. The structure of SMTN is
illustrated in Figure 1. The key part of the proposed method is a multi-task learning model
based on the self-attention mechanism. Spatiotemporal feature extraction and fusion are
first performed before multi-task learning. The classic CNN layer is utilized for feature
extraction from the data of each sensor. Since the self-attention mechanism has the ability to
fully explore the correlation of the input data, here we utilized it for spatial feature fusion,
which means the correlation between sensors is modeled using a self-attention module.
LSTM layers are used to model the temporal correlations of the input sequence to fuse
features along the temporal dimension. After feature extraction and fusion, a multi-task
module is performed, in which the missing values imputation and RUL prediction tasks are
performed in parallel. The role of multi-task learning is to recover the complete signal from
the input data with missing values and use the representation of the intermediate layer
containing complete information for RUL prediction. Compared with directly predicting
using data with missing values, better RUL prediction performance can be obtained using
multi-task learning.
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Figure 1. The architecture of the proposed SMTN.

2.1. Self-Attention Mechanism

Here, we first detail the computational process of the self-attention mechanism and
incorporate it into our method later. The self-attention mechanism was originally used for
modeling sequence data [14], and later researchers extended it to image data in [16], which
proves that self-attention is actually not only effect for sequence data, but can also model the
correlations of various types of data. Given an input sequence data X = [x1, x2, . . . , xN ] ∈
Rd×N , the self-attention layer will output an sequence X̂ = [x̂1, x̂2, . . . , x̂N ] with the same
shape as X. For the vector x̂i at position i, the information of the input data of other
positions is fused in it so that the information of the data at different positions can be fully
explored. For each xi, linear transformation is firstly used to map it into the query space,
key space, and value space as follows:

qi = Wq · xi, ki = Wk · xi, vi = Wv · xi, (1)

where Wq ∈ RD×d, Wk ∈ RD×d, and Wv ∈ RD×d denote the transformation matrices
which are learnable.

To model the correlation between xi and other positions, dot product is performed on
qi and K = [k1, k2, . . . , kN ], followed by the scale and softmax operation to produce the
attention score of xi to each other position:

ai = so f tmax(
qT

i ·K√
D

) (2)

Then for the purpose of fusing the information from other positions, element-wise
product is performed on the attention score ai = [ai1, ai2, . . . , aiN ] and the value matrix
V = [v1, v2, . . . , vN ], then sum all the vectors to produce the fused vector x̂i of position i:

x̂i = sum(ai ⊗V) (3)

Intuitively, we illustrate the calculation process in Figure 2.
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Figure 2. The calculation process of self-attention mechanism.

2.2. Spatiotemporal Feature Fusion

The first part of the proposed SMTN is the spatiotemporal feature fusion module based
on self-attention mechanism. Here the self-attention mechanism described in Section 2.1 is
introduced to perform the spatial feature fusion due to its outstanding modeling ability.
built the feature extraction and fusion module. First we employed 1D CNN layers to extract
the deep features of the input sample data x(t)s ∈ Rw×1 of each sensor s at time t, where w
denotes the sample length or sliding window size which will be described in Section 3.1.
CNN is a classic model which is widely used in computer vision due to its strong feature
extraction ability. In PHM, CNN has also been widely applied and performs well [25],
since it can capture the local correlation in the time-series data. For the signals on each
sensor, feature extraction is performed using 1D CNN layers with kernel size is 4× 1,
striding is 2 and padding is 0. The extracted feature maps are expanded into a sequence
of feature vectors. This means that each feature vector only contains the information of
the corresponding sensor, and does not fully fuse the information among all sensors. This
is detrimental to RUL prediction, especially if there are missing values in the input data.
Therefore, in order to fully explore the available information, we introduce the self-attention
mechanism for the spatial fusion of features.

For a set of feature vectors Ft = [f(t)1 , f(t)2 , . . . , f(t)S ] corresponding to S sensors at time t
after 1D CNN layers, the correlations of sensors can be captured by sending it to the stacked
self-attention layers mentioned in Section 2.1. The self-attention mechanism is essentially a
weighted sum operation of features from a different sensor, and the weights of each sensor
contain the correlation information between it and other sensors. This mechanism can fully
explore the correlation between each sensor so that the output feature vector of each sensor
after self-attention layers is fully considered the information from other sensors. Thus, these
fused features lead to better RUL prediction than unfused features especially encountering
the value missing problem. After stacked self-attention layers, residual connections are
utilized to alleviate the vanishing gradient problem and speed up the training process.

After the spatial feature fusion, the classical LSTM layers are utilized for temporal
feature fusion. LSTMs can model the correlation of sequence data effectively, and it’s also
widely utilized in RUL prediction [13,26]. Specifically, the feature matrix
F̂t = [f̂(t)1 , f̂(t)2 , . . . , f̂(t)S ] output by the self-attention layers is firstly expanded into a fea-
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ture vector ft, then iteratively input the feature vector to the LSTM cell at each time step,
the features before current iteration is naturally fused and passed to the next iteration.
The output vector f

′
t of time step t naturally contains the information of previous time

steps 1 ∼ t− 1.

2.3. Multi-Task Learning

To further improve the performance of RUL prediction under missing values, we
propose a multi-task learning module in our model. The overall structure of this module is
that two tasks share some layers of the network and perform different tasks after the last
common layer, which means that the latent representation output by the last common layer
will be shared by both tasks, as illustrated in the right of Figure 1. The advantage of this
approach lies in that the model will be lead to capture the correlation between different tasks
by the parallel performing of different but related tasks, and this will positively promote the
performance of tasks. More intuitively, task A can be benefited by the information of task B
due to the correlation information, and so can task B. Thereby, a better representation can
be learned by the model than if the two tasks were performed separately.

In the case of RUL prediction under missing values, the motivation for using the multi-
task learning module lies in that simply feeding the features extracted by the previous
fusion module into the RUL prediction module can hardly achieve good performance
when encountering a large number of missing values in the input data, since there is severe
information loss in the features. Although the spatiotemporal feature fusion module had
obtained available information from the limited data, limited by the insufficient capabilities
of the model, without guidance and assistance, the model cannot predict the RUL accurately
from the low-quality representations.

Specifically, based on the idea of multi-task learning, a missing value imputation
task module is introduced after the feature fusion module, where the purpose is to lead
the model to learn a latent representation that contains complete information since it can
recover the complete signal. Simultaneously, this latent representation will be used for
RUL prediction task in the parallel module, so the system RUL can be better predicted with
this latent representation containing complete information. The missing value imputation
module is implemented by a multi-layer fully connected neural network, which maps the
latent representation to the observation signal space. And the RUL prediction using the
latent representation is also performed with a multi-layer fully connected neural network.
The above two tasks are conducted in parallel, and combined by sharing the preceding
network layers.

There are two terms in the final objective function, namely the RUL prediction loss
term and the missing values imputation loss term, respectively. So the final objective
function is

L = (1− α) · LossRUL + α · LossIMP (4)

where α trade off the two tasks, and LossRUL and LossIMP denote the loss of the RUL
prediction task and missing values imputation task, respectively. Here, we use the mean
square error (MSE) to be the loss function of both two tasks since they are all regression
tasks, then we have

L =
1− α

N

N

∑
n=1

(ŷn − yn)
2 +

α

wSN

N

∑
n=1
||X̂n − X̃n||2F (5)

where N, w, and S stand for the number of samples, sliding window size, and the number of
sensors, respectively. X̂n and X̃n means the output and the ground-truth complete value of
sample n, ŷn and yn denotes the predicted RUL and the real RUL of sample n, respectively.
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3. Experimental Study

To comprehensively verify the performance of the proposed method, we conduct
experimental studies, including comparative experiments, ablation studies, and parameter
sensitivity analysis. A detailed description will be given in the following sections.

3.1. Data Description and Preprocessing

The dataset used in our experimental study is the simulated aero-engine degradation
data [27] created by NASA, which is also named C-MAPSS. Four sub-datasets are included
in the C-MAPSS dataset, namely FD001, FD002, FD003, and FD004 which consists of
training set and testing set in each of them. Each training set contains a sets of multi-sensor
degradation signals corresponding to different engines under different fault modes and
operation conditions, and the same is true for the test set. The difference is that the signal
in the training set is collected from minor initial fault until it fails completely, while the
signal in the testing set are ended at some time point before it fails completely. The real
RUL is provided in all training and testing samples, and we applied piece-wise RUL as the
target RUL according to [28]. The details of C-MAPSS are shown in Table 1.

Table 1. The details of C-MAPSS dataset [29].

Subsets FD001 FD002 FD003 FD004

Training engines 100 260 100 249
Testing engines 100 259 100 248

Fault modes 1 1 2 2
Operation conditions 1 6 1 6

As the previous studies [21,30], we performed sensor selection on this dataset which
means removing the meaningless sensor data that has no degradation information.

The max-min normalization is utilized after sensor selection, which is a commonly
used method in previous studies. The purpose of normalization is to map the features in
different scales to the same scale, thereby the model can be well trained instead of failure
due to pay too much attention on the large scale features and ignore the small scale features.
Here, we map the features to [0, 1] using the following formula:

x(i,j)norm =
x(i,j) − x(i)min

x(i)max − x(i)min

∀i, j, (6)

where i and j stands for the number of sensor and data point, x(i,j) and x(i,j)norm denotes the
raw data and normalized data, x(i)max and x(i)min are the maximum and minimum values of
sensor i, respectively.

In the proposed method, both the data with missing values and the corresponding
ground-truth of the complete data are required, which is determined by the proposed
method since missing value imputation is a supervised task. Or simply put, the complete
values corresponding to the missing values are needed in calculating the loss function of
missing values imputation task. Thus, the dataset with real world missing values are not
applicable in the proposed method, since there are no complete values corresponding to
the missing values can be obtained as the label in missing values imputation task, as a
result we perform artificial missing value simulation on the complete data to construct the
dataset we need. To some extent, the simulation of missing values is part of the proposed
method, not only for experimental studies.

A variety of datasets with different overall missing rates are constructed, where the
missing rates range from 0 to 0.8. There is a assumption that the missing values can be
detected, and the missing values are simply set to 0. In order to improve the robustness of
the model, instead of simply removing values randomly, we perform different degrees of
value missing according to the sensor importance given in the literature [31]. That is, the
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more important the sensor is, the higher the missing rate is set. By recovering the important
sensor data, the model can learn to capture the important information.

After normalization and missing values simulation, we implement sliding window
processing with step size 1 to slice the time series signals to a series of samples. That is,
each sample is a matrix S ∈ Rw×S, where w is the length of the sliding window and S is the
number of sensors, and there are w− 1 overlapping time points between adjacent samples.
In our experiments, w and S are set to 30 and 14, respectively.

3.2. Experimental Settings and Metrics

In our experiments, there are several hyperparameters in the proposed method to be
selected, we performed the grid searching method to select the proper value. Specifically,
the number of the self-attention layers is 3, the number of LSTM layers is 2, and the hidden
size in the LSTM is 512. In the objective function, the α is set to be 0.35. We used the Adam
optimizer to perform the model training, and the learning rate, batch size, and epochs
are 0.001, 128, and 300, respectively. The model is initialized with the Xavier uniform
initializer [32]. In the selected comparison methods in Section 3.4, the support vector
regression (SVR) and multi layer perceptron (MLP) are implemented using the classic
machine learning library scikit − learn with default values of the training parameters.
For the deep long-short term memory (DLSTM) [33], we implement it according to the
paper and adapt it to our data dimension. For the feature-attention based bidirectional
gated recurrent unit CNN model (AGCNN) [29] and deep convolution neural network
(DCNN) [34], we constructed the models with the given parameters in the paper, then
applied them to our datasets. All experiments are performed on a server with 64-bit Ubuntu
18.04, which has a GeForce RTX 2080 Ti GPU with 12 GB memory. All the reported results
are an average of five times.

To evaluate and compare the performance of the proposed model, two metrics are
used here which are root mean square error (RMSE) and the scoring function in [27]. RMSE
is widely used to evaluate the performance of regression task, and the scoring function is a
specially designed metric for RUL prediction task. The RMSE is calculated with

RMSE =

√√√√ 1
N

N

∑
n=1

(ŷn − yn)2, (7)

where N means the number of samples, ŷn and yn denote the predicted value and the target
RUL of sample n, respectively.

The scoring function is designed to overcome the shortcomings of RMSE, which
can penalize the earlier and later prediction in different degrees, this is important in real
industrial applications. The scoring function is defined as

SCORE =


E

∑
e=1

(e−
ŷe−ye

13 − 1), when ŷe < ye

E

∑
e=1

(e
ŷe−ye

10 − 1), when ŷe ≥ ye

, (8)

where E denotes the total number of testing engines, ŷe and ye denote the predicted RUL
and the target RUL of the last sample of engine e, respectively. As it defined, the scoring
function penalizes more severe on late prediction. RMSE and the scoring function are
visualized in Figure 3.
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Figure 3. RMSE and the scoring function.

Intuitively, it can be seen on the positive axis of prediction error in Figure 3 that when
the predicted RUL is larger than the actual RUL, which means late prediction and usually
leads to severe accidents, the scoring function imposes a larger penalty on the error. While
under the situation of earlier prediction on the negative axis of prediction error, the scoring
function penalizes less than the former case. However, the RMSE is symmetrical about 0
which means paying equal attention to the earlier and later prediction cases that lead to
different degrees of harm.

3.3. Ablation Study

To deal with the RUL prediction problem under missing values, there are two main
measures in SMTN: spatiotemporal feature fusion based on self-attention mechanism and
multi-task learning. To verify the effectiveness of these designs, we conduct ablation studies
on FD003 subset. Specifically, first we validate the role of the spatiotemporal feature fusion
module in RUL prediction. By removing the spatiotemporal fusion module from SMTN,
which is named SMTN∗, we directly input the features extracted by the CNN into the multi-
task learning module and compare the prediction performance under different missing
rates with the standard version SMTN. Next, to study the effectiveness of the multi-task
learning module, we implement the ablation study by setting the hyperparameter alpha to
0, which is named SMTN†. That is, the missing value imputation module is not optimized,
which is equivalent to using only the RUL prediction module. The performance is also
compared with the standard version. The experimental results of the above two cases are
shown in Table 2 and Table 3, respectively.

Table 2. The performance comparison of SMTN∗ and SMTN on FD003 using RMSE under different
missing rates (MR).

MR 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

SMTN∗ 13.56 13.82 14.19 14.23 15.87 19.02 19.72 21.32 21.55
SMTN 10.74 11.12 10.96 11.35 12.88 15.83 17.37 18.99 19.35
Improvement 20.80% 19.54% 22.76% 20.24% 18.84% 16.77% 11.92% 10.93% 10.21%
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Table 3. The performance comparison of SMTN† and SMTN on FD003 using RMSE under differ-
ent MR.

MR 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

SMTN† 11.03 11.21 11.89 13.79 15.34 17.10 18.94 20.21 20.57
SMTN 10.74 11.12 10.96 11.35 12.88 15.83 17.37 18.99 19.35
Improvement 2.63% 0.80% 7.82% 17.69% 16.04% 7.43% 8.29% 6.04% 5.93%

Note that the Improvement is defined as

Improvement = (
RMSEablated − RMSE

RMSEablated
)× 100% (9)

where RMSEablated denotes the RMSE of the two ablated models, namely SMTN∗ and
SMTN† in Table 2 and Table 3, respectively, and RMSE stands for the RMSE of standard
version model, namely SMTN.

The results in Table 2 show that the RUL prediction performance under missing values
of SMTN∗ is much lower than that of the standard version. In terms of RMSE, even though
there are no missing values in the data, the standard version SMTN is improved by about
20% compared with SMTN∗. As the increase of the missing rate, the improvement of
the RMSE value remains at about 20%, until the missing rate reaches more than 0.6, the
improvement ratio is reduced to about 10%. The reason lies in that the spatiotemporal
fusion module can effectively fully explore and fuse the available information in the input
data from both the time and space dimensions, and this is critical to RUL prediction
both under and no under missing values. However, without the mechanism of effective
fusion of spatiotemporal features, the RUL prediction accuracy of the model is greatly
reduced. Thus, the results fully demonstrate that the spatiotemporal module is crucial in
the proposed model.

Table 3 compared the RUL prediction performance under different missing rates using
multi-task learning and not using multi-task learning. In general, the performance of
SMTN that using multi-task learning improves a lot than SMTN† that not using it, but
the improvement is not significant when the missing rate is too low or too high. For
the former case, there are less information losing in the data and the general method is
sufficient for dealing with this problem, multi-task learning cannot give full play to its
advantages. When the missing rate is too high, the excessive information loss makes multi-
task learning unable to obtain better prediction performance because it cannot recover the
missing values with few available data. In general, the multi-task learning can achieve
better RUL prediction when the missing rate is not too high or too low, because multi-task
learning can obtain a hidden representation containing complete information by recovering
the missing values with the available data, and this representation can lead to better RUL
prediction performance.

3.4. Comparative Experiment

To investigate the performance of the proposed method for RUL prediction in values
missing scenarios, comparative experiments are conducted between the proposed method
and some typical methods. We selected a variety of typical comparison methods including
SVR, MLP, DLSTM, DCNN, and AGCNN, and reproduced the results reported in the paper
as much as possible, and then applied them to our dataset. The comparison results using
RMSE and the score are shown in Table 4.
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Table 4. RMSE and the score of compared methods on C-MAPSS under different MR.

Metrics Subset MR SVR MLP DLSTM DCNN AGCNN SMTN

RMSE

FD001

0 15.58 20.62 13.48 13.71 13.09 12.38
0.1 19.03 21.07 17.61 13.75 13.94 12.79
0.2 19.60 21.82 21.20 13.38 14.13 12.83
0.3 20.87 24.40 22.21 15.09 15.25 13.35
0.4 21.85 26.16 22.80 16.85 16.87 15.21
0.5 22.96 28.67 23.27 19.94 19.76 18.02
0.6 24.15 29.87 25.02 21.39 19.85 19.23
0.7 24.01 36.43 24.83 20.31 20.73 20.54
0.8 24.14 46.13 24.36 22.32 21.14 21.43

FD003

0 15.49 17.66 11.31 11.66 12.08 10.74
0.1 17.36 18.68 13.69 11.66 13.07 11.12
0.2 17.84 19.55 14.54 12.32 13.76 10.96
0.3 18.84 21.72 17.96 13.62 13.82 11.35
0.4 20.15 24.86 18.69 15.27 14.53 12.88
0.5 21.67 26.04 20.21 17.64 17.81 15.83
0.6 22.41 28.61 22.79 16.39 17.87 17.37
0.7 23.00 31.32 20.74 17.62 19.43 18.99
0.8 23.60 35.79 21.38 19.63 19.43 19.35

SCORE

FD001

0 475.17 1723.54 319.89 282.85 233.34 245.89
0.1 1186.65 1384.44 752.17 416.98 528.26 372.11
0.2 1243.58 1425.77 2023.09 472.05 411.62 351.82
0.3 1916.70 1869.10 3719.53 799.67 497.74 422.65
0.4 2222.08 10,610.61 4085.67 848.41 509.87 472.74
0.5 6985.87 8626.61 3590.35 1772.34 795.78 925.54
0.6 3032.66 1955.51 8044.69 1350.10 1268.10 920.25
0.7 2428.92 4272.51 10,798.33 2655.43 1479.28 2104.73
0.8 5246.20 22,689.29 15,817.78 5116.64 2292.33 2461.81

FD003

0 1257.49 2236.46 732.43 282.23 240.08 238.98
0.1 2007.97 2171.79 820.59 430.03 327.57 332.57
0.2 1997.12 2194.71 2416.02 598.96 360.95 357.89
0.3 2181.85 3280.49 3889.62 563.09 530.96 493.21
0.4 2715.29 2761.14 5809.09 1194.57 857.15 793.62
0.5 3115.46 5423.23 8890.98 3215.52 3135.02 2508.24
0.6 4508.54 33,535.98 6881.44 2533.28 4944.36 2894.04
0.7 3240.60 12,069.38 7501.80 3217.82 4538.29 3104.93
0.8 4927.10 42,927.81 17,348.62 4373.71 3879.53 4020.19

It can be seen that the proposed method comprehensively outperforms the compared
methods. Generally, the classical SVR and MLP methods perform far less well than rela-
tively advanced methods, especially when encountering the missing values. The reason
is that they cannot effectively exploit the abstract deep features in the data. The typical
deep learning methods such as DCNN and AGCNN are basically the same as the proposed
method when there are no missing values, but when encountering a lot of missing values in
the data, the proposed method surpasses other compared methods. The reason is that there
are various designed mechanisms for values missing problem in the proposed method.

Firstly, the spatiotemporal feature extracting and fusion module can effectively exploit
and integrate the information in the available data, which provides the guarantee for high-
performance RUL prediction under values missing. The effectiveness is guaranteed by the
ability of the self-attention mechanism to model the correlations between different sensors,
which contains the spatial information, and the LSTM layers can fuse the features along time
steps in the output representations which utilizes the history information of degradation.
The multi-task learning further improves the performance under missing values. The
missing value imputation task can recover the missing values, thus with the assistance of
the missing values imputation task, the representations containing complete information
can be effectively extracted by the model, which is not available in the compared methods.
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To demonstrate the RUL prediction performance of the proposed method intuitively, we
select some typical samples to show the prediction performance of SMTN in Figure 4.

Figure 4. The RUL prediction results of SMTN under different missing rates.

3.5. Parameter Sensitivity Analysis

In our multi-task approach, the contribution of the two tasks to the model optimization
process is controlled by the hyper-parameter alpha, which determines the proportion of
loss in the objective function for the missing values imputation task and the RUL prediction
task. The inappropriate parameters will lead to the degradation of the performance of the
model because there need a trade-off between two tasks. In order to investigate the impact
of the choice of α on the model performance, we conducted experiments on the FD003
dataset under missing rate of 0.4. We set different α and then training and testing the model,
the RUL prediction error and missing values imputation error are shown in Figure 5.

Figure 5. The RMSE of missing values imputation and RUL prediction under different α.

The blue and red line represents the RMSE value of missing values imputation task and
RUL prediction task, respectively. When α = 0 which means the missing values imputation
module is not trained, the output by the missing values imputation module is equivalent
to a random value, and the RMSE is very large and meaningless. When α = 0.05, the
imputation error is significantly reduced, and the RUL prediction performance is slightly
improved. This indicates that the missing value imputation module is effectively optimized
and recovers the missing values to a certain degree. When α is further increased, the
performance of the model is also improved accordingly and reaches its peak until α = 0.25,
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and the missing value imputation error tends to stabilize. When α is further increased, it
can be seen that the error of missing value imputation is still slowly decreasing, but the
performance of RUL prediction becomes worse. This is because an excessively large alpha
value makes the model pay too much attention to the accuracy of missing value imputation,
which leads to overfitting of the missing value imputation module. Thus, the hidden
representation of the middle layer contains too much noise information that is useless for
RUL prediction, which leads to the deterioration of RUL prediction performance. Note that
the results we show were obtained with a certain missing rate of 0.4 for FD003, and in fact
we have experimented with a variety of missing rates and the results show that the optimal
value of α is close under different missing rates, and the best α is set to 0.25 accordingly.

4. Conclusions

In this work, we focus on the missing values problem in RUL prediction. A novel
prediction model named SMTN is proposed to deal with this problem. There are two key
parts in SMTN, namely spatiotemporal feature fusion module and multi-task learning
module, the former one using the self-attention mechanism and classical LSTM to perform
the feature fusion in space dimension and time dimension, the deep features and informa-
tion can be fully exploit from the available data. The multi-task learning module try to
learn a complete representation from the incomplete data by implement the missing values
imputation task, and the complete representation are simultaneously used for RUL predic-
tion under missing values. Experiments conducted on C-MAPSS verified the effectiveness
of SMTN.

The performance of RUL prediction under missing values can be effectively improved,
which is conducive to the application of RUL prediction in wider industrial scenarios, this
will further improve the intelligence level of industrial maintenance and management. In
future work, we will focus on the high performance RUL prediction under sensor faults
which is a more common problem in real industrial applications.
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