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Abstract: The aim of this study was to obtain accurate angular positions and velocities from resolver
signals; resolver-to-digital conversion (RDC) often adopts a phase-locked loop (PLL) as a demodula-
tion algorithm. However, resolver signals often come with quadrature errors and harmonics, which
lead to a severe reduction in PLL accuracy. The conventional PLL does not consider the impact of
the quadrature error, and the bandwidth of the PLL is much larger than the fundamental frequency
of resolver signals for pursuing a low dynamic error. These reasons render the retention of resolver
harmonics in the demodulation results. In this paper, a disturbance-compensated PLL (DC-PLL)
is proposed, which consists of a phase detector for suppressing quadrature error and harmonics
(SQEH-PD) and a second-order observer. Firstly, since the quadrature error does not change with
the angle velocity, the pre-estimated quadrature error is used in the SQEH-PD to compensate for
the quadrature error in resolver signals. Secondly, although the frequency of the harmonics changes
with the velocity, the amplitudes of the harmonics do not change. Therefore, the pre-estimated
amplitudes of harmonics and estimated angular position are used in the SQEH-PD to compensate
for the harmonics in resolver signals. Thirdly, a second-order observer is designed to estimate the
angular position and velocity by regulating the phase detector error. Compared with the conventional
PLL, the proposed DC-PLL has a stronger anti-disturbance ability against the quadrature error and
harmonics by configurating the phase detector error and the estimated position error, which have a
linear relation. Simulation and experimental results prove the effectiveness of the proposed method.

Keywords: resolver; PLL; phase detector; suppressing harmonics; quadrature error

1. Introduction

Resolvers are widely used in aviation, aerospace, and electric vehicle fields as angular
position sensors for their advantages of high precision and strong anti-disturbance abil-
ity [1–3]. The outputs of resolvers are two orthogonal signals modulated by high-frequency
excitation signals. To extract the accurate angular position and velocity from a resolver’s sig-
nals, a high-precision RDC algorithm is usually adopted, which mainly includes detection
and demodulation [4,5].

In the practical use of resolvers, there are many non-ideal factors in their signals, such
as the quadrature error and harmonics [6]. The quadrature error refers to the fact that the
phase difference between the two resolver signals is no longer 90 degrees [7]. Two major
reasons are accounted for in the quadrature error: one is that the state windings are not
installed orthogonally, and the other is that the number of winding turns is not ideal when
rounding [8]. Harmonics refer to resolver signals containing harmonics of a rotor angular
position. Harmonics are caused for two reasons: firstly, the inductance of winding is not
ideal, and actual inductance induces harmonics, more or less [9]; secondly, the magnetic
field of the resolver is distorted, which is usually caused by the non-ideal shape of the
rotor [10]. Although quadrature error and harmonics have little effect on detection, they
seriously reduce the accuracy of demodulation.

Machines 2022, 10, 709. https://doi.org/10.3390/machines10080709 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines10080709
https://doi.org/10.3390/machines10080709
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0002-7746-4589
https://doi.org/10.3390/machines10080709
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines10080709?type=check_update&version=2


Machines 2022, 10, 709 2 of 15

Demodulation algorithms can be divided into open-loop algorithms and closed-loop
algorithms [11]. Although open-loop algorithms are simple and easy to implement, they
often have poor anti-disturbance abilities. Commonly used inverse tangent algorithms [12]
and the octant selection logic algorithm [13] have the problem of amplifying noise by
differential operations [14]. Although the lookup table algorithm [15] and the pseudolinear
signal algorithm [16] do not amplify noise, they have low demodulation accuracy and a
poor anti-disturbance ability under the condition of limited processor resources.

Compared with open-loop algorithms, closed-loop algorithms have stronger anti-
disturbance abilities, among which, a PLL is most commonly used for its high precision and
strong anti-disturbance ability. A PLL consists of a phase detector (PD), a loop filter (LF),
and a voltage-controlled oscillator (VCO) [17]. In [18], considering an unknown load torque
and friction effects, a PLL is used to estimate the angle position, and a robust position
backstepping tracking controller is designed to ensure the trajectory-tracking performance
of the motor. In [19], a decoupled double synchronous reference frame-based PLL is
proposed to suppress the amplitude imbalance in resolver signals. In [20], a composite PLL
is proposed to suppress random disturbances, and the steady-state accuracy of the proposed
composite PLL is greatly improved compared with the conventional PLL. However, the
PLL has great defects in dealing with resolver signals containing the quadrature error and
harmonics. To pursue a low dynamic error, the bandwidth of the PLL is often much larger
than the fundamental frequency of resolver signals. Therefore, when there are harmonics
in the resolver signals whose frequency is similar to that of the fundamental signal, the
PLL fails to suppress harmonics. In addition, the conventional PLL does not consider the
quadrature error in resolver signals, so it also fails to suppress the quadrature error.

In order to solve the problem of reduced demodulation precision by non-ideal factors
of resolver signals, filtering and calibration methods are often used. In [21], low-pass filters
are introduced to suppress harmonics. However, the frequency of harmonics is close to
that of the fundamental signal. It is easy to damage the fundamental signal in the process
of harmonics filtering, which introduces new errors in the RDC. In [22,23], two calibration
algorithms are proposed to eliminate amplitude imbalances, DC offsets, and quadrature
errors in resolver signals. However, the introduction of calibration increases the cost and
reduces the reliability of the RDC. Moreover, the frequency of harmonics varies with the
angular velocity, so it is difficult to suppress harmonics with calibration.

In this paper, a DC-PLL is proposed to suppress the quadrature error and harmonics
in resolver signals. Firstly, since the quadrature error does not change with the angular
velocity, the pre-estimated quadrature error can be used in SQEH-PD to compensate for the
quadrature error in the resolver signals. Secondly, although the frequency of the harmonics
changes with the velocity, the amplitudes of the harmonics do not change. Therefore, the
estimated angular position is used to substitute the phase of the harmonics. The estimated
angular position and pre-estimated harmonics amplitudes are used in the SQEH-PD to
compensate for the harmonics in the resolver signals. Thirdly, the second-order observer
estimates the angular position and the velocity by regulating the phase detector error from
the SQEH-PD. For the resolver signals containing the quadrature error and harmonics, the
proposed DC-PLL can improve the accuracy of the RDC significantly.

2. Effect of Non-Ideal Factors on RDC
2.1. RDC Principles

Figure 1 shows the principle of the software-based RDC. The resolver signals v∗s and
v∗c are two orthogonal signals modulated with the excitation signal vex:{

v∗s = v1 sin θ cos ωet + ω
ωe

v1 cos θ sin ωet
v∗c = v1 cos θ cos ωet− ω

ωe
v1 sin θ sin ωet

(1)
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where ωe is the excitation frequency, which ranges from 1 to 10 kHz [24], and ω is the
angular frequency of the rotor. Since ωe is much bigger than ω, the second term of (1) can
be regarded as zero [25]. The resolver signals can be expressed as [26]:{

v∗s = v1 sin θ cos ωet
v∗c = v1 cos θ cos ωet

(2)
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Figure 1. Schematic diagram of software-based RDC.

After detection, the pair envelope signals vs and vc were obtained as:{
vs = sinθ.
vc = cos θ

(3)

When we inputted vs and vc into the demodulation, estimated position θ̂ and estimated
velocity ω̂ were obtained. However, in the practical use of the resolver, the output signals
were not the ideal form as shown in (3), and there were various non-ideal factors. Although
some of them could be suppressed with calibration, they could not be eradicated completely,
and the residual quadrature error and harmonics would seriously reduce the accuracy of
the demodulation.

2.2. Analysis of Quadrature Error and Harmonics Effect on PLL

Using θ̂ denoted the estimated position from the PLL, and the phase detector error
demodulated from the resolver signals shown in (3) could be expressed as:

ε = vs cos θ̂ − vc sin θ̂ (4)

Substituting (3) into (4), the phase detector error was:

ε = sin(θ − θ̂) ≈ θ̃ (5)

where θ is the actual position, θ̃ = θ − θ̂. Since θ̃ was very small, sin θ̃ ≈ θ̃. The phase
detector error reflects the difference between the actual and estimated positions. By reg-
ulating the phase detector error to equal 0, the estimated position and velocity could be
obtained [27]. In the production of the resolver, the number of stator turns needed to
be rounded so that the quadrature errors could be approximately equal to each order’s
harmonics to a certain extent [6]:

vs = sin θ +
∞
∑

n=2
an sin nθ

vc = cos(θ − β) +
∞
∑

n=2
an cos(nθ − β)

(6)

where β expresses the value of the quadrature error, while an is the amplitude of harmonics.
Substituting (6) into (4), the actual phase detector error was:
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ε= sinθ cos θ̂ − cos θ sin θ̂ cos β− sin θ sin θ̂ sin β +
∞

∑
n=2

an sin nθ cos θ̂ −
∞

∑
n=2

an cos nθ sin θ̂ cos β−
∞

∑
n=2

an sin nθ sin θ̂ sin β (7)

As (7) shows, when the quadrature error and harmonics existed in the resolver signals,
the phase detector error contained many unexpected terms. It is impossible to make θ̃ be
zero by regulating ε to also be zero. That is the reason why the accuracy of the PLL reduced
greatly when the resolver signals contained the quadrature error and harmonics.

3. Disturbance-Compensated PLL

In order to solve the problem of when the quadrature error and harmonics reduce
the PLL accuracy, a DC-PLL was proposed, which was composed of the SQEH-PD and
second-order observer. The schematic diagram is shown in Figure 2. The SQEH-PD was
proposed to eliminate the quadrature error and harmonics in ε. Additionally, the second-
order observer was used to estimate the angular position and velocity from ε. Strictly
speaking, this paper studied the angle-tracking observer, which is a kind of PLL.
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3.1. Phase Detector for Suppressing Quadrature Error and Harmonics

The conventional PD simply feeds back the sinusoidal and cosinusoidal values of the
estimated position, which makes the conventional PLL track not only the fundamental
signal of the resolver, but also the non-ideal factor in resolver signals. Therefore, ε contains
the quadrature error and the harmonics as shown in (7). Considering that the quadrature
error and the amplitude of the harmonics would not change, the estimation method in [23]
was adopted to obtain the value of the quadrature error, and the amplitudes of harmonics
were obtained with the Fourier transform from the resolver signals.

As shown in Figure 3, the SQEH-PD could be expressed as:
uc = cos θ̂ + tan β sin θ̂ +

∞
∑

n=2
an[cos(nθ̂) + tan β sin(nθ̂)]

us =
1

cos β [sin θ̂ +
∞
∑

n=2
ansin(nθ̂)]

(8)

The phase detector error of SQEH-PD could be expressed as:

ε = vsuc − vcus (9)

By substituting (6) and (8) into (9), the phase detector error could be described as:

ε = sin(θ − θ̂) +
∞

∑
n=2

an sin(nθ − θ̂) +
∞

∑
n=2

an sin(θ − nθ̂) +
∞

∑
n=2

an sin(nθ)
∞

∑
n=2

an cos(nθ̂)−
∞

∑
n=2

an cos(nθ)
∞

∑
n=2

an sin(nθ̂) (10)
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In (10), ε had no correlation with the quadrature error, which indicated that the
quadrature error was eliminated. ε could be divided into three parts: the terms without
harmonics, the terms with harmonics, and the terms with the product of harmonics as:

ε1 =
∞

∑
n=2

an sin(nθ − θ̂) +
∞

∑
n=2

an sin(θ − nθ̂) (11)

ε2 =
∞

∑
n=2

an sin(nθ)
∞

∑
n=2

an cos(nθ̂)−
∞

∑
n=2

an cos(nθ)
∞

∑
n=2

an sin(nθ̂) (12)

The phase detector error could be rewritten as:

ε = sin(θ − θ̂) + ε1 + ε2 (13)

where ε1 could be simplified to:

ε1 =
∞

∑
n=2

2an sin
(n + 1)(θ − θ̂)

2
cos

(n− 1)(θ + θ̂)

2
(14)

Considering the resolver manufacturing, the impact of the high-order harmonics was
very low, so the high-order harmonics could be ignored [28]. Therefore, the following
approximation could be used:sin (n+1)(θ−θ̂)

2 = (n+1)(θ−θ̂)
2

cos (n−1)(θ+θ̂)
2 = cos(n− 1)θ

(15)
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By substituting (15) into (14), ε1 could be simplified as:

ε1 =
∞

∑
n=2

an(n + 1)(θ − θ̂) cos(n− 1)θ (16)

ε2 could be simplified as:

ε2 =
∞

∑
i=2

ai
2 sin[i(θ − θ̂)] +

∞

∑
j = 3;
k = 2;
j > k

2ajak sin
(j + k)(θ − θ̂)

2
cos

(j− k)(θ + θ̂)

2
(17)

In a similar way, substituting (15) into (17), ε2 can be rewritten as:

ε2 =
∞

∑
i=2

ai
2 sin[i(θ − θ̂)] +

∞

∑
j = 3;
k = 2;
j > k

ajak(j + k)(θ − θ̂) cos(j− k)θ (18)

By substituting (16) and (18) into (13), the phase detector error can be expressed as:

ε = sin θ̃ +
∞

∑
n=2

an(n + 1)θ̃cos(n− 1)θ +
∞

∑
i=2

ai
2 sin iθ̃ +

∞

∑
j = 3;
k = 2;
j > k

ajak(j + k)θ̃ cos(j− k)θ (19)

When θ̂ was close to θ, θ̃ could be considered very small, so (19) could be simplified to:

ε = θ̃[1 +
∞

∑
n=2

an(n + 1)cos(n− 1)θ +
∞

∑
i=2

ai
2i +

∞

∑
j = 3;
k = 2;
j > k

ajak(j + k) cos(j− k)θ] (20)

In (20), ε and θ̃ had a linear relationship, so θ̃ could be actualized to be zero by
regulating ε to be zero. Therefore, the proposed SQEH-PD could improve the accuracy of
the PLL in the presence of harmonics and the quadrature error.

3.2. Second-Order Observer

By using the phase detector error ε from the SQEH-PD, a second-order observer could
be designed to estimate the angular position θ̂ and velocity ω̂. As shown in Figure 2, the
error transfer function of the angular position and velocity were expressed as:

Eθ(s) =
θ̃(s)
θ(s)

=
s2

s2 + kθs + kω
(21)

Eω(s) =
ω̂(s)
ω(s)

=
s2 + kθs

s2 + kθs + kω
(22)

where ω̃ = ω− ω̂. According to (21) and (23), the steady-state error of the angular position
and velocity could be expressed as:

eθ(∞) = lim
s→0

sEθ(s)θ(s) (23)

eω(∞) = lim
s→0

sEω(s)ω(s) (24)



Machines 2022, 10, 709 7 of 15

In the fixed-velocity conditions,ω = A was assumed. The Laplace transforms of the
angular position and velocity were θ(s) = A/s2,ω(s) = A/s, and when substituting them
into (23) and (24), both eθ(∞) and eω(∞) were zero. In the fixed-acceleration conditions,
we assumed that ω = Bt. The Laplace transforms of the angular position and velocity were
θ(s) = B/s3, ω(s) = B/s2, and when substituting them into (23) and (24), eθ(∞) = B/kω

and eω(∞) = Bkθ/kω. Obviously, the proposed second-order observer could give an
accurate estimation of the angular position and velocity without steady-state errors in the
fixed-velocity conditions, and with constant deviations in fixed-acceleration conditions.

4. Simulation and Experimental Results
4.1. Simulation Results

In order to verify the effectiveness of the proposed DC-PLL, a simulation was con-
ducted in the MATLAB/Simulink platform. The pair envelopes of resolver signals were
simulated directly with certain harmonics and the quadrature error as: 1 for the funda-
mental signal, 0.09% for the 3rd harmonic, 0.11% for the 5th harmonic, 0.15% for the 11th
harmonic, 0.13% for the 13th harmonic, and 0.3◦ for the quadrature error. Considering
that the resolver is often used as an angular position sensor of servo systems, three typical
working conditions were selected: constant velocity, constant acceleration, and sinusoidal
velocity. For ensuring the fairness of the comparison, the PLL parameters were chosen as
kθ = 888, kω = 394, 000.

4.1.1. Case 1: Constant Velocity (ω = 360
◦
/s)

Figure 4 shows the resolver signals. Figure 5 shows the spectrum of the resolver
signals. It can be seen from Figure 5 that there were 3rd, 5th, 11th, and 13th harmonics in
the resolver signals, which seriously reduced the demodulation accuracy.
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The conventional PLL and the proposed DC-PLL were used to demodulate the resolver
signals. When the DC-PLL was adopted, it can be seen from Figure 6 that the phase detector
error was basically zero, and the spectrum of the phase detector error did not contain any
harmonics. In Figure 7, when the PLL was adopted, the harmonics in the resolver signals
led to a large number of harmonics in the phase detector error, where the 2nd, 4th, 10th,
and 12th harmonics were dominant.

Three methods were used to demodulate the resolver signals: the conventional PLL
(PLL), the DC-PLL only for the quadrature error compensation (Compensate β), and the
DC-PLL for the quadrature error and harmonics compensation (DC-PLL).

As shown in Figure 8a, due to the existence of the quadrature error, the position
error was asymmetric about the x-axis when the PLL was adopted. However, when using
the proposed DC-PLL for compensating the quadrature error, the asymmetric part of the
position error was eliminated. Furthermore, when using the DC-PLL for compensating
the quadrature error and the harmonics, the position error was greatly reduced, and the
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disturbance of the quadrature error and the harmonics was completely eliminated. As
shown in Figure 8b, the influence of the quadrature error on the velocity estimation was not
as great as its influence on the position estimation. When using the DC-PLL to compensate
for the harmonics disturbance, the velocity error was greatly reduced.
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In order to show the performance of the proposed DC-PLL more clearly, the average
(AVG) and the standard deviation (STD) were calculated under three working conditions.
Table 1 shows the statistics of the position estimation error. Table 2 shows the statistics of
the velocity estimation error. It is clear that the STD of the position estimation error and
velocity estimation error with the DC-PLL were reduced by 99.9% and 99.9% compared
with the PLL. In Table 1, the AVG of the DC-PLL was smaller than that of the PLL, which
indicated that the DC-PLL had better performance on quadrature error suppression.
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Table 1. The statistics of position estimation error (θ̃(′) ).

Cases Case 1 Case 2 Case 3

PLL
AVG 9.008 9.104 9.747
STD 8.747 9.012 8.391

Compensate β
AVG 2.009 × 10−5 0.071 0.176
STD 5.996 6.392 5.847

DC-PLL
AVG 3.811 × 10−12 0.036 4.260 × 10−5

STD 4.721 × 10−11 7.468 × 10−4 0.1599
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Table 2. The statistics of velocity estimation error (ω̃(
◦
/s) ).

Cases Case 1 Case 2 Case 3

PLL
AVG 2.211 × 10−7 0.412 7.278 × 10−12

STD 5.819 17.814 6.443

Compensate β
AVG 2.195 × 10−7 0.390 5.939 × 10−12

STD 5.664 17.350 6.323

DC-PLL
AVG 2.586 × 10−10 0.379 1.288 × 10−12

STD 5.387×10−10 0.002 1.733

4.1.2. Case 2: Constant Acceleration (ω = 180t ◦/s)

In the case of constant acceleration, the influence of the quadrature error on the
position estimation was obvious. As Figure 9a shows, when the PLL was used, the position
error was asymmetric about the time-axis. This was because the quadrature error caused
the phase detection error and position error to no longer have a linear relation. However,
the proposed DC-PLL caused the phase detection error and position error to have a linear
relation, so as to eliminate the influence of the quadrature error on the phase detection error.
In Figure 9a, the position error of the DC-PLL was much smaller than that of the DC-PLL,
only suppressing the quadrature error, which indicated that the proposed DC-PLL had a
good ability of harmonics suppression.
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Figure 9. Demodulation errors at fixed acceleration in simulation. (a) Position estimation error;
(b) velocity estimation error.

With the increase in velocity, the influence of the harmonics on velocity estimation
became more and more serious. As Figure 9b shows, when the PLL was adopted, the
velocity error became larger and larger. That was because the harmonics affected the
position estimation through differential operations. Although the content of the harmonics
was unchanged, the velocity error would become larger and larger with the increase in
velocity. When the DC-PLL was adopted, the fluctuation in the velocity error was basically
zero because of its good harmonics suppression.

As can be seen in Table 1, the AVG of the DC-PLL was reduced by 99.6% compared with
PLL. It was clear that the proposed DC-PLL suppressed the quadrature error completely.
In Tables 1 and 2, the STD of the position estimation error and velocity estimation error
with the DC-PLL were reduced by 99.9% and 99.9%, respectively, compared with the PLL.

4.1.3. Case 3: Sinusoidal Velocity (ω = 720 + 90 sin(90t) ◦/s)

In Figure 10a, when the DC-PLL was used to compensate for the quadrature error,
the amplitude of the position error was symmetric about the x-axis, and the position error
was greatly reduced. Because of the superior suppression on the quadrature error, the
AVG of the DC-PLL was reduced by 99.9% compared with the PLL in Table 1. It can be
seen from Figure 10b that the velocity error changed periodically. When the DC-PLL was
adopted, the harmonics were well suppressed, so that the velocity error was the smallest
among the three lines. From Tables 1 and 2, it could be seen that the STD of the position
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estimation error and velocity estimation error with DC-PLL were reduced by 98.1% and
73.1% compared with the PLL.
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Figure 10. Demodulation errors at sinusoidal speed in simulation. (a) Position estimation error;
(b) velocity estimation error.

4.2. Experiment Results

In order to verify the effectiveness of the proposed method, an experimental platform
was used. As shown in Figure 11, the experimental platform was mainly composed of a
permanent magnet synchronous motor (PMSM) with a resolver, a drive board, a power
supply, and a PC. The parameters of the PMSM and the resolver are shown in Table 3. In
the drive board, the resolver signals were, firstly, inputted into the AD7606 for envelope
sampling, and then, the envelope signals were inputted into the DSP for calibrating the
amplitude imbalance and the DC offset with the calibration method proposed in [1]; finally,
the calibrated envelope signals were inputted into the PLL proposed in this paper to
estimate the angular position and angular velocity. The estimated angular position was
used to generate a reversing current, and the estimated angular velocity was used to control
the motor running at a constant speed of 360◦/s. The power supply was responsible
for providing a stable voltage to the drive board. The PC was responsible for receiving
the demodulation results from the drive board. The quadrature error and the harmonics
amplitudes were obtained with the calibration method in [23].
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Table 3. Parameters of PMSM and resolver.

PMSM Resolver

Pole pairs 2 Pole pairs 1
Rated speed 3000 r/min Excitation frequency 10 kHz

Torque constant 0.15 Nm/A Electrical error 10′

Phase resistance 8 Ω Input impedance 95 ± 14 Ω
Phase inductance 10 mH Quadrature error 0.3◦

The resolver signals after detection are shown in Figure 12. Figure 13 shows the
spectrum of the resolver signals, and the harmonics were mainly 2nd, 3rd, 5th, 11th, and
13th. However, these harmonics were not only caused by the resolver itself, but the cogging
effect of the motor also affected the harmonics content.
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Different from the simulation, the true angular position and angular velocity could
not be obtained in the experiment. Therefore, to compare the estimation accuracy of the
DC-PLL and the PLL, the phase detector error was used to measure the accuracy of the
position estimation instead of the position error, and the estimated velocity was used to
measure the accuracy of the velocity estimation instead of the velocity error.
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It can be seen from Figure 14 that there were a lot of harmonics in the phase detector
error when using the PLL, which greatly decreased the accuracy of the position estimation.
However, when the DC-PLL was used, the harmonics in the phase detector error were
obviously suppressed. In Figure 15, the fluctuation of the DC-PLL was the smallest
among the three curves, which indicated that the DC-PLL had good performance on
harmonics suppression.
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In Table 4, when comparing the phase detector error, the AVG of the DC-PLL was
nearly an order of magnitude smaller than that of the PLL, which indicated that the DC-PLL
had a better suppression ability on the quadrature error. Comparing the estimated velocity,
the AVG of the DC-PLL was closer to 360◦/s than that of the PLL. Moreover, the STD of the
phase detector error and estimated velocity with the DC-PLL was reduced by 72.0% and
74.5% compared with the PLL.

Table 4. The statistics of experiment demodulation results.

Cases ε(
′
) ^

ω(
◦
/s)

PLL
AVG 2.482 × 10−4 359.999504
STD 37.335 32.6144

DC-PLL
AVG 3.620 × 10−5 359.999721
STD 10.443 8.333

5. Conclusions

In this paper, a disturbance-compensated PLL was proposed, in which the phase
detector for suppressing the quadrature error and harmonics was the main component.
In the proposed phase detector, the estimated angular position was used to substitute the
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phase of the harmonics, and the harmonics of the resolver signals were compensated with
the estimated angular position and the pre-estimated harmonics amplitudes. Additionally,
the quadrature error in the resolver signals was compensated in the proposed phase detector
by using the quadrature error estimated in advance. Compared with the traditional PLL,
the proposed method could suppress the quadrature error and harmonics better by making
the phase detector error and position error have a linear relation, and improving the anti-
disturbance ability without changing the bandwidth. Simulation and experimental results
showed that the proposed method had good performance on the quadrature error and
harmonics suppression.

Author Contributions: Z.W. and R.W. conceived the research; R.W. performed the experiments and
wrote the paper; Z.W. guided the experiments and contributed to the revising of the paper; R.W.
provided the hardware and software support and data analysis. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sabatini, V.; Benedetto, M.D.; Lidozzi, A. Synchronous adaptive resolver-to-digital converter for FPGA-based high-performance

control loops. IEEE Trans. Instrum. Meas. 2019, 68, 3972–3982. [CrossRef]
2. Yepes, A.G.; Lopez, O.; Gonzalez-Prieto, I.; Duran, M.J.; Doval-Gandoy, J. A Comprehensive survey on fault tolerance in

multiphase AC drives, part 1: General overview considering multiple fault types. Machines 2022, 10, 208. [CrossRef]
3. Saneie, H.; Nasiri-Gheidari, Z.; Tootoonchian, F. Structural design and analysis of a high reliability multi-turn wound-rotor

resolver for electric vehicle. IEEE Trans. Veh. Technol. 2020, 69, 4992–4999. [CrossRef]
4. Estrabis, T.; Gentil, G.; Rordero, R. Development of a resolver-to-digital converter based on second-order difference generalized

predictive control. Energies 2012, 14, 459. [CrossRef]
5. Khaburi, D.A. Software-based resolver-to-digital converter for DSP-based drives using an improved angle-tracking observer.

IEEE Trans. Instrum. Meas. 2012, 61, 922–929. [CrossRef]
6. Hanselman, D.C. Resolver signal requirements for high accuracy resolver-to-digital conversion. IEEE Trans. Ind. Electron. 1990,

37, 556–561. [CrossRef]
7. Kaul, S.K.; Tickoo, A.K.; Koul, R.; Kumar, N. Improving the accuracy of low-cost resolver-based encoders using harmonic analysis.

Nucl. Instrum. Methods Phys. Res. A 2008, 586, 345–355. [CrossRef]
8. Hanselman, D.C. Techniques for improving resolver-to-digital conversion accuracy. IEEE Trans. Ind. Electron. 1991, 38, 501–504.

[CrossRef]
9. Robinson, R.B. Inductance coefficients of rotating machines expressed in terms of winding space harmonic. Proc. Inst. Electr. Eng.

1964, 111, 769–774. [CrossRef]
10. Ge, X.; Zhu, Z.Q. A novel design of rotor contour for variable reluctance resolver by injecting auxiliary air-gap permeance

harmonics. IEEE Trans. Energy Convers. 2016, 31, 345–353. [CrossRef]
11. Wang, F.; Shi, T.; Yan, Y.; Wang, Z.; Xia, C. Resolver-to-digital conversion based on acceleration-compensated angle tracking

observer. IEEE Trans. Instrum. Meas. 2019, 68, 3494–3502. [CrossRef]
12. Bahari, M.; Davoodi, A.; Saneie, H.; Tootoonchian, F.; Nasiri-Gheidari, Z. A new variable reluctance PM-resolver. IEEE Sens. J.

2020, 20, 135–142. [CrossRef]
13. Sarma, S.; Agrawal, V.K.; Udupa, S. Software-based resolver-to-digital conversion using a DSP. IEEE Trans. Ind. Electron. 2008, 55,

371–379. [CrossRef]
14. Hou, C.; Chiang, Y.; Lo, C. DSP-based resolver-to-digital conversion system designed in time domain. IET Power Electron. 2014, 7,

2227–2232. [CrossRef]
15. Kamf, T.; Abrahamsson, J. Self-sensing electromagnets for robotic tooling systems: Combining sensor and actuator. Machines

2016, 4, 16. [CrossRef]
16. Wang, S.; Kang, J.; Degano, M.; Buticchi, G. A Resolver-to-digital conversion method based on third-order rational fraction

polynomial approximation for PMSM control. IEEE Trans. Ind. Electron. 2019, 66, 6383–6392. [CrossRef]
17. Herrejón-Pintor, G.A.; Melgoza-Vázquez, E.; Chávez, J.D.J. A modified SOGI-PLL with adjustable refiltering for improved

stability and reduced response time. Energies 2022, 15, 4253. [CrossRef]

http://doi.org/10.1109/TIM.2018.2884556
http://doi.org/10.3390/machines10030208
http://doi.org/10.1109/TVT.2020.2981551
http://doi.org/10.3390/en14020459
http://doi.org/10.1109/TIM.2011.2179825
http://doi.org/10.1109/41.103461
http://doi.org/10.1016/j.nima.2007.12.009
http://doi.org/10.1109/41.107116
http://doi.org/10.1049/piee.1964.0130
http://doi.org/10.1109/TEC.2015.2470546
http://doi.org/10.1109/TIM.2018.2882047
http://doi.org/10.1109/JSEN.2019.2941554
http://doi.org/10.1109/TIE.2007.903952
http://doi.org/10.1049/iet-pel.2013.0502
http://doi.org/10.3390/machines4030016
http://doi.org/10.1109/TIE.2018.2884209
http://doi.org/10.3390/en15124253


Machines 2022, 10, 709 15 of 15

18. Linares-Flores, J.; García-Rodríguez, C.; Sira-Ramírez, H.; Ramírez-Cárdenas, O.D. Robust backstepping tracking controller
for low-speed PMSM positioning system: Design, analysis, and implementation. IEEE Trans. Ind. Inform. 2015, 11, 1130–1141.
[CrossRef]

19. Bergas-Jané, J.; Ferrater-Simón, C.; Gross, G.; Ramírez-Pisco, R.; Galceran-Arellano, S.; Rull-Duran, J. High-accuracy all-digital
resolver-to-digital conversion. IEEE Trans. Ind. Electron. 2012, 59, 326–333. [CrossRef]

20. Zhang, J.; Wu, Z. Composite state observer for resolver-to-digital conversion. Meas. Sci. Technol. 2017, 28, 065103. [CrossRef]
21. Sivappagari, C.M.R.; Konduru, N.R. High accuracy resolver to digital converter based on modified angle tracking observer

method. Sens. Transducers 2012, 144, 101–112.
22. Zhang, J.; Wu, Z. Automatic calibration of resolver signals via state observers. Meas. Sci. Technol. 2014, 25, 2223–2237. [CrossRef]
23. Wu, Z.; Li, Y. High-accuracy automatic calibration of resolver signals via two-step gradient estimators. IEEE Sens. J. 2018, 18,

2883–2891. [CrossRef]
24. Shi, T.; Hao, Y.; Jiang, G.; Wang, Z.; Xia, C. A method of resolver-to-digital conversion based on square wave excitation. IEEE

Trans. Ind. Electron. 2018, 65, 7211–7219. [CrossRef]
25. Farid, T. Effect of damper winding on accuracy of wound-rotor resolver under static-, dynamic-, and mixed-eccentricities. IET

Power Electron. 2018, 12, 845–851.
26. Saneie, H.; Alipour-Sarabi, R.; Nasiri-Gheidari, Z.; Tootoonchian, F. Challenges of finite element analysis of resolvers. IEEE Trans.

Energy Convers. 2019, 34, 973–983. [CrossRef]
27. Pecly, L.; Schindeler, R.; Cleveland, D.; Hashtrudi-Zaad, K. High-precision resolver-to-velocity converter. IEEE Trans. Instrum.

Meas. 2017, 66, 2917–2928. [CrossRef]
28. Ge, X.; Zhu, Z.Q.; Ren, R.; Chen, J.T. Analysis of windings in variable reluctance resolver. IEEE Trans. Magn. 2015, 51, 8104810.

[CrossRef]

http://doi.org/10.1109/TII.2015.2471814
http://doi.org/10.1109/TIE.2011.2143370
http://doi.org/10.1088/1361-6501/aa6145
http://doi.org/10.1088/0957-0233/25/9/095008
http://doi.org/10.1109/JSEN.2018.2806894
http://doi.org/10.1109/TIE.2017.2782228
http://doi.org/10.1109/TEC.2018.2881465
http://doi.org/10.1109/TIM.2017.2714378
http://doi.org/10.1109/TMAG.2014.2369993

	Introduction 
	Effect of Non-Ideal Factors on RDC 
	RDC Principles 
	Analysis of Quadrature Error and Harmonics Effect on PLL 

	Disturbance-Compensated PLL 
	Phase Detector for Suppressing Quadrature Error and Harmonics 
	Second-Order Observer 

	Simulation and Experimental Results 
	Simulation Results 
	Case 1: Constant Velocity (= 360/s ) 
	Case 2: Constant Acceleration (= 180t /s ) 
	Case 3: Sinusoidal Velocity (= 720 + 90sin(90t) /s ) 

	Experiment Results 

	Conclusions 
	References

