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Abstract: Wind turbine bearings usually work with strong background noise, making the faulty
properties difficult to extract and detect. To accurately diagnose the faults of rolling bearings in wind
turbines, an iterative modified adaptive chirp mode decomposition (IMACMD) method is proposed
in this paper. Firstly, an envelope interpolation method is employed to preliminarily determine the
iterative mode number and guide the potentially initial frequency selection. Secondly, the upper limits
of the iterative mode number and the initial frequency are further determined through correlation
analysis. During the iteration process, the optimal weight factor of the reconstructive input signal,
which is the residual signal of the previous iterative decomposition, is determined according to the
new designed ensemble L-Kurtosis index. Experimental and engineering signals are used to validate
the proposed IMACMD method. Comparisons with the conventional methods demonstrate the
superiority of this proposed method. It is shown that this method can not only identify the weak
features for single faults but also separate the multiple features for compound faults.

Keywords: fault diagnosis; parameter estimation; iterative modified adaptive chirp mode
decomposition (IMACMD); envelope interpolation; ensemble L-Kurtosis

1. Introduction

Rolling bearings are key supporting components and have been widely used in a lot of
industrial applications, such as high-speed trains, helicopter drive trains, wind turbines, etc.
The running state of bearings greatly affects the safety of the system [1], since their unexpected
failure leads to machinery breakdown or even catastrophic accidents [2]. Due to the reasons
of heavy load, long term, and harsh operation environment in modern industry, the critical
bearings in rotating machines have high potential of being damaged. Therefore, it is of great
significance to accurately diagnose the bearing faults [3]. The damage may be concentrated on
either one part (single fault) or multiple parts (compound fault). Compared to a single fault,
compound faults are more harmful to the bearings [4] since they have mutual-coupling and
cross-influence effects on the neighboring components [5]. Usually the diagnosis method for a
single fault is difficult to use for compound faults [6,7]. Therefore, new diagnosis methods
that are not only effective for both single and compound faults, but also qualified to accurately
identify the faulty types and locations, are urgently requested.

At present, the vibration-based analysis method is the most convenient and widely
employed bearing fault diagnosis technology, though the incipient failures cause some
changes to the operating condition information in the collected vibration signals. According
to the dynamics and fault mechanism, when a local injury appears on the rolling bearing,
the high-frequency structural resonance will also be reflected in the bearing system [8]. The
fault characteristic is generally regarded as contained in a periodic impact signal [9]. In
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theory, when the periodic impacts match the theoretical properties of the bearing, the fault
type and location can be determined. In practice, due to the influences of many factors
such as the shaft vibration, gear meshing, electromagnetic interferences, and external
environmental issues, there may be harmonics, accidental pulses, and noises in the vibration
signal [10]. Consequently, a weak fault signal is difficult to identify [11]. More seriously,
when the compound faults occur, the coupling effect between two different faults may
make the fault shocks overlap and even compensate each other, making the fault shocks
become weaker and the compound fault diagnosis much more challenging [12].

In the past few decades, incipient fault diagnosis on rolling bearings has attracted the
extensive attention of many scholars, who have carried out a series of studies for guiding
industrial applications [13–15]. The popular and powerful signal-processing algorithms in
bearing fault diagnosis mainly include spectral kurtosis (SK), deconvolution algorithms,
and decomposition methods. As evolved versions of SK, SKRgram [16], Infogram [17], Au-
togram [18], and Accugram [19] are still restricted by the best frequency band selection [20]
and the fixed spectral segmentation strategy, which may lead to the loss of some key faulty
information [21]. The deconvolution algorithm, such as the minimum entropy deconvo-
lution (MED) [22], maximum correlated kurtosis deconvolution (MCKD) [23], multipoint
optimal minimum entropy deconvolution adjusted (MOEDA) [24], and cyclostationary
blind deconvolution (CYCBD) [25], iteratively updates the filter to make the target evalua-
tion index of the output signal reach the optimal value, so that the fault-affected signal can
be recovered [26]. The performance of deconvolution algorithm greatly depends on the
selection of the objective function and the filter length, which limit the practical application
of the deconvolution methods [27]. Both the deconvolution and SK methods mainly focus
on the extraction of the dominant fault features, whereas the secondary fault feature may
be ignored while processing the vibration signals of the compound faults [28]. The signal
decomposition methods, such as empirical mode decomposition (EMD) [29], local mean
decomposition (LMD) [30], singular spectrum decomposition (SSD) [31], and variational
mode decomposition (VMD) [32], are designed to decompose the signals into mode com-
ponents of different frequency bands and separate the fault characteristic signals from the
interference signals. As a very suitable technique for bearing fault detection [33], the main
disadvantages of signal decomposition methods are as follows: (1) The original vibration
signal will be decomposed into many sub-components, making the processing results very
complicated, and (2) many parameters need to be well preset, since the satisfactory analysis
results depend on the accurate setting of each parameter [34].

As a novel non-stationary and nonlinear signal analysis algorithm, adaptive chirp
mode decomposition (ACMD) is developed based on the greedy search algorithm [35] and
is able to extract the particular mode containing rich characteristic information without
other redundant modes. The mode obtained by ACMD is a band-limited signal in which
the primary energy is concentrated around a center frequency [36]. Compared with the
aforementioned analysis methods, ACMD requests fewer preset parameters. Different
from EMD, LMD, SSD, and VMD algorithms, which separate all the modes simultaneously,
ACMD only obtains a particular mode containing rich characteristic information at a time
to improve the time-frequency resolution. ACMD has been applied to the fault diagnosis
on rolling bearings by scholars [37,38]. The authors have also studied this method for
rolling bearing fault diagnosis, and more details can be found in [39].

However, most of the previous work focuses on single faults, and few of them have
paid attention to compound faults, which can also take place in rolling bearings. To promote
existing methods such as ACMD being effective in feature extraction for both single and
compound faults, the following three issues need to be primarily considered: (1) The
instantaneous frequency initialized in ACMD should be determined adaptively without
prior knowledge, (2) proper modifications need be carried out to improve current methods
such as ACMD to make them effective in detecting the all potential components for the
weak and compound failures from the original signals, and (3) as the key parameter of
ACMD, given that the weight factor directly affects the bandwidth of the estimated mode in
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ACMD, such key parameters need to be set reasonably. To resolve the aforementioned three
issues, in this paper we propose an iterative modified adaptive chirp mode decomposition
(IMACMD) method, which can further expand its application field from single faults to
compound faults. What’s more, this method is able to detect all the sensitive components
from the original signal.

Our proposed method primarily includes three steps. Firstly, an envelope interpolation
method is adopted to preliminarily determine the number of decomposition modes and to
guide the instantaneous ACMD frequency of each mode. Then, the modal number and the
instantaneous frequencies can be obtained by deleting the strongly correlated modes.

Secondly, considering the interaction of the compound fault components, the input
signal decomposed by the next iteration is reconstructed after filtering the specific fre-
quencies through ACMD. In each iteration, the input signal of the first iteration is the
original signal, whereas the subsequent input signal is the remaining one after removing
the filtering signal.

Finally, based on the advantages of the time-domain L-Kurtosis and the frequency-
domain L-Kurtosis, the ensemble L-Kurtosis (ELK) is designed as a new index. Under the
guidance of the modal number and the instantaneous frequencies in the aforementioned steps,
the new index, which considers both the cyclostationary process and the impulsiveness, is
used to select the optimal weight factor (α) for each IMACMD decomposition mode.

Through these improvements, the above-mentioned issues are attempted to be solved.
The feasibility of the new IMACMD method are verified by simulating, experimental, and
engineering signals. At the same time, this paper also tries to compare SSD and SK, and
discusses the superiority of the proposed method. Using the IMACMD method, more ideal
fault diagnosis results of rolling bearings are expected to be obtained.

The remainder of this paper Is organized as follows. Section 2 describes the basic
principles of ACMD, analyzes the effects of its key parameters, and proposes and discusses
the signal evaluation index ELK. In Section 3, the particular implementation steps of
the proposed IMACMD method, including the localization strategies for the number of
iterations, the instantaneous frequency, and the weight factor of ACMD, are presented in
detail. Subsequently, the effectiveness and the superiority of IMACMD are validated by
the experimental signals and engineering signals in Sections 4 and 5, respectively. Finally,
conclusions are summarized in Section 6.

2. Theoretical Description and Characteristics Study on ACMD
2.1. Basic Theory of ACMD

Extended from VMD, ACMD is a novel algorithm for non-stationary signal decompo-
sition and has obvious advantages in the processing of multi-component strong frequency
modulation signals and excellent time-frequency resolutions [40]. Since ACMD is sensitive
to the impact responses, it has been treated as a good choice to process the vibration signals
for the bearing fault diagnosis [41].

The main parts of ACMD consist of a recursive mode extraction framework, an adaptive
bandwidth updating rule, and a frequency initialization scheme based on Hilbert transform.
For a nonstationary signal x(t), ACMD solves the optimization problem as follows:

min
am(t),bm(t), fm(t)

{∥∥p′′m(t)
∥∥2

2 +
∥∥q′′m(t)

∥∥2
2 + α‖x(t)− xm(t)‖2

2

}
(1)

with

xm(t) = pm(t) cos
(

2π
∫ t

0
f̃m(t)dt

)
+ qm(t) sin

(
2π
∫ t

0
f̃m(t)dt

)
(2)

where pm(t) and qm(t) are both the de-chirped signals, α denotes the weight factor, fm(t)
represents the instantaneous frequency, ‖x(t)− xm(t)‖2

2 is the residue energy after the
current estimated component is removed, and the square of the second derivative is
employed to measure the bandwidth of the target mode.
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The signal x(t) is discretized to a discrete signal whose time series is t = t0, · · · , tN−1,
and the number of the sampling points is N; the discrete version of Equation (1) can be
expressed as:

min
um , fm

{
‖Θum‖2

2 + α‖x−Gmum‖2
2

}
(3)

where Θ =

[
Ω

Ω

]
, and Ω is a second-order difference matrix. um =

[
pT

m, qT
m
]T, pm =

[pm(t0), · · · , pm(tN−1)]
T, qm = [qm(t0), · · · , qm(tN−1)]

T, and xm = [xm(t0), · · · , xm(tN−1)]
T.

The kernel matrix Gm is related to the demodulation frequency f̃m(t) and can be written as:
Gm = [Cm, Dm]
Cm = diag[cos(ϕ(t0)), · · · , cos(ϕ(tN−1))]
Dm = diag[sin(ϕ(t0)), · · · , sin(ϕ(tN−1))]

ϕm(t) = 2π
∫ t

0 fm(t)dt

(4)

x(t) is decomposed by minimizing the demodulation signal bandwidth, and the signal
components are estimated one by one to achieve the accurate estimation on the multi-
component chirp signals.

2.2. Ensemble L-Kurtosis Indicator

When rotating machineries are damaged, periodic pulse signals will appear. Such
pulse signals are the most important basis for fault detection. In a weak noise environment,
the time-domain features, including the pulses and periodicities, are easy to recognize.
However, when the fault signal is fulfilled by noises, the fault characteristics are easy to bury
in the time-domain waves but can be found in the spectrum. Although the bearing fault
information exists in the full spectrum, most of the energy is concentrated near the natural
frequencies. Ideally, a composite signal can be decomposed into a series of independent
components, several of which contain the fault information and can be visually displayed
in the envelope spectrum.

Appropriate signal characteristic evaluation criteria are of great significance for me-
chanical fault diagnosis. Kurtosis (ku) [42] is considered one of the sparsity measurements,
since it can detect the impulsiveness of the signal. Similar to the traditional ku indica-
tor, L-Kurtosis is defined as an alternative indicator to evaluate the variable distribution
characteristics by extending the traditional moment principle [43], and it has better anti-
interference and robustness properties than Kurtosis [44].

Assume that X = [X1, X2, · · · , Xn] is an independent sample from the cumulative
distribution P(x), and X1:n ≤ X2:n ≤ · · · ≤ Xn:n is a random variable drawn from X. The
rth L-moment µr of the independent sample X is described as:

µr =
1
r

r−1

∑
k=0

(−1)k
(

r− 1
k

)
E(Xr−k:r),r = 1, 2, · · · (5)

where the expectation E(Xr−k:r) is expressed as:

E(Xj:r) =
r!

(j− 1)!(r− j)!

∫ 1

0
x[P(x)]j−1[1− P(x)]r−jdP(x) (6)

The 2nd and the 4th L-moments can be calculated as:

µ2 =
∫ 1

0
x(2P(x)− 1)dP(x) (7)

µ4 =
∫ 1

0
x(20P3(x)− 30P2(x) + 12P(x)− 1)dP(x) (8)
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Then the definition of L-kurtosis is expressed as:

L−Kurtosis = µ4/µ2 (9)

However, L-Kurtosis pays more attention to the strength of the impacts rather than the
regularity of the impacts. The spectrum of L-Kurtosis, which can be used to evaluate the
cyclostationary process, is used in the fault diagnosis. Therefore, a new index is constructed
by the virtue of L-Kurtosis and the spectrum of the L-Kurtosis. It is defined as

ELK = Lku·FLku (10)

where ELK represents the ensemble L-Kurtosis, Lku is the time L-Kurtosis, and FLku is the
spectrum of the L-Kurtosis.

To investigate the performance of the above indexes, a simulating signal was con-
structed based on the vibration model in Section 2.3. As shown in Figure 1, the simulating
signal consists of four components. Besides the fault feature and noise, random impulses
from the electromagnetic interference frequency and the harmonic components of the shaft
rotating appeared in the simulated signal. The detailed parameters are presented in Table 1.
The normalized results of the four indexes used to calculate each simulated component
are shown in Figure 2. The comparison shows that ku and Lku were most sensitive to
the random impulses, rather than the fault impulses and harmonic components. On the
contrary, Flku was most sensitive to the harmonic components. Obviously, ELK focused
more on the cyclic impact characteristics than ku, Lku, and FLku. In addition, compared with
Lku and FLku, ELK can employed better noise reduction. Considered a satisfactory indicator,
ELK could accurately quantify the abundance of the periodic shocks. Consequently, it was
able to capture the fault information and the harmonic information to the maximum extent.
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Table 1. Setting of the simulated signal.

Parameter Meaning Value

Fault feature signal

I Number of cycle impacts 165
A Amplitude of cycle impacts 1.1
fn Resonance frequency of cycle impacts 5500 Hz
Ta Period of cycle impacts 0.0083 s
γ Specifies the slippage characteristic random value in 1–2% Ta

Random impulses

J Number of random impulses 3
B1, B2, B3 Amplitude of jth random impulse 2, 3, 4

fv Resonance frequency of random impulses 4000 Hz
T1, T2, T3 Occurrence time of jth random impulse 0.08 s, 0.20 s, 0.25 s

Harmonic components

K Number of harmonic components 8

C1–C8 Amplitude of kth harmonic component 0.7, 0.8, 0.6, 0.5
0.3, 0.5, 0.4, 0.3

f 1–f 8
Resonance frequency of kth harmonic

component
300, 400, 500, 600,

2850, 3000, 3150, 3300
ϕk Phase of kth harmonic component π/2
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2.3. Research on the Influence of ACMD Parameters
2.3.1. Bearing Fault Simulating Signal

As two significant parameters of ACMD, the optimization of the instantaneous frequency
f c and the weight factor α has been studied by many scholars. However, which of these two
parameters is more important has been rarely discussed in the previous works. To qualitatively
study this topic, the observation signal of a single bearing fault is constructed as

x(t) =
I

∑
i=1

Ai sin(2π fnt)si(t− iTa − γi)︸ ︷︷ ︸
f ault f eature

+
J

∑
j=1

Bjsj(t− jTj)︸ ︷︷ ︸
random impacts

+
K

∑
k=1

Ck sin(2π fkt + φk)︸ ︷︷ ︸
harmonic components

+ n(t)︸︷︷︸
noise

(11)

The simulated fault signal consists of the fault feature signal, the random impulses, the
harmonic components, and the noise. In this simulating verification, sm(t) represents the
impulse response function of the rotating machinery system and can be expressed as follows:

sm(t) = exp(−βmt) cos(2π fmt + φm) (12)

where βm, fm, and ϕm denote the coefficient of the resonance damping, the resonance
frequency, and the phase, respectively.
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The parameter setting of the simulated signal is shown in Table 1. The sampling
frequency f s = 12 kHz and the sample length Ns = 8192. The number of random impacts
caused by the occasional shocks and the electromagnetic interferences on the machine was
set as 3. The Gaussian distributed white noise n(t) = 0.5randn (1, Ns) was added to the
simulating signal. In the meantime, an inner race weak defect signal was generated, with a
fault characteristic frequency f in = 120 Hz. The components of the simulating signal are
illustrated in Figure 1a,d. The resonant frequency band of the simulated inner race fault
was set as 5500 Hz. On account of some uncertain interference components with high
energy, the energy of this resonant frequency band was very weak. From the waveform
illustrated in Figure 3a, the time intervals between two adjacent shocks did not match the
period of the cycle impacts. Figure 3b shows the spectrum of the composite simulating
signal; it can be seen that the main energy was not concentrated at 5500 HZ. Furthermore,
the most important fault information at 120 Hz was invisible in the envelope spectrum
depicted in Figure 3c.
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2.3.2. Study on Decomposition Characteristics of ACMD with Different Parameters

Based on the variable-control method, the simulated signal x(t) was used to study the
feature extraction effect of ACMD with different f c and α.

Firstly, the influence of f c on the ACMD filtering effect was analyzed. α was fixed
to 0.1, whereas f c was set to 500 Hz, 1500 Hz, 2500 Hz, 3500 Hz, 4500 Hz, and 5500 Hz.
The envelope spectra of ACMD filtering signals with different f c values are shown in
Figure 4. When f c was set to the resonant frequency (f n = 5500 Hz) of the fault signal,
the fundamental frequency (f in = 120 Hz) and the double frequency (2f in = 240 Hz) of the
characteristic component could be effectively extracted. In the other five groups of ACMD
filtering signals, the harmonic and the random impact information could be recognized,
but there was little identifiable fault feature information. This indicates that more useful
characteristics can be captured if f c is properly configured.

Subsequently, the effect of α on the ACMD algorithm was studied under the optimal
instantaneous frequency condition, with f c = 5500 Hz. The envelope spectrum of each
filtering signal of ACMD is shown in Figure 5a, with α set to 10−1, 10−2, 10−3, 10−4, and
10−5, respectively. According to the five envelope spectra, the following conclusions can be
drawn: (1) The third spectrum (α = 10−3) had the highest fundamental frequency amplitude
(fault characteristic), whereas the first and the fifth ones had the lowest amplitudes. (2) The
interference components were obviously eliminated with the decrease in α, but the fault in-
formation was first enhanced and then attenuated. (3) When α = 10−3, the fault information
extraction was obviously the most powerful, and f in~4f in were clearly visible. (4) After f c
was set correctly, the further reasonable selection of α made the characteristic information
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much more clear. Figure 5b displays the histogram of the ELK indicators corresponding to
different α values, which further validates the effectiveness of this indicator in evaluating
the richness of the periodic impact components. Thus, ELK can be applied as the guidance
indicator to optimize the parameter α for ACMD.
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By the comparative analysis results in Figures 4 and 5, it can be concluded that the
weight factor had less impact than the instantaneous frequency on the execution effect of the
ACMD algorithm. Therefore, the instantaneous frequency parameter should be accurately
confirmed first, or else the fault characteristic information cannot be correctly captured. In
order to effectively separate the optimal target mode from others, an innovative iterative
ACMD fault diagnosis method based on the envelope interpolation and the correlation
analysis is proposed; more details are presented in the subsequent sections.

3. Proposed IMACMD Method
3.1. Overview of the Novel Iteration Fault Diagnostic Strategy

Bearing faults stimulate the resonance of the system. Theoretically, the fault char-
acteristic signal is a narrow band signal with a specific excitation resonance frequency
as its center frequency. However, in practice, the fault features are mixed with a lot of
interference. As a direct fault feature extraction method, ACMD has some limitations. It is
difficult to extract the fault information, especially for compound faults. It is also difficult
to estimate the instantaneous frequency and the weight factor of ACMD accurately. Hence,
in this paper, a novel iterative modified adaptive chirp mode decomposition (IMACMD)
method is proposed to maximize the advantages of the ACMD algorithm. Firstly, the
maximum iteration number (K) and the instantaneous frequency (f c) of each iteration are
determined by envelope interpolation and similarity evaluation. Secondly, according to the
input signal of each iteration, the weight factor (α) of the ACMD algorithm in each iteration
is optimized adaptively and reasonably. Finally, the envelope spectra of the iteration filter
signal are compared with the theoretical fault characteristic frequency to judge the fault
types. The proposed IMACMD method is explained by the flowchart shown in Figure 6.
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3.2. Determination of Maximum Iteration Number (K) and Instantaneous Frequencies (fc)
of ACMD
3.2.1. Initialization

First, an envelope interpolation method is employed to preliminarily guide the poten-
tial instantaneous frequencies. It is applied to get the improved spectrum of the original
signal by reducing the local maximum values and estimating the total f c close to the rea-
sonable value. The process is illustrated in the yellow box in Figure 6. The detailed steps of
this module can be summarized as follows:

(1) Load the collected vibration signal x.
(2) Initialize the iteration number n = 1.
(3) Obtain the frequency signal yn−1 of the original signal x.
(4) The number of the local maximum values of yn−1 is calculated and written as kn−1.
(5) yn−1 is processed by the interpolation envelop method, and the new frequency

enveloped signal is denoted as yn.
(6) Calculate the number of the local maximum values of the obtained yn, written as kn.
(7) Judge whether kn < kb (kb is the boundary value, in default kb = 30). If no, n = n + 1

and repeat steps (5–7) until kn < kb. If yes, end the envelop interpolation process and output
all the local maximum values that are stored in the matrix N1(f, A)kn×2, where f is the
potential instantaneous frequency, A is the amplitude value of each local maximum, and kn
is the initial maximum iteration number.

N1( f , A) =

 f1 A1
. . . . . .
fkn Akn

 (13)

Subsequent work in this section is further carried out to explain the reduction in the
local maximum values through the simulated signal described in Section 2.3. The local
maximum values in the spectrum of the original signal are represented by an inverted
red triangle in Figure 7, with a total amount of 1330. However, the analysis result is
unreasonable and not ideal because the spectrum contains too many details. Therefore,
there is a need to reduce the number of extreme points.
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Figure 7. The local maximum values in the frequency spectrum of the original signal.

After calculating the envelope of y0(t), the spherical spline interpolation method is
used to solve the problem caused by the envelope. This interpolation method makes it easy
to smooth the envelope line and further reduce the number of extreme points. In order
to confirm the effect of the envelope interpolation method clearly, the results after each
execution are shown in Figure 8. The first execution result is shown in Figure 8a, where the
original envelope lines are smoothed, showing that the minor peaks of the original data
sequence were abandoned.
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Figure 8. Envelope interpolation process: (a) 1st time execution; (b) 2nd time execution; (c) 3rd time
execution; (d) 4th time execution; (e) 5th time execution.

As indicated in Figure 8b,c, after the second and third envelope and interpolation, the
maximum values of the data sequence were greatly reduced. For the fourth time envelope
displayed in Figure 8d, the detected local maximum values were reduced to 15. By applying
this manipulation, the overall major local maximum values that stand for every local range
could be recognized. However, if the number of executions was too large, the envelope line
of the spectrum contained few local maximum values within a certain frequency range, or
the envelope line ended up with a horizontal line.
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In Figure 8e, only three local maximum values can be found within the fifth envelope
line, and the important low-frequency maximum information between 0 and 1000 Hz was
left out. Therefore, in order to avoid the loss of the typical global maximum values caused
by too many iterations, a stop condition was set through kb (in default kb = 30). When the
number of the local maximum values is less than kb, the envelope interpolation process is
stopped. After four envelope interpolations of the simulated signal, the number of local
maximum values was 15(<kb = 30), so the envelope stopped.

3.2.2. Adjustment

Even though the number of local maximum values decreased significantly through
the multiple envelope and interpolation performance in Section 3.1, it would still be
too redundant if each extremum point were iterated only once. As shown in the above
envelope results of the simulating signals, using the ACMD algorithm to perform the
iterative filtering for these 15 extreme points is cumbersome and unnecessary. Therefore,
the correlation analysis method is employed to merge the extreme points with strong
frequency correlation in N1(f, A), and the final iteration number and the instantaneous
frequencies can be determined by the further reduced local maximum values. The updated
K and f c are stored in N2(f, A). The process of the further adjustment is shown in Figure 6
(see the green box) and the detailed instructions are as follows:

(1) Load the matrix N1(f, A)kn×2.
(2) Initialize the parameters α = 0.1, i = 1, j = 1.
(3) f c1 = fi, f c2 = fi+1.
(4) ACMD parameters (α, fc1) and (α, fc2) are set, then the original signal x is processed

to obtain the filtered signals Z1 and Z2.
(5) Calculate the Spearman rank correlation coefficient values of ρ for Z1 and Z2,

respectively. The spearman coefficient [45] is a non-parametric index of the statistical
dependence between two observational stochastic sequences. It accesses the relationship
among the sequences in which the correlation coefficient can be depicted by using a
monotonic function as:

ρ = 1−
6

n
∑

i=1
d2

i

q(q2 − 1)
(14)

where d is the difference between the sequences, and q is the number of sequences. The
correlation coefficient ρ > 0.6 is generally considered to be strongly relevant.

(6) Judge whether ρ > 0.6. If yes, the components with the smaller amplitudes in the
frequency domain are discarded, whereas the components with the larger amplitudes are
stored in the matrix N2(fj, Aj). Then j = j + 1, i = i + 1. If no, the information corresponding
to the two frequency values is retained. N2(fj, Aj) = N1(fi, Ai), N2(fj+1, Aj+1) = N1(fi+1, Ai+1),
j = j + 2 and i = i + 1.

(7) Judge whether i = kn. If yes, the maximum iteration number (K) is equal to the
number of row vectors in the matrix N2(f, A), and then go to step 8. If no, repeat steps (3–7).

(8) The matrix N2(f, A)K×2 is rearranged in descending order of A so that the instanta-
neous frequency (f c) of each iteration can be determined.

Section 3.2 is used to process the matrix N1(f, A) obtained in Section 3.1, and the
15 maximum values are reduced to 3. After calculation, the five maximum values in the
blue area in Figure 9 are the strongly correlated points, so only the maximum value with
the highest amplitude is retained in the matrix N2(f 1, A1) = (400, 0.800). Similarly, through
correlation analysis, the yellow region and the green region can be found as the other
two related regions, and the final results of the mergers are N2(f 2, A2) = (3000, 0.497),
N2(f 3, A3) = (5543, 0.061). The maximum iteration number (K) is 3. As N2(f, A) reordered in
the descending order of A, the instantaneous frequencies of ACMD for each iteration can
be also determined.
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Figure 9. Adjustment process.

3.3. Weight Factor (α) Selection for ACMD

As mentioned, the selection of the weight factor (α) is also an important issue in
ACMD. However, in rolling bearing signals, random impulses and harmonic components
usually exist simultaneously. Consequently, different bandwidths should be provided to
match each component. Additionally, in the actual signal, the energy of the random shocks,
the harmonic components, and the noises is much more than that of the fault information.
The aforementioned two points make it unreasonable to set a constant α to directly extract
the fault information from the original signal or to progressively acquire the characteristic
information of all the potential modes. Therefore, according to N2(f, A)K×2 obtained in
Section 3.1, the complex components are separated step by step through the cyclic iteration.
The optimization procedure of the parameter α for each component is shown in Figure 6
(see the blue box) and can be described as follows:

(1) Initialize the parameters k2 = 0.5, k3 = 1, f = fm. where fm is the instantaneous
frequency obtained in Section 3.1.

(2) Calculate αk3 = 10−k2.
(3) The parameters f c and αk3 of ACMD are set, and then the filtered signal Z3 can

be obtained.
(4) Calculate the ELK of Z3, denoted as Lk3.
(5) Judge whether k2 = 5. If yes, go to step 6. If no, k2 = k2 + 0.5, k3 = k3 + 1, repeat

steps (2–5).
(6) The α value corresponding to the maximum ELK is the optimal weight factor, which

is denoted as αm.

3.4. Feature Extraction Results of Each Iteration

The iteration output procedure is indicated in Figure 6 (see the dark blue dotted box)
and can be summarized as follows:

(1) Load N2(f, A)K×2.
(2) Initialize the parameters m = 1, f = fm.
(3) Initialize the input signal of the iteration Fin(m, :) = x.
(4) As described in Section 3.2, calculate the ELK values with different α values in

Fin(m, :). In this iteration, the optimal weight factor of ACMD is obtained at the largest ELK,
denoted as αm.

(5) ACMD parameters fm and αm are set, and Fin(m, :) is processed to obtain the m-th
filtered signal Fout(m, :).

(6) Calculate the remanent signal Fin(m + 1, :) = Fin(m, :)−Fout(m, :).
(7) Calculate the remanent energy ratio of Fin(m + 1, :) to the original signal x, denoted

as

ε =
∑ F2

in(m + 1, :)
∑ x2 (15)

(8) Judge whether ε < 0.1% and whether m = K. If yes, end the iteration process, and
the filtered signals of m modes are stored in Fout. If no, m = m + 1 and repeat steps (4–8).

(9) Calculate the envelope spectra of the estimated m modes to determine whether the
fault characteristic frequency of the bearing exists or not.
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Similarly, taking the simulation signal as an example, x is further decomposed itera-
tively on the basis of N2(f, A). ELK values in different α cases for each Fin are calculated, as
shown in Figure 10. Then the corresponding α(m) of each mode can be obtained.
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Figure 10. ELK values with different α at each Fin.

The spectra of the three extracted target modes by ACMD with the instantaneous
frequencies of 400 Hz, 3000 Hz, and 5543 Hz, respectively, are shown in the left column
of Figure 11a. It is shown that the decomposition results were quite satisfactory because
of the low correlation between each mode. The corresponding envelope spectra of the
three extracted modes are displayed in the right column of Figure 11b. It can be found
that the features of the different characteristic signals were successfully separated by
the proposed method. The characteristic components of the rotating frequency (f r), the
harmonic interference, and the inner race fault information (f in) are indicated in modes w1,
w2, and w3, respectively. Based on the above analysis, it can be judged that the bearing had
an inner race fault.
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Figure 11. Analysis results of each mode of the simulated inner race fault signal: (a) frequency
spectrum; (b) envelope spectrum.

4. Application Procedures of the Proposed Method

The entire flowchart of the proposed IMACMD method is displayed in Figure 12, and
the specific steps to apply the method for bearing fault diagnosis are given below:
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are obtained
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Step 1: Load the collected vibration signal x.
Step 2: Use the envelope interpolation method to reduce the number of local maximum

values of the original signal in the frequency domain. All local maximum values are stored
in the array N1(f, A)kn×2.

Step 3: Determine the maximum iteration number (K) and the instantaneous fre-
quencies (f c) of the ACMD algorithm by the correlation analysis method, denoted as
N2(f, A)K×2.

Step 4: Initialize m = 1, f = fm, and input signal Fin(m, :) = x.
Step 5: For Fin(m, :), the optimal weight factor (αm) of ACMD is obtained based on the

ELK indicator.
Step 6: Based on fm and αm, the filtered signal Fout(m, :) and the residual signal

Fin(m + 1, :) are obtained.
Step 7: Calculate the remanent energy ratio (ε) of Fin(m + 1, :) to the original signal x.
Step 8: Judge whether ε < 0.1% or whether m = K. If yes, end the iteration process and

store all the modes in Fout. Else, m = m + 1 and repeat steps (5–8).
Step 9: All the fault types are determined by the envelope spectrum of each mode.

5. Experimental Signal Verification
5.1. Experimental Setup Introduction

The effectiveness of the presented diagnostic frame was investigated by the vibration
signals that were sampled from a QPZZ rotary machinery fault simulator. The details of
the experimental fault simulator can be seen in Figure 13a. There was a loading device, an
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eddy current sensor, a drive motor, and several bearing blocks. As shown in Figure 13d,e,
two of the same SKF6025 type bearings with an outer race and an inner race defect were
used in the experiments. Electrical discharge machining was employed to produce a tiny
groove on the races of the bearing. During the vibration signal measurement, the sampling
frequency was set to 12,800 Hz. The rotating speed was set to 1470 rpm, with the rotating
frequency set as f r = 24.5 Hz. According to the listed parameters of the SKF6205 bearings
in Table 2, the theoretical fault characteristic frequencies of the inner race, the outer race,
the roller, and the cage were calculated as f in = 132.67 Hz, f out = 87.83 Hz, f roller = 115.48
Hz, and f cage = 9.76 Hz, respectively.
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Table 2. Parameters of the SKF6205 bearing.

Ball Number Ball Diameter Pitch Diameter Contact Angle

9 7.94 mm 39.04 mm 0◦

5.2. Single Fault Signal Analysis and Comparison

A dataset of the original inner race fault signal with 8192 points, whose frequency
resolution and local stability were satisfied, was selected for the single fault analysis. In
Figure 14a, some periodic impacts can be seen from the waveform of the experimental
signal. However, the interval between two adjacent impacts was about 0.04 s, which
corresponds to the shaft-rotating period.
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Figure 14. Experimental signal of bearing inner race single fault: (a) waveform; (b) frequency
spectrum; (c) envelope spectrum.

The spectrum is shown in Figure 14b. It shows that the frequency components with
high energy were mainly distributed below 3000 Hz, which means the resonance range
was relatively wide. Moreover, the peak of 132.67 Hz, which was associated with the inner
race defect, could not be observed. According to the envelope spectrum lines displayed
in Figure 14c, no obvious spectral peaks could be found at the characteristic frequency
of the inner race fault; see the red dotted line. On the contrary, the rotation frequency
and its harmonics were obvious and in good accordance with the information in the
time-domain waveform.

In the spectrum of the inner race fault signal, the number of local maximum values
was 1304. As shown in Figure 15, the envelope interpolation method was performed four
times on the original spectrum, and the local maximum values for each execution on the
spectrum are marked by the red inverted triangles. It can be seen that the local maximum
values after one, two, three, and four interpolations were 463, 156, 49, and 14, respectively.
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According to the ACMD filtering effect on the local extremum points of different
frequencies, the maximum values with strong correlation to the filtering results were



Machines 2022, 10, 704 17 of 29

reduced from 16 to 5, which is also the upper limit of the loop iteration. Therefore, the
instantaneous frequencies of ACMD in each iteration were 661, 1886, 3259, 4313, and 5719,
respectively. Based on the principle of the largest ELK, the optimal weight factor (α) of
ACMD in each iteration was also captured, as shown in Figure 16a. Through the above
optimization, the important parameters of the ACMD algorithm were set to complete the
five time iterations. The inner race fault signal was decomposed into five modes, and
the spectrum distribution is illustrated in Figure 16b. After processing by the IMACMD
diagnosis method, the envelope spectrum of each mode is illustrated in Figure 16c, where
the rotating frequency and its harmonics could be obviously found in modes w1 and w2,
whereas the inner race fault feature frequency and its harmonics could be clearly observed
in mode w4.
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For comparison purpose, the widely used methods of singular spectrum decom-
position (SSD) and spectral kurtosis (SK) were also applied to the experimental single
fault signal.

SSD requests the mode decomposition quantitative parameters be preset in advance.
In order to make the comparison results convincing, the number of singular spectrum
components (SSC) was also set to 5, which is the output mode number of IMACMD. In
Figure 17, the analysis results of SSD show that the inner race fault component had a very
low amplitude and was only included in the envelope spectrum of SSC1. The rotating
characteristics were widespread in all SSCs. These results show that SSD method was
invalid for this experimental signal.

Machines 2022, 10, x FOR PEER REVIEW 19 of 30 
 

 

 
Figure 17. SSD decomposing results of the experimental inner race fault signal. 

Then the experimental signal was processed by using the SK method. According to 
the SK kurtogram in Figure 18a, the optimal filtering frequency band was at level 5.5 and 
the center frequency was 2800 Hz. The envelope spectrum of the filtered signal by the 
constructed filter is displayed in Figure 18b. As indicated in Figure 18b, a lot of periodic 
impacts could be seen in the envelope spectrum, and their interval was about 24.5 Hz. 
Such an interval corresponds to the rotating frequency, but not the fault frequency. 

Compared with the two widely used diagnosis methods, IMACMD obtained the 
most satisfying analysis results and had the advantage in the single bearing damage 
judgment.  

  
(a) (b) 

0 100 200 300 400 500 600
Frequency(Hz)

0

1

2

3

4

0 100 200 300 400 500 600
Frequency(Hz)

0

0.5

1

1.5

2

0 100 200 300 400 500 600
Frequency(Hz)

0

0.5

1

1.5

Figure 17. SSD decomposing results of the experimental inner race fault signal.

Then the experimental signal was processed by using the SK method. According to
the SK kurtogram in Figure 18a, the optimal filtering frequency band was at level 5.5 and
the center frequency was 2800 Hz. The envelope spectrum of the filtered signal by the
constructed filter is displayed in Figure 18b. As indicated in Figure 18b, a lot of periodic
impacts could be seen in the envelope spectrum, and their interval was about 24.5 Hz. Such
an interval corresponds to the rotating frequency, but not the fault frequency.
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Figure 18. SK filtering result of experimental inner race fault signal: (a) kurtogram; (b) envelope
spectrum of the filtered signal.

Compared with the two widely used diagnosis methods, IMACMD obtained the most
satisfying analysis results and had the advantage in the single bearing damage judgment.

5.3. Compound Fault Signal Analysis and Comparison

In this subsection, the compound race fault was tested to further validate the superior-
ity of the proposed IMACMD method. In Figure 19a, the observable impacts (about 0.02 s)
corresponding to the harmonic components were associated with the rotating frequency.
Such impact could also be obviously seen in the envelope spectrum in Figure 19c at 24.5 Hz.
In Figure 19b, the energy concentration of the spectrum ranged from 0 Hz to 2500 Hz. In
the envelope spectrum, the blue dotted line and the red dotted line represent the theoretical
frequencies of the outer and the inner race faults, respectively. However, the bearing fault
characteristic components of neither the inner nor the outer race fault were detected in the
spectrum or the envelope spectrum; see Figure 19b,c.
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Figure 19. Experimental signal of bearing races compound fault: (a) waveform; (b) frequency
spectrum; (c) envelope spectrum.

Then the proposed diagnostic method was also employed in the analysis of the
experimental compound fault signal, whose analysis results are displayed in Figure 20. By
using the four-time envelope interpolation method, the estimated local maximum values
of the spectrum were gradually reduced from the initial 1313 to the final 13, as shown
in Figure 20a. By analyzing the similarity of the ACMD filter signals at each extremum
point, the maximum iteration number was locked at 5, and meanwhile the instantaneous
frequency of each iteration was also obtained, which was 391, 2344, 4717, 3711, and 5809,
respectively. However, after the fourth iteration, the residual signal took up less than
0.1% energy of the original signal. It can be considered that the key information of the
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original signal had been extracted and the iteration ended. Therefore, through the dual
constraints of the correlation analysis and the iteration end condition, the compound fault
signal was eventually decomposed into four modes. According to Figure 20b, the optimal
value of α for each iteration could be obtained. The spectrum distribution of each mode is
illustrated in Figure 20c, whereas Figure 20d displays the envelope spectrums of the four
separated modes. Modes w1 and w2 showed serial harmonics of f r, whereas the envelope
spectrum of mode w3 revealed four harmonics of the inner race fault features. Particularly,
the harmonics of the characteristic frequency f out~6f out could also be successfully detected
through the envelope spectrum of w4. So far, the IMACMD method proposed in this paper
successfully extracted and separated the inner and the outer race faults.
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Figure 20. Proposed diagnostic strategy analysis results of experimental compound fault signal:
(a) envelope and interpolation results; (b) ELK values with different α at each Fin; (c) frequency
spectrum distribution results of the obtained modes; (d) envelope spectrums of the obtained modes.
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The number of SSCs was set to 4, and the compound fault signal analysis results
of the SSD method are shown in Figure 21. Although the envelope spectra of SSC1 and
SSC2 showed the fault characteristic frequency f out and the envelope spectrum of SSC3
displayed the fault characteristic frequency f in, the amplitude of the fault characteristic
frequencies was quite low. At the same time, the harmonic interference of the rotating
frequency was still serious. The fault features of both the inner and the outer race were
extracted insufficiently, which means that the SSD method was invalid for handling this
experimental compound fault signal.
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Figure 21. SSD decomposing results of the experimental compound fault signal.

The SK kurtogram for the compound fault signal analysis is displayed in Figure 22a,
based on which the optimal frequency band was confirmed in level 5. Then the optimal
filter with a center frequency of 6133.33 Hz was created to get the filtered signal. The
corresponding envelope spectrum of the filtered signal is shown in Figure 22b. Obviously,
it was easy to identify the harmonics of the rotating frequency at 24.5 Hz, whereas the fault
characteristic frequencies of 132.67 Hz and 87.83 Hz could not be detected.

Therefore, for the composite fault signals, the acquired sensitive component using the
IMACMD method could better separate the sensitive components and more effectively
obtain the fault characteristics information than the SSD and SK methods.
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Figure 22. SK analysis results of experimental compound fault signal: (a) kurtogram; (b) envelope
spectrum of the filtered signal.

6. Engineering Signal Verification
6.1. Wind Turbine Introduction

The proposed IMACMD diagnostic method was further validated through an actual
bearing fault signal sampled from a 750 KW wind turbine generator. The schematic diagram
of the wind turbine, which was composed of an impeller, a planetary gearbox, and a double-
fed asynchronous generator, is illustrated in Figure 23a. The sensor positions are illustrated
in Figure 23b, and the generator front–back stator casings are displayed in Figure 23.
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Figure 23. Wind turbine: (a) schematic diagram; (b) accelerometers positions; (c) front-stator casing
and back-stator casing.

Considering that the wind speed frequently varies in a random way, the rotating speed
of the wind turbine consequently changes due to the mechanical torque/movement transfer.
To validate the proposed method, we selected the data series that were sampled in a more
stable wind speed condition, with a sampling frequency of 16,384 Hz. In the meantime,
these long sampling data series were divided into several segments. Each segment was
about 0.5 s, and within such short period the rotating speed of the wind turbine could be
approximately treated as stable. The data segment employed for validation in this paper
corresponded to a rotating speed of 1519 r/min.

The parameters of the defective SKF6324 bearing are listed in Table 3. In this practical
engineering industrial equipment, local weak damage occurred on the outer race of the
front generator bearing during the vibration monitoring. According to the structural details,
the rotating frequency of the rotor fr = 25 Hz. Furthermore, the theoretical characteristic
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frequencies were also computed as fout = 79.2 Hz, fin = 123.2 Hz, froller = 110.9 Hz, and
fcage = 15.4 Hz, respectively.

Table 3. Parameters of the SKF6324 bearing.

Ball Number Ball Diameter Pitch Diameter Contact Angle

8 41.275 mm 190 mm 0◦

6.2. Engineering Signal Analysis and Comparison

As represented in Figure 24a, the impulsive phenomenon was unable to be observed
from the waveform of this measured engineering signal with the data length of 8192 points.
Figure 24b is the spectrum of the original signal, where there were only three significant
frequency bands. Traditional envelope spectrum analysis was further performed on this
vibration signal. In Figure 24c, the red dotted lines denote the fault frequency and its
harmonics. Due to the harsh interference of the noise and the harmonics, only a rotating
frequency of 25 Hz and its multiples were exhibited, whereas the fault characteristic
frequency of the outer race could not be observed from the Hilbert envelope spectrum in
Figure 24c. Thus, no diagnosis conclusion was able to be drawn based on the traditional
analysis results.
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Figure 24. Engineering fault signal: (a) waveform; (b) frequency spectrum; (c) envelope spectrum.

To detect the bearing fault, the IMACMD method was employed to analyze the
engineering signal. After four envelope interpolations, the local maximum values in the
spectrum of the original signal were reduced from 1327 to 13, as shown in Figure 25a.

From Spearman rank correlation analysis, the modes with strong similarity were
combined, and finally four effective local maximum values were left. By sorting the
amplitudes of these extreme points, the instantaneous frequencies of the four iterations
were 1664 Hz, 4797 Hz, 3226 Hz, and 6254 Hz, respectively. These four modes were defined
as the primary ones to constitute the main information of the engineering signal. For each
mode, the optimal value of αand the spectrum distribution are shown in Figure 25b,c. As
illustrated in Figure 24, the envelope spectra of mode w1–w3 contained some harmonics,
whereas the envelope spectrum of mode w4 successfully separated the fault feature of the
outer race.

To highlight the superiority of the proposed method, two different methods, i.e., SSD
and SK, were also applied to analyze the actual engineering data for comparison.
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interpolation results; (b) ELK values with different α at each Fin; (c) spectrum distribution results of
the obtained modes; (d) envelope spectrums of the obtained modes.

By the SSD method, the engineering fault signal was decomposed into four compo-
nents, and the envelope spectra of SSCs are illustrated in Figure 26. The characteristic
frequency of the outer race fault had a smaller amplitude s to that in w4 in Figure 25d;
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hence, it could only be picked up in SSC1. Meanwhile, a lot of harmonics of the rotating
frequency can be seen in SSC1, SSC2, and SSC3.
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The comparison with SK is displayed in Figure 26. On the basis of the kurtogram
information in Figure 27a, the optimal frequency bandwidth was at level 6 and the best
center frequency was 6656 Hz. Then the envelope spectrum of the filtered signal could be
presented, as shown in Figure 27b. It shows that only a feeble basic characteristic frequency
was discovered, while its other harmonics were invisible. Obviously, the exhibited analysis
of SK method was not as effective as that of IMACMD.
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Through the previous engineering case analysis, an exact fault conclusion was unable
to be drawn based on the analysis results of the SSD and SK methods. On the contrary, the
proposed IMACMD method was more feasible and ascendant for weak fault feature extraction.

7. Conclusions

Strong noise removing and weak signal stripping from the vibration signal are crucial
for bearing fault diagnosis, since in many cases the characteristics are often covered by
heavy background noise. The ACMD method is a neoteric approach for adaptive signal
processing and has a performance advantage in getting the target frequency characteristics.
However, it is also greatly affected by some deficiencies. For instance, the detection of all
the potential components and the key parameter setting needs prior knowledge. In this
paper, a new iterative adaptive method, called IMACMD, is proposed to overcome these
limitations. The contribution of this paper is as follows:

(1) As an iterative method, IMACMD can isolate all the modes from the original
signal without the request of any prior knowledge about the rotation frequency, the fault
frequency, etc. The proposed method is suitable for both single and compound fault signals,
and the fault type can be identified successfully by the separated modes.

(2) The main advantage of IMACMD is using the dual constraints of the envelope
interpolation as well as the Spearman rank correlation analysis to realize the minimization
of the decomposition modes. Meanwhile, the instantaneous frequency parameters of each
mode can be obtained.

(3) A new index named ELK is proposed in this paper, which is particularly effective for
evaluating the degree of the periodicity from heavy noisy signals. Based on ELK index, the
weight factor can be adaptively determined while extracting different mode components.

In the real datasets from experimental and engineering signals, the proposed method
is superior to the SSD and SK methods in fault frequency detection, even though there
is a variety of interferences from random impulses, large period fluctuations, and heavy
noises. In this prospect, the proposed fault diagnosis method for rolling bearings has high
potential to be widely applied, especially in multiple-fault and variable-speed cases.

In engineering, our method is qualified to diagnose both single and compound faults
of bearings in approximately stable running conditions. However, in intensively varying
speed cases, the proposed method is hard to use accurately. This issue will be investigated
in future work.
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Abbreviations

ACMD adaptive chirp mode decomposition
CYCBD cyclostationary blind deconvolution
EMD empirical mode decomposition
IMACMD iterative modified adaptive chirp mode decomposition
LMD local mean decomposition
MCKD maximum correlated kurtosis deconvolution
MED minimum entropy deconvolution
MOEDA multipoint optimal minimum entropy deconvolution adjusted
SK spectral kurtosis
SSD singular spectrum decomposition
SSC singular spectrum component
VMD variational mode decomposition
Notations
A amplitude value of each local maximum
An amplitude of cycle impacts
Bj amplitude of jth random impulse
Ck amplitude of kth harmonic component
d difference between the sequences
ε remanent energy ratio
f potential instantaneous frequency
f c instantaneous frequency
f cage cage fault characteristic frequency
f in inner race fault characteristic frequency
fk resonance frequency of kth harmonic component
fm coefficient of resonance frequency
fn resonance frequency of cycle impacts
f out outer race fault characteristic frequency
f r rotating frequency
f roller roller fault characteristic frequency
fs sampling frequency
fv resonance frequency of random impulses
I number of cycle impacts
J number of random impulses
K maximum iteration number
kb boundary value of the local maximum
Kc number of harmonic components
kn number of local maximum values
N sampling points
q number of sequences
sm impulse response function of the rotating machinery system
t time
Ta period of cycle impacts
Tj occurrence time of jth random impulse
w mode of IMACMD
α weight factor
βm coefficient of resonance damping
γ specifies the slippage characteristic
µr rth L-moment
ρ Spearman rank correlation coefficient values
ϕk phase of kth harmonic component
ϕm coefficient of phase
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