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Abstract: Research on motion control automation of Stewart Platforms with industrial configurations
(motion and controllers) is less present in the literature than other types of automation with low-cost
devices such as Arduino, or via simulations in MATLAB or Simulink. Moreover, direct kinematics
is less widely applied because of heavy calculation in real-time device implementations. The paper
first analyzes the design, kinematic modelling, and trajectory generation of a Stewart Platform robot
and addresses direct kinematics and motion automation. Next, the automation architecture with
industrial controllers is detailed. The paper presents the results of the inverse kinematic in two use
scenarios: cycloidal trajectories that carry out point-to-point and oceanic wave movements. The
efficient calculation of direct kinematics in real time was also studied. This opens the possibility
of closing the positioning loop at the controller or implementing supervisors such as the “tracking
error”. Further research might investigate the effects of the sequence planning to avoid collisions
with objects inside the workspace while considering the feedback of the tracking error.

Keywords: parallel robots; industrial controller automation; Stewart Platform; motion control

1. Introduction

Parallel robots are composed of one or more closed kinematic chains that communicate
their end effector (the tool) with the joints that provide the motion. These parallel robots are
advantageous over serial robots because they generally have, among other characteristics,
higher accelerations, a large load-to-weight ratio, higher motion accuracies to execute a
task, high force capabilities because the output force is provided by multiple actuators
working in parallel, as well as structures without bending loads [1–3].

The Stewart Platform is one of the most widely known parallel robots. This type of
mechanism was presented by Stewart in [4], mainly to carry out flight simulations. In that
research, Stewart focused on achieving, in the simplest way, a platform with six degrees
of freedom in its motion. This platform used a maximum of six motors, and each motor
had to work directly with the same load, thus obtaining a high ratio of the moving load
to the weight of the structure. Due to the nature of the mechanism proposed by Stewart,
this is considered a mixed parallel structure robot, which is a manipulator composed of a
fixed base and a moving platform through two or more closed kinematic chains (six, in the
particular case of the Stewart Platform) and with the capability of performing translational
and spherical movements. Later, Hunt added in [5] that the platform would be useful as a
manipulator in the context of robotics, which led many researchers to start their own field
work with this type of mechanism. The first, McCallion, generalized the modifications and
transformed the original concept into a more popular architecture [6]. This generalized
Stewart Platform architecture is based on the use of two rigid bodies (base and mobile),
which are connected by six extensible members with spherical joints at their lower and
upper ends or with a universal joint at one end and a spherical joint at the other [6].

According to [7], there are 34 different possible configurations of the Stewart Platform
in which the most common are 3-3, 6-3, and 6-6. The 3-3 configuration corresponds to a
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base and a mobile platform, both geometrically triangular, with two actuators placed at
each vertex and with concentric joints. Examples of the use of such configurations were
studied in [8,9]. The 6-3 configuration consists of a base platform with a hexagonal shape
(it can be regular or irregular according to [10]) and a moving platform of triangular shape,
with the actuators placed geometrically—two at each vertex of the moving platform and
one at each vertex of the base. Examples of these configurations were studied in [11–13].
Finally, the 6-6 configuration corresponds to two hexagonal platforms (base and mobile),
which may be irregular or regular hexagons, with the actuators arranged one by one at
each vertex of the platform. Examples of this configuration can be found in [14–16].

Multiple combinations of joints in a Stewart Platform leg make various kinematic chain
structures possible, as long as the platform can move and rotate on all three coordinate axes.
When each member has a universal joint, followed by a prismatic joint and then a spherical
joint, it is called UPS (Universal-Prismatic-Spherical), which is one of the most common
distributions [17–20]. Another very common configuration is defined by a spherical joint at
each end that is joined by a prismatic joint; this is called SPS (Spherical-Prismatic-Spherical).
This SPS configuration, in contrast to the UPS, adds six passive degrees of freedom that
allow for the rotation of the kinematic chain about its axis [21,22]. Some research studied a
6-UPU (Universal-Prismatic-Universal) Stewart Platform, where an actuator is connected
to the moving platform and the base by two universal joints [23]. Another configuration is
the UCU (Universal-Cylindrical-Universal) configuration, which achieves the six degrees
of freedom from the possibility of rotation given by the cylindrical pair, as reported in [24].
Finally, there are also studies of Stewart Platforms that have flexible joints with no friction
but with a gap, lubrication, and fast response, although these studies focused more on
design, modelling, and simulation rather than on implementation [25,26].

The above configurations are very important for the kinematic study of the Stewart
Platform since the kinematics strongly depends on the geometric design of the platform [27].
Kinematics focuses on the study of the movement of a mechanism with respect to a reference
system, only taking into account its geometry and not the forces that may act on it. This
study of kinematics can be divided into direct kinematics and inverse kinematics. Direct
kinematics focuses on determining the position and orientation of the terminal element
with respect to a reference system, given that the values of the joints and the geometry are
known. Inverse kinematics, on the other hand, presents a joint configuration solution for a
given position and orientation of the end element.

For this type of parallel manipulator, inverse kinematics is computationally easier
than direct kinematics, as stated in [28]. Indeed, inverse kinematics has been implemented
in most research about Stewart Platforms. In the literature, solutions to inverse kinematics
have been given in detail, either expressed by the analytical loop equations [29–32], based
on homogeneous coordinate transformation [33,34], or using the theory of screws [35,36].

Multiple researchers have also focused on the study of direct kinematics from different
points of view: the authors of [28] presented the first attribution of the equations of the direct
kinematics of the Stewart Platform with an SPS configuration. Fichter provided a solution
to this problem using the Screw theory [29]. In [37], the closed analysis was based on the use
of geometry in order to simplify the calculations. Other researchers focused their analysis
on the use of Soma coordinates [21]. Due to the non-linearity of the series of simultaneous
equations to be solved (and up to 40 possible configurations that the Stewart Platform
can take [38]), Bonev [39] recommended the use of sensors to reduce the overdetermined
system. Yee and Lim proposed the use of neural networks to obtain a direct solution [40],
although iterative methods such as the Newton–Raphson method (and its modifications)
have become the most widely used [41–43]. More recently, several researchers have started
working on the calculation of direct kinematics with the use of new methods; e.g., [44]
addressed the study of direct kinematics by vector regression, [45] provided a solution
using the quaternions and Denavit–Hartenberg methods, and [7] showed a simplification
for most of the configurations using virtual members and trilateration.
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The use of Stewart Platforms extends to multiple applications: machine tools [46],
architectural structures [47], rehabilitation processes [48], flight simulators [49], inspec-
tion [43], vibration isolation [20], driving simulator and stabilizers [50], high-precision
positioning devices [51], micromanipulator applications [52], 3D printing [32], and for
various applications in the marine oceanic area. One such application that is common
in the maritime domain focuses on the use of Stewart Platforms to create an effective
compensation of sea waves during the operation of a machine, such as cranes and drilling
platforms [53,54]. Other examples that use of this type of platform are the floating offshore
oceanic structures, as studied in [55,56], or in wave energy converters, which perform
the motion of a particle under the free surface of the ocean [57]. As an ocean motion
generator, [58] used a simulator composed of a boat model placed on the sea in order to
recreate real ship motions and a Stewart Platform kept in a room in order to reproduce
the motion.

Its real-time implementation with industrial axes, electric servomotors, and industrial
controllers has been less studied in the literature than other types of implementations with
low-cost devices such as Raspberry and Arduino, or simulations in MATLAB, Simulink,
SimMechanics, ADAMS, etc. [13,59–63]. Furthermore, the implementation of inverse kine-
matics in this type of device is more studied than the implementation of direct kinematics,
which has been scarcely studied. The use of industrial controllers is also driven, among
other things, by the need for fine positioning and the synchronous operation of all linear
actuators to achieve high accuracy in applications with Stewart Platforms [64].

Depending on the hardware structure of the control system, some implementations are
employed with MATLAB running on a personal or industrial computer in order to perform
some calculations and send axis commands to a specific motor control board. Rosell [65]
studied control techniques based on real-time vision using MATLAB and Labview on
a computer with a motor control board called the “Phidget AdvancedServo”. Lou and
Tseng [66] focused on the transmission of positioning commands to a Stewart Platform
using a common personal computer (Windows OS) with a servo motion control board as
the controller. The authors developed a networked motion control system to guarantee the
use of synchronous control and motion commands in the industrial linear motors. Shao [2]
investigated the dynamics verification of a Stewart Platform by using an industrial PC with
a Linux kernel to perform inverse and direct kinematic computations (MATLAB) and a
multi-axis motor control board to send PWM signals to the servomotors.

Industrial controller devices can be seen as programmable logic controller (PLC) de-
vices with numerical control capabilities that can manage the motion control of a set of
axes. For example, the PLCopen Motion Control standard defines an automation frame-
work based on standard Function Blocks in order to implement the movement of axes,
thus enabling the numerical controller to generate the control sequences for interpolated
movements [19]. Such machinery can be much smarter and more flexible because on-
line recalculations can generate individual toolpaths as a process takes place instead of
completing classic pre-defined trajectories.

Among the studies in the literature involving PLCs and industrial controllers, the
following stand out. Walica and Noskievič [64] employed an industrial controller to control
a simulated Stewart Platform in a real-time target in the dSPACE MicroLabBox. They used
a PLCnext controller with the inverse kinematic and a proportional feedback controller
automatically generated by the PLC Coder in Simulink. With this implementation, the
code acted as a black box, and it could not be investigated or modified. He and Wen [67]
investigated active disturbance rejection control techniques using a Stewart Platform with
industrial servomotors, EtherCAT communications, and real-time control with TwinCAT.
For this purpose, they only implemented the inverse kinematic without going into the
details of the implementation. An and Huang [68] developed a sea wave surge base align-
ment test system, stressing the use of industrial controllers and industrial communication
standards, such as EtherCAT, to improve the positioning of the platform. The control
software was implemented in a C++ application in an industrial control computer. Po-
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rath [69] addressed a new kinematic calibration technique for Stewart Platforms using a
PC as the controller, which had a real-time control application that had been developed
in TwinCAT to perform the calculations of the inverse kinematics and to obtain pose data
from a workstation server connected by WIFI with the industrial controller. Su [70] used
industrial servomotors, although the control was performed on an industrial computer pro-
grammed in C, where inverse kinematics and friction compensation with a control period
of 10 ms was implemented. Ordoñez and Rodriguez [71] addressed the implementation
of a dynamic PID control in a Stewart Platform using xPC Target (a Matlab toolbox), with
a user interface in the Simulink and Yaskawa industrial servomotors. Ming-Yen Wei [72]
investigated inverse Kinematics and a monitoring system with the use of Labview on an
industrial computer, which was responsible for processing all the sensors and sending the
control information to the motors, and a PMDK motion control card, which was responsible
for performing the tasks of motion, inverse kinematics, and for sending the motion pulses
to the motors, although without going into implementation detail. Budaklı and Yılmaz [73]
used MATLAB to run inverse and direct kinematics, providing the PID control and sending
the tracking positions of the trajectory of each piston to the industrial controller. To do
so, EtherCAT communication over the target processor in a real-time control system was
employed. The target processor acted as the master of all six controllers.

However, considering the studies mentioned above, there is scarce research that used
a control automation strategy without employing third-party environments (e.g., MATLAB,
Simulink, ADAMS, etc.) to carry out calculations and control. That is, those that only used
industrial controllers to calculate kinematics and drive motion on Stewart Platforms. Such
a strategy would test the hypothesis that direct kinematics could be implemented efficiently
with industrial controllers in a real-time environment. This would open the possibility of
closing the positioning loop on the controller side. Hence, our motivation for undertaking
this research is to test how 3D printers’ behavior is affected by ocean conditions. A Stewart
Platform will provide a systematic and controlled way of emulating ocean movements.

The article can be summarized as follows. First, Section 2 describes the degrees of
freedom of the robot, the modelling, and the considerations undertaken in the design of the
Stewart Platform. Section 3 provides a detailed explanation of the kinematics of the Stewart
Platform through inverse kinematics, direct kinematics, and the generation of point-to-
point and oceanic motions. Section 4 describes the general automation architecture using
industrial servo axis controllers. Furthermore, the algorithms used and the considerations
taken to implement motion and kinematics using only the industrial axis controller are
explained in this section, focusing on the efficient calculation of direct kinematics in real
time in very few controllers’ task cycles. Section 5 shows the results of the inverse kinematic
in two use scenarios: cycloidal trajectories employed to carry out point-to-point and oceanic
wave movements within the described architecture of control automation. Section 5 also
supports the starting hypothesis by solving the direct kinematics in real time, with latencies
of less than 2 ms and with points moderately far from the real solution. The article ends
with a discussion (Section 6) and some conclusions concerning the research (Section 7).

2. Design

Before going into detail about the resources available in industrial controllers to
automate a Stewart Platform in a real-time context, it is convenient to review its design and
its kinematics.

The Stewart Platform is a robot designed in a closed chain, in which a fixed platform
(base) in space and a mobile platform are connected; both are joined by six legs. These legs
can be based on extendable linear actuators [43,66] or rotary cranks [72,74]. Considering
the former approach, this investigation used six electric cylinders actuated by six industrial
servomotors. The total displacement of these cylinders is 800 mm, but due to automation
decisions, only the first 600 were used. The connection points of the cylinders with the
base and the upper platforms were mechanical joints: universal joints for the base and
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spherical ones for the upper platform, which was constructed with a UPS Stewart Platform
configuration. Figure 1 shows the design and the real, assembled Stewart Platform.
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2.1. Degrees of Freedom

The platform was made to have six degrees of freedom (DOF). The degrees of freedom
can be calculated with the following equation [28]:

F = λ(l − j− 1) +
j

∑
i

fi − Id (1)

where F is the effective degrees of freedom of the mechanism, λ represents the spatial
degrees of freedom where the machine operates, l denotes the number of links, j denotes
the number of joints, fi represents the DOF of the ith joint, and Id is the passive DOF.

In the case of the designed machine, there are fourteen links joined by six prismatic,
six spherical, and six universal joints. Each member contains two parts (twelve links) that
are connected to the mobile platform (thirteenth link) and to the base (fourteenth link) by
means of prismatic joints. In addition, each spherical joint has three DOF, each universal
joint has two DOF, and each prismatic joint has one DOF. In this way, the platform can
move freely in the three axes of movement (x, y, z) and rotation (α, β, γ), which are the six
degrees of freedom.

2.2. Modelling

When approaching the design of the platform, the single circle criterion (CSSP, Circle
Single Stewart Platform) was followed by Madsen, which used a symmetric design to
distribute the load equally around the center of the platform [75]. This criterion is the
simplest and the most widely used in the configuration of Stewart Platforms, as can be seen
in the literature [65,75,76]. In Figure 2, the actuators are located on the same flat circular
trajectory, both on the base (fixed) and on the mobile platform; rb and rp, represent the
radius of the base and mobile platforms’ circumference, respectively.
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Figure 2. Schematic diagrams of the Stewart Platform. (a) Geometrical description of the Stewart
Platform; (b) Description of the joint locations of the mobile platform; (c) Description of the joint
locations of the base platform.

The symbols, ϕb and ϕp, denote the angles formed by the two consecutive actuator
mounting points of the base and the mobile platform, respectively. Starting with the
geometrical design, the vectors BB i and PP i (Equations (2) and (3), respectively) are
obtained by considering the radius of each platform (rb and rp) and the positioning angles
of the actuators on each platform (θi and φi). The position vectors of the center of the
mechanical joints of both bottom (or base) and upper platforms can be expressed as shown
in Equation (4). hb is the distance between the center of the universal joint and the base
platform, and hp is the distance between the center of the universal joint and the upper
platform, as expressed in some research works [24,33,77]. Table 1 shows the values of the
design parameters of the platform.

BB i =
[
Bix Biy Biz

]T
= [rb cos(θi) rb sin(θi) hb]

T , i = 1.., 6 (2)

PP i =
[
Pix Piy Piz

]T
=
[
rp cos(φi) rp sin(φi) hp

]T , i = 1.., 6 (3){
θi =

2iπ−3ϕb
6 , φi =

2iπ−3ϕp
6 , i = 1, 3, 5

θi = θi−1 + ϕb, φi = φi−1 + ϕp, i = 2, 4, 6
(4)



Machines 2022, 10, 711 7 of 28

Table 1. Geometrical parameters of the Stewart Platform.

Definition Variable Value

Radius base platform rb 470.45 mm
Radius upper platform rp 388.95 mm
Initial height platform h0 1374 mm
Initial height cylinder l0 1192.63 mm

Height of the universal joints of the base platform hb 95 mm
Height of the spherical joints of the mobile platform hp −115 mm
Assembly angle between hinges of the base platform ϕb 24.07◦

Assembly angle between hinges of the mobile platform ϕp 103.66◦

2.3. Particularities of the Mechanical Design

The following particular mechanical design decisions were made with regard to the
Stewart Platform in this study in order to comply with the 6-DOF. The use of a Stewart
Platform to emulate wave movements was framed within the CircularSeas project as a
way to systematically examine how oceanic conditions affect on-board 3D printing. Some
design requirements, which are related to the parameters in Table 1, were the following:
platform diameter not greater than 1.10 m to operate in narrow environments, resulting
in the base radius, rb; dimensions of the 3D printers to be moved by the platform, with a
volume ranging from 342 mm × 460 mm × 580 mm to 490 mm × 503 mm × 1357 mm,
thus resulting in the upper platform radius, rp; load (3D printers) weight of up to 50 Kg. In
order to simulate oceanic movements, maximum speeds and accelerations of at least 0.6
m/s and 6 m/s2, respectively, and up and down movements of approximately 600 mm
were required. These requirements drove the selection of the cylinders and the parameter,
l0. The values of the variables hb and hp as well as the height of the platform in its initial
position, h0, were dependent on the designed structural parts and the selected universal
joints. Finally, the assembly angles between the hinges of the base and the mobile platform
(ϕb and ϕp) were extracted from the CAD design. All measurements were verified on the
CAD design and on the real platform used in this research (Figure 1b).

A combination of bearing with housing, shaft, and universal joint assembly was used
to make the connection between the upper platform and the cylinders, as can be seen in
Figure 3. The combination of bearing and universal joint allowed each cylinder to rotate
about its axis, with each joint therefore acting as a spherical joint [65,78]. This design
decision was taken to avoid expensive spherical joints.
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platform diameter not greater than 1.10 m to operate in narrow environments, resulting 
in the base radius, 𝑟𝑟𝑏𝑏; dimensions of the 3D printers to be moved by the platform, with a 
volume ranging from 342 mm × 460 mm × 580 mm to 490 mm × 503 mm × 1357 mm, thus 
resulting in the upper platform radius, 𝑟𝑟𝑝𝑝; load (3D printers) weight of up to 50 Kg. In 
order to simulate oceanic movements, maximum speeds and accelerations of at least 0.6 
m/s and 6 m/s2, respectively, and up and down movements of approximately 600 mm 
were required. These requirements drove the selection of the cylinders and the parameter, 
𝑙𝑙0. The values of the variables ℎ𝑏𝑏 and ℎ𝑝𝑝 as well as the height of the platform in its initial 
position, ℎ0, were dependent on the designed structural parts and the selected universal 
joints. Finally, the assembly angles between the hinges of the base and the mobile platform 
(𝜑𝜑𝑏𝑏 and 𝜑𝜑𝑝𝑝) were extracted from the CAD design. All measurements were verified on the 
CAD design and on the real platform used in this research (Figure 1b). 

A combination of bearing with housing, shaft, and universal joint assembly was used 
to make the connection between the upper platform and the cylinders, as can be seen in 
Figure 3. The combination of bearing and universal joint allowed each cylinder to rotate 
about its axis, with each joint therefore acting as a spherical joint [65,78]. This design de-
cision was taken to avoid expensive spherical joints. 

 
Figure 3. Spherical joint from a universal joint with a bearing. Figure 3. Spherical joint from a universal joint with a bearing.
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Following some studies in the literature [75,79], two specific mechanical components
made of aluminum were designed to obtain a resting position with no angle in the universal
joints, as is highlighted with a red circle in Figure 4.
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Figure 4. Parts designed to maintain the resting position on the Stewart Platform.

Each electromechanics cylinder was mounted with a parallel coupling system with the
servomotor. A connecting part was designed to specifically connect the coupling system
with the universal joints (parts 2 and 3 of Figure 5). These parts also fit the shaft attached to
the universal joint. In addition, each universal joint had a set screw to assist in centering
and securing the shaft.
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3. Platform Kinematics
3.1. Inverse Kinematics

The closed-loop vector approach was considered to conduct the analysis of the direct
and inverse kinematics (Figure 6).
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Two Cartesian axes were placed at the center of the base platform
{

Bxyz
}

and the
moving platform

{
Pxyz

}
, as can be seen in Figure 6. The origin of the base coordinate system

was at the point [0,0,0] represented by {B}. The points Bi and Pi in Figure 6 represent
the connection points of each member (denoted by Li) to the base and mobile platforms,
respectively. In Figure 6, the notations of Bi =

[
Bix, Biy, Biz

]
and Pi =

[
Pix, Piy, Piz

]
represent the vectors connecting the above connection points to the origin of each coordinate
system, counter-clockwise about the positive Z-axis. The vector Xd = [x, y, z] relates the
desired position of the coordinate system {P} to the coordinate system {B}. Thus, the
vector relationship for each member, Li =

[
Lix, Liy, Liz

]
, is given by Equation (8):

BL i =
BP i +

BXd – BB i (5)

The value of the vector BP i, which connects the mobile platform member’s junction
points with the {B} coordinate system, can be found using Equation (8). In this equation, it
is necessary to apply a Roll-Pitch-Yaw rotation matrix (B

PR) to the vector PP i. The rotation
matrix has the rotation angles γ on the X-axis, β on the Y-axis, and α on the Z-axis, as given
in Equation (8), where “c” stands for cosine and “s” for sine.

Rz(α) =

cα −sα 0
sα cα 0
0 0 1

, Ry(β) =

 cβ 0 sβ
0 1 0
−sβ 0 cβ

, Rx(γ) =

1 0 0
0 cγ −sγ
0 sγ cγ

 (6)

B
PR = Rz(α) Ry(β) Rx(γ) =

cα cβ cα sβ sγ− sα cγ cα sβ cγ + sα sγ
sα cβ sα sβ sγ + cα cγ sα sβ cγ− cα sγ
−sβ cβ sγ cβ cγ

 =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 (7)
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BP i =
B
PRPP i =

r11 r12 r13
r21 r22 r23
r31 r32 r33

Pix
Piy
Piz

 =

r11Pix + r12Piy + r13Piz
r21Pix + r22Piy + r23Piz
r31Pix + r32Piy + r33Piz

 =

ui
vi
wi

, i = 1.., 6 (8)

The subtraction of the end-effector positioning vector and the vector of the base
member platform attachments can be grouped into the displaced auxiliary vector Bd i,
according to Equation (9):

Bd i =
BXd − BB i =

 x− Bix
y− Biy

z + h0 − Biz

 =

xi
yi
zi

 (9)

It can also be noted that h0 is the separation distance between platforms from
center to center in the resting position. Equation (11) is then obtained by considering
Equations (5) and (9):

BL i =
BP i +

Bd i (10)

Therefore, the value of the elongation of the prismatic joint, li, with the use of geometric
inverse kinematics, is the norm of the ||BL i || vector (Equation (11)):

li = ||BL, i || =
√

L2
ix + L2

iy + L2
iz =

√
(xi + ui)

2 + (yi + vi)
2 + (zi + wi)

2, i = 1.., 6 (11)

As the actuators were electric cylinders, li does not consider the length of the cylinders
when they are fully retracted (l0) [33,58,80]. Therefore, the real position in the joint space
needs to consider the length of the retracted drive rod.

qi = li − l0, i = 1.., 6 (12)

3.2. Direct Kinematics

Direct kinematics is based on obtaining the position and orientation of the end-effector
from the length values of each linear actuator. This involves finding a closed-form solution
containing six simultaneous non-linear equations with six unknown variables and different
possible solutions. As mentioned above, the Newton–Raphson iterative numerical method
was employed to solve this problem.

The first step lies in the definition of the ith scalar functions that show the difference
between the calculated length of the actuators and the actual measured length, as shown in
Equations (13) and (14).

fi(a) = (xi + ui)
2 + (yi + vi)

2 + (zi + wi)
2 − L2

i = 0 (13)

fi(a) = L2
a − L2

i = 0 (14)

This function is applied on the a vector (Equation (15)), which groups the position and
orientation to be obtained.

a = [a1 a2 a3 a4 a5 a6]
T = [x y z α β γ]T (15)

The Newton–Raphson method applied to this case returns the following expression
(Equation (16)):

an+1 = an −
(

∂F(an)

∂a

)−1
F(an) (16)

where an represents the current position value, an+1 denotes the new position iteration
value, and F(an) is the matrix of differences between the calculated and measured values in
the displacement length of each actuator for each element of the current position’s iteration
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value. The matrix
(

∂F(an)
∂a

)−1
is mathematically equivalent to the inverse Jacobian of F(an) at

each current iteration value, and Equation (16) can be rewritten into Equations (17) and (18):

an+1 = an − J−1(an) F(an) (17)

x
y
z
α
β
γ


n+1

=



x
y
z
α
β
γ


n

−


∂ f1
∂x · · · ∂ f1

∂γ
...

. . .
...

∂ f6
∂x · · · ∂ f6

∂γ


−1

n



f1
f2
f3
f4
f5
f6


n

(18)

Solving the above system of matrix equations gives the value of the newly calculated
position. Finally, the values of the newly calculated position and the current one are
subtracted. If the difference between the two values in all dimensions of the vector is less
than the limit of convergence, the solution is considered valid, and we have the solution of
the direct kinematics. If not, the newly calculated point is taken as the current point, and a
new point is recalculated until convergence is obtained.

Both inverse and direct kinematics are used when carrying out the movement of the
platform. The first one is employed to realize the movement by converting the Cartesian
point into the movement of the cylinders. The second is used, among other applications, to
obtain the starting point of the movement. The generation of trajectories is described below.

3.3. Trajectory Generation

This section addresses the trajectory generation that was implemented on the Stewart
Platform to carry out PTP and oceanic wave motions.

3.3.1. Point-to-Point Trajectory

A point-to-point (PTP) path planning algorithm based on cycloidal trajectories was
implemented to move the robot along a straight path in any of the six spatial coordinates.
These trajectories had zero velocity and zero acceleration at the beginning and end of
the movement. In the literature, we can find these cycloidal algorithms being applied
on Stewart Platforms and manipulators although under the name of Kane’s transition
function [32,81–85]. However, when Kane tackled the problem of trajectory generation for
PTP sections, he decided to arbitrarily use this type of trajectory [86], which is nothing
more than a cycloidal function. When considering the cycloidal trajectory equations of
position, speed, and acceleration in Equations (19)–(21), respectively, six constraints in
displacement, speed, and acceleration can be found, both at the start and at the end, as
shown in Equation (22).

p(t) = (p(T)− p(0))
[

t
T
− 1

2π
sin
(

2πt
T

)]
+ p(0) (19)

.
p(t) =

p(T)− p(0)
T

[
1− cos

(
2πt
T

)]
(20)

..
p(t) =

2π(p(T)− p(0))
T2 sin

(
2πt
T

)
(21)

p(0) = p0, p(T) = p f ,
.
p(0) = 0,

.
p(T) = 0,

..
p(0) = 0,

..
p(T) = 0 (22)

where T is the difference between the final time and the initial time, p(t) is the current
position at a given current time t, p0 is the initial position, p f is the final position to reach,
t0 is the initial time, and t f is the final time of the movement.

Among the advantages of using this algorithm instead of others—such as cubic
polynomials, quintic polynomials, etc.—two stand out. First, it is an algorithm based
on trigonometric functions that present non-null continuous derivatives for any order
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of derivation in the interval (t0, t f ) [87]. Consequently, the specific cycloidal trajectory
presents a continuous acceleration profile (acceleration is finite at all times), thus obtaining
a movement with lower characteristics of vibration, tension, noise, and shock [88]. This
makes it a suitable trajectory for high-speed applications where low residual vibration
(vibration after the end of the motion segment) is desired. Indeed, in [89], they suppressed
residual vibration in PTP motion by using cycloidal functions. It has also been widely used
for steady and continuous motion [90], which is very important for motors to be able to
start and stop more softly. Second, it incorporates the trigonometric functions into the
motion laws to enhance the ease of their implementation [91]. When generating points
that can move the joints synchronously on the Stewart Platform, a kinematic scaling of the
trajectory can be performed by means of a normalized parameter. This ensures compliance
with the maximum acceleration and maximum velocity constraints. Therefore, given a
trajectory p(t), the normalized form is obtained using Equation (23):

p(t) = pi + h σ(τ) (23)

where pi is the initial point, h is the difference between the initial and final positions, and
σ(τ) is the value determined by Equation (24):

σ(τ) = τ − 1
2π

sin(2πτ), 0 ≤ σ(τ) ≤ 1 (24)

which τ is the time taken to navigate the segment, and is represented by Equation (25):

τ =
t− t0

T
, 0 ≤ τ ≤ 1 (25)

Therefore, the normalized position equation can be derived to obtain velocity, acceler-
ation, and jerk with Equations (26)–(28), respectively. The maximum values to consider
in the kinematic constraints of the trajectory are obtained by applying the chain rule to
the change in the temporary variable described above. The kinematic constraints can be
satisfied by modifying the duration of the trajectory, T.

.
σ(τ) = 1− cos(2πτ),

.
pmax =

2h
T

(26)

..
σ(τ) = 2π sin(2πτ),

..
pmax =

2πh
T2 (27)

...
σ(τ) = 4π2 cos(2πτ),

...
pmax =

4π2h
T3 (28)

An example of Cartesian motion for a span of 30 mm in 3 s and a velocity of up to
20 mm/s is shown in Figure 7:
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3.3.2. Oceanic Wave Motion

Deep-sea ocean wave-type motion on the surface was implemented as the basis for
the oceanic wave motion, which was performed by the developed Stewart Platform. A
given linear wave in the domain of space can be represented by a sinusoidal profile using
Airy’s wave theory [92]. A wave is characterized by the following set of parameters: the
wave number (k), the number of times a wave vibrates at a given distance; the wavelength
(L), the distance between the same points between two consecutive oscillations; the period
(T), the time it takes for a wave to complete a full oscillation; the angular frequency (w), the
frequency of the wave in radians per second; and the amplitude (A), the distance between
the point of maximum elongation of a wave and its midpoint and frequency.

The function that governs the movement of the free surface of the sea (η) considering
the distance measured x̃ along the horizontal axis is expressed by Equation (29):

η(x̃, t) = A cos(kx̃− wt) (29)

where k is 2π/L and w is 2π/T.
The classical nomenclature in wave theory does not assume the effect of all the fre-

quencies that appear in reality. A real wave, also called a random wave, is a wave that can
be decomposed into a finite number of linear waves with the frequencies that comprise it
and different amplitudes [93]. Therefore, it can be seen as the sum of a large number of
linear harmonic wave components in a Fourier analysis.

η(x̃, t) =
N

∑
i=1

Ai cos(ki x̃− wit + φi) (30)

where η(x̃, t) is the variation of the sea surface at a given time and at a given point of
the displacement direction of the wave, N is the total number of linear waves in the
decomposition, Ai is the amplitude of the ith linear wave, wi is the angular frequency of
the ith wave, and φi is the phase of the ith wave. Figure 8 shows an example of the random
wave decomposition.
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Figure 8. Example of a random wave decomposed into five waves. (a) Random wave; (b) Decompo-
sition in a set of linear waves.

Summing up, the generation of the motion of an ocean wave in this study was treated
as a sine wave with Airy’s linear theory and as the composition of sinusoids (random wave).

Up to this point, the variation profile of the free sea surface with a mean water level of
zero η is obtained, which is directly on the Z-coordinate on the surface. However, a particle
of a travelling ocean wave in the deep sea moves along circular orbits [94]. This particle
has a horizontal ξ and a vertical ς displacement, which are shown in Equation (31). The
detailed development of particle trajectories in the deep sea can be found in [95].{

ξ = −A ek η sin(kx̃− wt)
ς = A ek η cos(kx̃− wt)

(31)
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In addition, it is possible to consider the surface displacement of a wave travelling
at an angle to the axis of displacement to have the horizontal motion of the particle at
2 DOF [96]. To do so, the particle path is multiplied by a “wave attack” angle θ. This
approach was the one taken by Galván-Pozos and Ocampo-Torres in their research [57].
The oceanic wave motion expressed in Cartesian coordinates to generate the motion of the
Stewart Platform is shown in Equation (32):

x = −Aek η sin(kx̃− wt) cos(θ)
y = −Aek η sin(kx̃− wt) sin(θ)
z = A ek η cos(kx̃− wt)

(32)

Equation (33) shows the angular displacement of the oceanic wave motion. This is
given by the slope of the tangent to the free surface at each point in the X and Y directions.
In the Z-direction, it is considered as zero since horizontal angular movements are still a
relatively small value [54]. 

α = tan−1
(

dη
dx

)
β = tan−1

(
dη
dy

)
γ = 0

(33)

The groundwork for the modelling, kinematics, and motion generation of the Stewart
Platform developed in this study has been presented. The next section will focus on
detailing its implementation through an automation architecture based on the use of
industrial controllers.

4. Control Automation with Industrial Resources
4.1. Architecture

The Stewart Platform developed for this study is automated by an industrial con-
troller. These are seen as PLCs with numerical control capabilities for motion control tasks.
In general, axis controllers are programmed according to the PLCopen Motion Control
automation standards, which define a reusable set of function blocks (FB) for the imple-
mentation of the industrial servomotor’s motion. The industrial controller employed in
this research is an OMRON NJ501-1300.

Six electromechanical cylinders were chosen for the linear displacement of the “legs” of
the platform. These electromechanical cylinders are driven by industrial servomotors that
have built-in absolute encoders to obtain position–velocity feedback. With this feedback,
it is possible to estimate the overall platform position by using the direct kinematics, as
mentioned in Section 3.2.

Figure 9 presents the architecture for implementing the motion of any parallel robot
with an industrial controller, such as the Stewart Platform in this study. The architecture is
divided into five main tasks: a plc task, a motion control task, a communications task, a
servodrive task, and a real motion task. The PLC task is the one that the user defines, while
the other tasks are typically hidden from the user’s view and can only be parameterized,
without the possibility of altering their order of execution.

The industrial controller runs any program containing a general process, which can
involve some machines. When the motion of the platform is requested in the program, the
PLC task is the one responsible for the sequence control management. Based on a desired
motion of the platform—for example, a PTP straight line through the X-axis—the industrial
controller plans the sequence and gives the data to the toolpath generator. The toolpath
generator addresses the calculus of the actual position of the platform (direct kinematics),
the generation of motion profiles in the cartesian toolpath according to the type of motion,
and the inverse kinematics in order to transform it into a set of toolpaths for the six joints.
For each cycle, a new set of six setpoints are sent to the motion sequence part of the task.
The particularities of the implementation of motion generation in the industrial controller
will be detailed in the subsequent sections.



Machines 2022, 10, 711 15 of 28

The next step involves the specification of the current commanded setpoint to the
servomotors through the motion sequence, which is the type of sequence that is responsible
for generating motion in any motor configured in the program using the MC Function
Blocks defined by PLCopen. There are a few manufacturers that implement a user-defined
cycle-by-cycle generation of the trajectory, which could be affected by changes in trajectory
during its execution. In a Stewart Platform robot, all the joints should move synchronously,
and therefore the motion control resources need to ensure the cyclical motion. To do so, the
MC_SyncMoveAbsolute Function Block was employed. The use of this type of block not
only affects the commanded position, but also the PLCopen data structure of each axis of
movement, thus altering its internal state and other variables. Therefore, at this point, six
axis-commanded point-to-point positions with the full data structure of each axis are sent
to the motion control task, also called the MC primary period task.
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Currently, axis controllers use specific internal tasks to carry out motion control func-
tions. The controller needs the information from the user program, which is exchanged by
using any motion control function block. Internally, the controller gathers the information
of the commanded motion and performs an interpolation that considers the real position
taken from the encoder feedback (profile and synchronization processing), as shown in
Figure 9. The commanded position in the previously configured units, e.g., millimeters,
is obtained from the interpolation. However, the servodrive needs pulses. Therefore, the
final step of the motion control task addresses the relationship between the display unit
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(the work travel distance per motor rotation) and the pulse unit (the command pulse count
per motor), also called the internal electronic gear.

The pulses are sent by the EtherCAT master function task. EtherCAT is a fast, stan-
dard, master–slave-based industrial Ethernet technology that can support a synchronized
cycle time of up to 100 µs. In addition, sensor and actuator devices, such as industrial
servomotors, from different suppliers can be integrated without any problems, provided
they have EtherCAT interfaces. Therefore, to establish an open-structured and reconfig-
urable hardware platform, the EtherCAT bus is adopted. This EtherCAT Function Module
exchanges data with the servodrive using the CoE (CAN application protocol over Ether-
CAT). CoE technology can specify parameters and motion control data mapping using the
object dictionary of each servodrive. Process data objects (PDOs) and service data objects
(SDOs) communicate the data between the industrial controller and the servodrive. PDOs
periodically exchange data in real time, such as the servomotor position control, and SDOs
exchange data when required, such as for parameter transfers.

Each servodrive has an internal task that converts the pulses to electric PWM signals.
After the communication processing and command interpretation, the setpoint commands
are introduced through a cascade loop of PIDs in order to achieve the proper position,
velocity, and torque considering the limits of the motor. To do so, the servodrive implements
a tracking error strategy that considers the setpoint and handles the current position from
the axis encoder.

Finally, the “real task” addresses the motion of a load on the platform composed of six
electromechanical cylinders (UNIMOTION PNCE-50-BS-2010-600-S was used in this study)
driven by industrial servomotors with absolute encoders (R88M-1M40030H/T was used in
this study). Among the different types of coupling that can be made between a cylinder
and the engine, the parallel-type coupling was chosen to avoid increasing the height of
the platform.

4.2. Motion Implementation

As mentioned above, to perform the motion of the Stewart Platform, some kinematic
calculations and trajectory generation are needed. This section details the algorithms and
particularities of the implementation in an industrial controller. All algorithms as well
as the process sequence and motion generation, among others, were implemented in the
NJ501-1300 controller following the Structured Text programming language, which is a
standard IEC 61131-3 programming language for industrial controllers.

A point-to-point movement requires a target point and the speed at which the platform
will move to reach that point. Thus, the initial and final times of the movement are obtained
for each of the spatial variables. The current point is then calculated with direct kinematics
to obtain the starting point of the trajectory generator. The trajectory generator, which
considers the speed, acceleration, and jerk limits, calculates the spatial points through which
the Stewart Platform will move at each automaton cycle until it reaches the target position.
Each spatial point is passed through the inverse kinematics to obtain the target displacement
of the cylinder that reaches the spatial position. Finally, each cylinder displacement is
executed in the axis controller by the function block “MC_SyncMoveAbsolute”, from the
user program in every task period to the servodrive.

Therefore, Algorithm 1 was employed to obtain the inverse kinematic solution (imple-
mentation of Equations (5)–(12)).
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Algorithm 1: Inverse Kinematics

Input: Spatial point to reach, (BP input); fully retracted length of cylinders, (l0)
Output: An array with the length of each cylinder in the joint space (qact)

Matrix rotation, (Rxyz);
1 Rxyz ← Computation of the rotation matrix considering the BP input spatial orientation
2 foreach cylinder
3 BP i ← Perform the coordinate system transformation of PP i
4 Bd i ← Computation of the difference between BP input and BB i
5 BL i ← Calculus of the total length vector for each cylinder
6 qact i ← Adaptation of the length vector norm considering the real cylinder

( ||BL, i ||− l0)
7 end foreach

However, several factors had to be taken into account in the direct kinematics. In-
dustrial controllers have a cycle time within which to perform all the instructions of a
program. Furthermore, such devices do not have the computing power to perform function
derivatives, recursive calculations, or complex matrix equations on their own. Therefore, in
order to implement the inverse Jacobian from the Newton–Raphson method in industrial
controllers, an exhaustive simplification of each element of the Jacobian matrix was chosen.
This simplification approach can also be found in the literature, e.g., in [97], where the main
differences are (1) in the computation of the partial derivatives, which is the appearance of
the terms associated with the z-coordinate of the PP i vector, since this value in this study is
non-zero due to the phase shift introduced by the height of the universal joints mentioned
in Section 2; (2) in the positive sign of xi in ∂ fi

∂β . Considering Equation (9), the result of the
partial derivatives of x, y, and z is obtained (Equation (34)). Moreover, the result of the
partial derivatives of ui, vi, and wi with respect to the α, β, and γ angles can be obtained
using Equations (7) and (8), just as Equation (35) is after comprehensive simplification.
Hence, the cycle time is shortened by exploiting some of the calculations previously made,
such as the elements that make up the rotation matrix (r11 to r33).

∂xi
∂x

=
∂yi
∂y

=
∂zi
∂z

= 1 (34)

∂ui
∂α = −vi,

∂ui
∂β = cα wi,

∂ui
∂γ = Piyr13 − Pizr12

∂vi
∂α = ui,

∂vi
∂β = sα wi, ∂vi

∂γ = Piyr23 − Pizr22
∂wi
∂α = 0, ∂wi

∂β = −cβ Pix − sβsγ Piy − sβcγPiz, ∂wi
∂γ = Piyr33 − Pizr32

(35)

Given Equations (34) and (35), the value of each element of the Jacobian can be calcu-
lated (Equation (36)). This equation represents the set of values to efficiently implement in
the industrial controller.

∂ fi
∂x = 2(xi + ui)
∂ fi
∂y = 2(yi + vi)
∂ fi
∂z = 2(zi + wi)

∂ fi
∂α = 2(yiui − xivi)

∂ fi
∂β = 2

[
(xicα + yisα)wi −

(
cβPix + sβsγPiy + sβcγPiz

)
zi
]

∂ fi
∂γ = 2

[
(xir13 + yir23 + zir33)Piy − (xir21 + yir22 + zir32)Piz

]
(36)

Regarding the implementation of the inverse of the Jacobian in an industrial controller
without the use of an external software (e.g., MATLAB, Simulink, Labview), one of the
properties of invertible square matrices is used. This property states that the multiplication
of a matrix by its inverse results in an identity matrix of the same order as the first matrix,
provided that the determinant of the matrix is non-zero (greater than a tolerance limit
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near to zero). However, the resolution of the determinant has to be possible since PLC
and industrial controllers’ programming languages do not usually support linear algebra
tools such as matrix operations (and when they do implement them, they are the most
basic for small matrices). Therefore, for the computation of the determinant of a 6 × 6
matrix in an industrial controller, it is necessary to implement an ad hoc solution in the
controller. Since there is no possibility of applying recursive methods in the PLC [98], such
as the cofactor expansion method, the Leibniz formula was implemented as it is widely
used for calculating matrix determinants [99]. Once the determinant was calculated, the
result was checked to ensure that it was less than a threshold—which is a value close to
zero—in order to avoid computational inaccuracies. An example of a threshold value used
to detect singular values in the vicinity of zero in the determinant of the Jacobian matrix
can be found in [100]. After ensuring that F is a non-singular matrix (determinant distinct
to zero), the inverse of the Jacobian matrix is calculated, considering that it is an unknown
parameter in a linear algebraic matrix equation. Therefore, the LU decomposition method,
which is often used as one of many possible expedient algorithms to find the inverse of
a matrix [101], was used. The LU decomposition method was implemented following
Doolittle’s algorithm, a compact algorithm that achieves a low computational cost [102].

Finally, to avoid the industrial controller watchdog constraints due to the while loop
in the direct kinematics algorithm, an iteration count was employed, which allowed for the
controller to finish its current cycle and follow the calculation of the direct kinematics in
the following cycle when needed.

Summing up, Algorithm 2 was employed in the industrial controller to obtain the
direct kinematic solution.

Algorithm 2: Direct Kinematics

Input: An array with the actual length of each cylinder (Lact); first iteration point, (Pf irst);
Output: Actual spatial point of the end effector (Psol)

Convergence limit, (Klim);
Tolerance, (Ktol);
Current iteration point, (Pcurrent);
Difference between current iteration point and calculated point, (Dp);
Point calculated from Newton–Raphson equation, (Pcalc);
Matrix of scalar function F in Equation (14), (Fn);
Jacobian of the Fn matrix, (Jn);
Jacobian inverse (J−1

n );
1 Pcurrent ← Assign the first iteration point Pf irst to the current iteration point
2 do
3 Lcalc ← Computation of inverse kinematic over the first iteration point
4 Fn ← Calculus of the matrix F
5 Jn ← Computation of the Jacobian matrix
6 det(Jn)← Calculus of the Jacobian determinant
7 if (abs(det(Jn)) > Ktol) then
8 J−1

n ← Compute the inverse of Jn using LU decomposition
9 Pcalc ← Solve the Newton–Raphson equation to obtain the calculated point
10 Dp ← Absolute difference of Pcalc and Pcurrent for each coordinate
11 Pcurrent← Update current point based on the calculated point, Pcalc
12 else
13 Exit due to singularities in the Jacobian matrix
14 while (Dp > Klim)
15 Psol ← The solution is the last current point of the Newton–Raphson method

Regarding the ocean wave motion generator, the strategy is almost the same as in
the PTP. If the motion to perform is based on the simple Airy theory, the wavelength,
amplitude, frequency, and phase of the wave are needed, as well as the angle attack to
the x-y motion. The first step is to obtain the first point using direct kinematics. Then,
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without carrying out any movement, the generation of ocean trajectories for the first point
is executed to obtain the initial point of the wave motion. A point-to-point movement for
this initial wave point is then carried out. This is performed in order to avoid a large gap
between the current point of the platform and the initial point of the wave, since by having
cosine-dependent variables when starting the movement with a zero angle, the maximum
amplitude is obtained in one of the coordinates. This prevents a single task cycle from being
given an unreachable setpoint that would cause the platform to enter into error. Once at the
initial point of the wave, the generation of the ocean movement while considering all the
input parameters is started. The inverse kinematics is executed at each point of the oceanic
trajectory to convert it to the effective movement of the cylinders. Finally, each cylinder
displacement is executed using the “MC_SyncMoveAbsolute” motion control function, as
in the previous case.

5. Results

This section presents the results obtained by implementing inverse kinematics, plat-
form motion, and direct kinematics in the NJ501-1300 industrial controller in order to
evaluate the performance of automation based on the use of an industrial controller archi-
tecture and industrial resources.

5.1. Inverse Kinematics Implementation: Cycloidal and Oceanic Wave Trajectories

Several trajectory movements were performed using the trajectory generation algo-
rithm and the inverse kinematics mentioned in Section 3. Once the speed and end points
were selected in the user program, the trajectory was automatically generated and the movement
started. Some examples are given below to show the movement of the trajectory tracking.

Figure 10 shows a series of PTP movements performed from the starting point
pini = [0 mm, 0 mm, 150 mm, 0◦, 0◦, 0◦]T and how the cylinders move with respect to
these defined trajectories after applying the inverse kinematic solution. These movements
were performed in each of the mechanism’s degrees of freedom. The trajectories performed
in the X, Y, Z coordinates were made from 100 mm absolute at 20 mm/s, as can be seen in
the first three plots in the column on the left of Figure 10. The trajectories performed in the
α, β, γ coordinates were 6◦, 6◦, and 10◦, respectively, at a speed of 2◦/s, as can be seen in
the last three graphs in the column on the left-hand side. The column on the right-hand side
shows the different positions that the cylinders reached to follow the trajectory described
in their respective movements in the column on the left-hand side.

The next test involved the ocean movement based on the trajectory generation re-
viewed in Section 3.3.2 for the simple Airy wave and the random wave. Figure 11a shows
how the Cartesian spatial point varies for a wave with an amplitude of 3 mm, a 10◦ phase,
a period of 10 s, and a wavelength of 100 m; Figure 11b shows the response of the cylinders
to this type of motion.

Figure 12 presents the time evolution of the spatial trajectory of the Stewart Platform
under a wave following the random wave model. This random wave was composed of
five sinusoidal waves with the parameters below (Equation (37)). The response to the
movement of the cylinders can be seen in Figure 12b. Both Figures 11 and 12 started with
the positioning phase at the starting point of the oceanic movement. When this point was
reached, the ocean wave motion began.

A = [3, 2.3,−3.5, 0.7, 5.4] mm
T = [10, 5, 3, 7, 3] s

L = [60, 85, 75, 70, 100] mm
φ = [−10, 15, 0, 20,−45] ◦

(37)
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Figure 12. Inverse kinematic solution for the ocean wave following the random wave approach.
(a) Time evolution for the generation of Cartesian motion (X, Y, Z) and angular motion (α, β, γ );
(b) corresponding motion for each cylinder (axis).
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5.2. Performance of Direct Kinematics

To evaluate the performance of the implementation of the direct kinematic in industrial
controllers, the following test was executed.

This test was based on moving the platform to certain points within its workspace and—
from an initial point of iteration of the direct kinematics and an established convergence—
on solving the direct kinematics, quantifying the point obtained, and estimating the time
it took to reach the result. Both the initial iteration point and the convergence limit
were the same for all the tests in order to measure how it affected the fact that the plat-
form was already positioned more or less close to the initial iteration point. All tests
were performed with a 1 ms automaton cycle. The following table shows the results
obtained after eight position calculation tests with direct kinematics. The convergence
of the Newton–Raphson algorithm was fixed at 0.01, and the initial iteration point was
pNR = [60.25 mm, 85 mm, 230.7 mm, 0◦, 0◦, 3.75◦]T . The selected starting point was a
fixed parameter in order to be able to study the performance of direct kinematic imple-
mentation when this point is further away from or closer to the real position of the robot.
Nevertheless, there are already reported specific methods with which to choose the starting
point when applying the Newton–Raphson method, which can improve the computational
speed and convergence [103].

It can be seen that in the farthest case tested, the algorithm required 13 iterations to
reach the correct solution with high accuracy, which is approximately 640 µ s, more than
half of the most demanding duty cycle of the industrial controller tested.

These results show that it is possible to implement the calculation of direct kinematics
with industrial controllers in real time and with high accuracy as the target points are
always reached within the convergence limit, without heavily compromising cycle time.

Finally, the calibration procedure for the platform is performed, first by moving all
equal cylinders up to their retracted (rest) position. Once in this position, the initial height
of the platform and the initial length of the cylinders that are shown in Table 1 are checked,
as well as the levelness of the upper platform. After this calibration, a rotation data counter
setting is established on the absolute encoders of the servomotors in order to set them as
the zero of the cylinders. This measurement is then transferred to the servodrives so as to
be stored in their internal memory. At this point, the platform is at the origin (coordinates
[0,0,0,0,0,0]). Then, discrete and individual movements are made to check the longitudinal
displacements and rotations by positioning digital measuring devices at predefined points
of the platform.

6. Discussion

This study set out with the aim of assessing the control automation strategy for
performing point-to-point and oceanic wave motions with industrial resources. The point-
to-point motion obtained as the kinematic solution in Figure 10 is in accordance with the
motion of other Stewart Platforms found in Simulink simulations with electric cylinders in
the literature [77,82].

Furthermore, the solution for the inverse kinematics of the oceanic motion of particles
on the surface of a deep-sea-type ocean behaves rather similar to those found in studies
that modelled the motion of deep-sea particles. [57,104]. The generation of the ocean wave
motion went into the detail of the ocean wave model, and it differs from other works by
researchers that produced movement similar to that of the ocean through the generation
of Cartesian points with sinusoidal functions, which had been obtained experimentally
within a simulation environment [34,54,58].

As some studies addressed [105,106], when implementing direct kinematics in real
time in order to track trajectories, specifying points that are close to each other makes the
algorithm converge much faster. However, in order to be useful in real-time trajectory con-
trol, if any movement is performed every millisecond, the solution of the direct kinematics
has to be less than one millisecond, taking into account the fixed execution time and the
user-defined program time. In some cases, in order to comply with the fastest industrial
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controller task cycle, there may be a need to divide these calculations into more than one
task cycle. Therefore, high-level functions in trajectory-following control must consider this
delay. Some research works reported that the kinematic solution is complex and resource-
heavy to calculate in real time [34,107]. However, the results in Table 2 support the idea
that the implementation can be executed efficiently in real time with an accurate position
solution. Considering that the typical cycle time of an industrial controller is between 1 ms
and 10 ms, obtaining accurate results in less than 1 ms validates the real-time efficiency.

Table 2. Position calculation performance test using direct kinematics.

Test Actuator Length (mm) Expected Pose
(mm,mm,mm,◦,◦,◦)

Pose Result
(mm,mm,mm,◦,◦,◦) N◦ Iterations Time Spent (ms)

#1


190.58543
191.74641
232.17754
202.60028
204.23010
232.64683




53.5
100.4
200

0
0
0




53.50133
100.3996

200.00000
7.578623× 10−7

0.0002551
0.0000127


5 0.2396

#2


194.37123
191.72355
226.90184
204.78300
201.05974
225.82559




53.5
75
200

0
0
0




53.50133
74.99966

200.00000
−1.46025× 10−7

0.0002555
0.0000128


5 0.2407

#3


206.57170
212.54965
235.31636
213.32994
221.74836
237.75779




20
75

215
0
0
0




20.001352
74.999732
214.99999

4.29544× 10−7

0.0002598
0.0000109


5 0.2412

#4


88.751196
114.18792
142.30207
85.435390
104.90141
213.64096




12

110
100

0
0
2




12.00013

109.99965
99.99998

0.0000548
−0.000025
2.0000133


5 0.2410

#5


227.31195
273.36991
310.48477
242.15673
236.84376
251.03541




53.5
75
250
−1
3
4




53.48808
75.00216

250.00010
−1.00023
2.99738
4.00004


12 0.594

#6


118.04343
148.09768
108.92776
161.43175
170.51133
104.51965




−70
−47.6
125.4

1.7
3
−3




−70.00778
−47.60117
125.40023
1.70016
2.99800
−3.00001


13 0.6435

#7


216.86814
247.66924
287.35873
219.87034
214.73644
245.96804




60.24
84.9

230.66
−0.708

1.51
3.73




60.23424
84.90173

230.65999
−0.70818
1.50760
3.73003


11 0.5545

#8


226.37904
244.56934
280.69887
214.94392
209.04250
257.25417




60.3
84.97

230.64
0
0

3.79




60.30000
84.97046

230.64003
2.68308× 10−7

2.23528× 10−6

3.78998


3 0.1492

The advantage of being able to include direct kinematics at runtime is that it would
allow for a fast control cycle to be performed during automation, and at a high level for
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those control loops that would already be taking place in the servodrive. In this way,
automation decisions can make it more complex for position control to close the loop in the
industrial controller, or for high trajectory speed monitoring tasks such as error tracking,
margin checking, etc.

7. Conclusions

The purpose of the current study was to investigate the control automation of a Stewart
Platform using only the resources provided in today’s industrial controllers. To support
this, modelling, inverse and direct kinematics as well as cycloidal PTP and oceanic wave
motion were implemented in an industrial controller. One of the more significant results is
that it is possible to perform the direct kinematic calculations with high accuracy in real
time by employing industrial controllers.

This brings about some practical applications. Firstly, it points to the architecture and
strategy needed to automate any parallel robot in order to perform spatial motion with
current industrial controllers without using third-party software. Secondly, two different
types of positioning strategies for Stewart Platforms are detailed along with their benefits:
cycloidal point-to-point and oceanic wave motions based on the single Airy wave model
and irregular waves. Thirdly, it shows an effective way to calculate the direct kinematics
on the controller side, which may open the possibility of closing the positioning loop on
the controller or implementing supervisors such as the “tracking error”.

Further research might investigate the effects of planning the sequence of the trajectory
in order to avoid commanding points outside the workspace and collision with objects
inside the workspace while considering the feedback of the tracking error. Moreover,
having such a robot automated with an industrial controller allows for easy and direct
integration with other more complex industrial servo axis systems.
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