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Abstract: In the crowd navigation, reinforcement learning based on graph neural network is a
promising method, which effectively solves the poor navigation effect based on social interaction
model and the freezing behavior of robot in extreme cases. However, since the information correlation
of human trajectory has not been involved in the method, its performance still needs improvement.
Therefore, we proposed a deep reinforcement learning model based on Social Spatial–Temporal Graph
Convolution Network (SSTGCN) to handle the crowd navigation problem, in which the spatial–
temporal information of human trajectory has been taken advantage to predict human behavior
intentions and help robot plan path more efficiently. The model consists of graph learning module and
robot forward planning module. In the graph learning module, the latent features of agents are taken
advantage to reason about the relations among the agents, and SSTGCN is used to update feature
matrix. In addition, value estimation module calculates state representation and state prediction
module predicts the next state. The robot forward planning module makes use of k-step planning
to estimate the quality of state and searches the best k steps planning. We tested our model in the
Crowd-Nav platform, and the results show that our model has high navigation success rate and short
navigation time. In addition, it has good robustness to crowd changes.

Keywords: SSTGCN; crowd navigation; graph learning; reinforcement learning; mobile robot

1. Introduction

With the development of robot technology, the mobile robot plays an important role
in many occasions (shopping malls, hospitals) [1]. During the movement of the robot, the
actions of human around it should be considered to ensure that the robot can complete the
navigation task efficiently and safely. However, the action intention of human is hard to
predict, so the robot navigation in the crowd is a very challenging problem [2,3].

Some studies regard human as simple dynamic obstacles and only consider the next
action. When the robot encounters human, it will adopt special obstacle avoidance rules
to avoid collision, which makes the robot behavior look short-sighted and unnatural [4,5].
In order to solve the problem, a more complex action model is proposed [6]. This model
infers the motion intention of the human and generates a group of predicted paths, and
then uses the path planning algorithm to plan the path for the robot. However, the freezing
behavior occurs when the robot and the human are about to meet, which is bad for crowd
navigation [7]. The current solutions are divided into model-based and learning based. The
model-based method needs to introduce a parameter adjustment model to explain the social
interaction model, but it is not clear whether the complex human behavior follows these
precise geometric behavior rules [8–10]. The purpose of the learning based method is to
develop a strategy to imitate human behavior. Deep reinforcement learning is used to learn
effective strategies to solve navigation problems [11–13]. These strategies either do not use
human–robot interaction information, or simplify human behavior into simple dynamic
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obstacles to simplify human action prediction, or generally only consider the current state
of human action, and do not combine human behavior prediction for navigation. These
conditions will lead to the robot navigation failure easily.

Since graph neural networks are good at describing the relationships among entities,
they are introduced to solve the crowd navigation problem [14]. A variant of GNN is graph
convolution neural network (GCN) [15]. Its adjacency matrix represents the relationship
between nodes. Wang et al. [16] and Grover et al. [17] uses the learning attention to calculate
new features in order to learn the relationship between nodes. To solve the problem of
robot crowd navigation, we first need to model the human–robot interaction model, and
then complete the next action planning of the robot according to the human trajectory
information. Chen et al. [18] use graph learning to solve crowd navigation. However,
it can not make full use information of trajectories. We propose a deep reinforcement
learning model based on Social Spatial–temporal Graph Convolution Network (SSTGCN).
SSTGCN models the relationship between agents, extracts the spatiotemporal information
of trajectories, and calculates the interaction between agents. According to this interaction
characteristic, we predict the trajectory of humans and use reinforcement learning training
strategy to complete robot navigation. Figure 1 shows the interactive reasoning between
robot and human, human and human, and completes the efficient and safe navigation of
robot by predicting the motion trajectory. In the figure, the smaller the robot and human
are, the farther the predicted steps are. The close relationship between humans is inferred
according to the relationship and planned according to the human trajectory. The robot can
safely reach the target point. Simulation experiments are designed to validate this strategy
and we will conduct physical experiments to verify this strategy in the near future.

Figure 1. Robot and human interaction diagram.

Our main contributions are threefold. Firstly, the Social Spatial–temporal Graph
Convolution Network (SSTGCN)is proposed to model human–robot interaction. Compared
with Graph Convolution Network (GCN), SSTGCN can make full use of the spatiotemporal
information of trajectory to help robot make better navigation behavior. Secondly, we add
a value prediction network to the model to make a certain depth prediction, which can
predict the future human movement. Finally, we propose a new reinforcement learning
based on graph method for crowd navigation tasks, which can improve the success rate of
robot navigation and solve the freezing behavior of robots. Simulation experiments show
that the model has significant advantages in learning effective strategies.
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In this paper, the related work is presented in Section 2. The proposed model is
explained in Section 3, while results are shown in Section 4. In addition, the discussion is
shown in Section 5. Finally, the conclusion and future directions are discussed in Section 6.

2. Literature Review

This section describes the literature research on the relevant contents of the model.
Firstly, it describes the related research of crowd navigation and indicates the navigation
problems to be solved. Secondly, it describes the application of relational reasoning in
crowd navigation. Finally, it introduces the research status of reinforcement learning based
on the model.

2.1. Crowd Navigation

The solution of robot navigation in crowd is proposed. The social force model [19] has
been applied to different environments and achieved good performance [8,20]. Reciprocal
velocity observers (RVO) considering communication with other agents has been applied in
multi-agent navigation scenarios [21]. ORCA makes multiple robots avoid collision when
navigating in complex environments [22]. However, these model-based methods require
parameter selection, which makes the modeling process very difficult. This can not well
explain the real human behavior, and will make the robot produce unnatural navigation
behavior. The navigation success rate is low, and the robot freezing behavior will occur in
extreme cases.

The purpose of imitation learning is to teach robot learn how to complete crowd
navigation directly from human behavior demonstration. Long et al. and Tai et al. [23,24]
used imitation learning to learn navigation strategies from original laser data or depth
input under supervision. Recently, Chen et al. and Chen et al. [11,25] proposed to learn the
state value of the value network and use deep reinforcement learning for crowd navigation.
Chen et al. [13] based on the existing work, used the attention pool module to learn the
robot state representation by using the pairwise interaction feature. However, the model
made a simplified assumption when the human action was not clear. A model about
graph convolutional network (GCN) for reinforcement learning was proposed to integrate
information about the environmental context of the robot[26]. Chen et al. [18] proposed to
use the model-based deep reinforcement learning combined with graph learning method
for crowd navigation. However, the temporal and spatial information of the trajectory
is not integrated, and the inference of human behavior intention needs to be improved.
Considering the spatiotemporal information of the trajectory, we propose the SSTGCN
learning method, which captures the spatial and temporal correlation of the trajectory
information to complete the human behavior intention inference, and combines with
reinforcement learning to complete the k-step depth path planning to guide the robot to
complete the navigation task.

2.2. Relational Reasoning

The purpose of relational reasoning is to determine the relationship between ob-
jects [27]. The graph structure well represents the relationship between objects. The graph
convolution network extends the convolution operation to graph structure data, which is
of great concern in graph representation learning. Most GNNS run in input systems with
known graph input. However, many interaction relationships in robot crowd navigation
tasks are unknown, such as human behavior [28] and crowd interaction [29]. It is very
important for the robot to infer the relationship between travelers in the crowd navigation
task, which helps to infer the human behavior intention (for example, the walking distance
between friends is relatively close, the robot cannot pass through, and strangers will cross,
which does not affect the robot’s path planning). Kipf et al. [30] the proposed model can
infer the relationship graph between the robot and the crowd at each time step, and learn
the state representation of each agent based on the graph. A graph convolution network is
proposed to capture the attention between robot and human, human and human to predict
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human behavior [18]. In order to integrate the dynamic characteristics of the trajectory,
Mohamed et al. [31] proposed the social spatiotemporal graph convolution network to
predict the human trajectory. The model well integrates the spatiotemporal characteristics
of the trajectory information and improves the human performance of the model, but the
model is not used for crowd navigation. Inspired by the model, SSTGCN with a new
structure is proposed to capture the spatiotemporal relationship of the robot and human’s
attention to predict the human behavior trajectory to help the robot with path planning.

2.3. Model Based Reinforcement Learning

Model based RL first learns the environment model from experience, and then uses
the model to improve the value optimization. In this model, this method attempts to learn
a model that predicts future observations based on behavior, which is used to simulate the
real environment and plan future k-step actions. Finn et al. [32] learn the state transition
model by predicting the future frame, so as to realize the goal oriented robot operation,
Oh et al. [33] learn a dynamic model, and the abstract state of the model is trained to make
selective prediction behavior for the future value. Chen et al. [18] proposed relationship
graph prediction uses the original human state as the input, and predicts multiple inter-
acting human trajectories. Based on it, we use SSTGCN to learn the spatial–temporal
correlation of the original state feature information, and combine graph learning and
model-based RL algorithm for robot crowd navigation task.

3. Methods

This model consists of SSTGCN, three MLP and k-step planning. In Figure 2, MLP1
is responsible for extending the dimension of state information obtained from the envi-
ronment as the SSTGCN input. SSTGCN is responsible for updating the feature matrix
I, where the graph convolution network layer is used to update the spatial features and
its output is feature matrix II. The LSTM layer is used to capture the time-varying action
characteristics.The output characteristics of robot nodes naturally aggregate the spatiotem-
poral information of human nodes. The model of trajectories by SSTGCN helps infer
human action intentions compared with the GCN . Both robot node feature and human
node feature are passed through MLP2 and MLP3, the action estimation value of the robot
and the predicted action state of the human are obtained respectively. K-step planning is
responsible for evaluating the quality of robot action estimates and searching for the best
action sequence.

In this section, the first part describes the deep reinforcement learning algorithm for
crowd navigation. The second part uses SSTGCN to model the human–robot interaction
model, infer the relationship between agents, and complete the robot’s motion estimation
value and human’s predicted motion state. The third part describes the k-step planning
algorithm to help the robot evaluate the motion quality and search for the best motion
sequence. The fourth part describes the training methods used in the model

action

Figure 2. Structure of the model.
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3.1. Collision Avoidance with Deep Reinforcement Learning

This part mainly solves the crowd navigation task, that is, the robot can navigate to
the target point safely and efficiently in the environment of n humans. Reinforcement
learning [34] is a sequential decision problem, which is also expressed as a sequential
decision problem in this task [25,35]. We divide the state of the environment into two parts:
one part is the information of the robot itself, which can be expressed by a fixed number
of states; The other part is other information in the environment, which may contain an
unknown number of objects. We can define a vector s about robots and other human
s(i),where i is number of human:

s =
[
lg, vp.δ, r

]
(1)

s(i) = [p(i), v(i), r(i), l(i), r(i) + r] (2)

where changed the indent, pls confirm. lg = ||pg − p|| is the distance from the robot to the
target point. l(i) = ||p− p(i)|| is the distance from robot to human No.i. vp is the speed of
the robot. δ is the heading angle. r is the radius of the detection range. p(i) is the coordinate
of the human No.i. v(i) is the moving speed of human No.i. r(i) is the detection radius of
the human No.i, and r(i) + r is the distance that the robot and the human No.i can detect
each other. The action space of the robot is composed of speed and steering angle, when
the speed is vp, there are 6 courses evenly distributed between ±π

6 , when the speed is 0.5vp
and 0, the heading is selected as [−π

6 ,+π
6 ]. We set it this way to simulate the real motion

state of the robot. We assume that the robot can always complete the selected action in one
time step. One way to find the optimal strategy is to find the optimal value function:

V∗
(

sj
0

)
= E

[
T

∑
t=0

γtR
(

st
j, π∗

(
st

j

))]
(3)

π∗
(

st+1
j

)
= at

argmax
R
(
st, at

)
+ γ∆vp

∫
s

t+1
j

P
(

st
j, st+1

j |at

)
V∗
(

st+1
j

)
dst+1

j (4)

where blue γ ∈ [0, 1) is a discount factor. There are many methods to train the Function (3)
offline [34]. The current value function can be implemented as a strategy Function (4),
where R

(
st, at

)
is the reward received after taking action at at time t, P

(
st

j, st+1
j |at

)
is the

transition probability from time t to time t + ∆t, and the moving speed vp of the robot is the

power exponent of the discount factor. The state transition probability model P
(

st
j, st+1

j |at

)
is defined by the robot kinematics model. Because the behavior of human depends on their
strategies and intentions, the state transition model of the system is unknown. In [13], it is
assumed that the state transition function is known in the training process, and the state
transition model is shown to be modeled in the testing process, which greatly reduces the
complexity of the problem. The main reason is that the robot can search the next state space
to solve the navigation problem. In this study, the state transition model is unknown, and
the model-based method is used to predict human motion. We define the reward function
formula to calculate the reward. When there is a collision or too close to other human, we
will punish them.

R
(
st, at

)
=



1, i f p = pg,

−1 +
dmin

2
, i f 0 < dmin < 0.2,

−0.25, i f dmin <= 0,

0, otherwise.

(5)

where dmin is the closest distance between the robot and other human, pg is the position of
the target point. There are no uncooperative human in the environment. Decision makers
only receive their observable states, and do not know their decisions or hidden intentions.
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3.2. Graph-Based Crowd Representaion and Learning

The pairwise relationship between agents is very important for robot navigation and
prediction of human future actions. We model the crowd as a graph, derive the relationship
between humans through relational reasoning, and use the Social Spatial–temporal Graph
Convolution Network (SSTGCN) to learn the state representation of robot and human. We
mainly build two modules: one is the value estimation module fvalue(), which estimates
the value of the current state. One is the state prediction module fs(), which predicts the
state of the next time step.

How to represent the interactive coding among all agents is the first problem of the
human relations reasoning in the environment. We model robots and other humans as a
graph G = (V, E) [36], where V = vi|i∈1, ..., N + 1 is the node of the graph. There are N + 1
nodes in total. In graph G, vi is the set of vi

t, ∀t∈0, . . . , T. E = e(i,j)|∀i, j∈1, . . . , N, N + 1
represents the edge between nodes, and the weight of the space edge e(i,j)∈E is expressed by
normalizing the Euclidean distances of nodes i, j. The pairwise relationship between nodes
is unknown. When reasoning about the node relationship, the initial value of the node is
the state value of the agent s = st

i |(i=1,. . . ,N+1). In order to facilitate the representation of
the state space, two multilayer perceptrons frobot() and fhuman() map the potential states
belonging to robot and humans into a state space, where the matrix is the characteristic
matrix F, the first row of the matrix is the potential state of robot, and the remaining rows
are the potential states of human. Here, the point product similarity function in [16] is
used to calculate the relationship matrix according to the characteristic matrix F. Similarity
function is defined as point product similarity:

f
(
xi, xj

)
= θ(xi)

T ϕ
(
xj
)

(6)

where θ(xi)
T = Wθ xi,ϕ

(
xj
)
= Wϕxj.

Inspired by the spatiotemporal graph convolution network [28], a new Social Spatial–
temporal Graph Convolution Network(SSTGCN) is designed as a graph learning module.
SSTGCN adopts the implementation method similar to GCN [15], and convolutes in the
time domain. SSTGCN takes features as input, uses the influence of spatial edge aggregation
nodes, uses GCN to process spatial features, and LSTM to process time-varying motion
features. We will analyze the rationality of the network from spatial correlation and
temporal correlation.

The acquisition of complex spatial dependencies is a key problem in trajectory predic-
tion. Traditional convolution neural network (CNN) can obtain local spatial features, but
this is only limited to European space. Once irregular graph data are involved, CNN cannot
accurately capture spatial dependence. We need to use graph neural network (GNN) which
can deal with graph relations. Among them, graph convolution neural network (GCN) has
received extensive attention. First, GCN acquisition is used to obtain spatial features from
historical data. A two-layer GCN model is represented as follows:

f (A, X) = σ
(

ÃRelu
(

ÃXW0
)
W1
)

(7)

where X represents the characteristic matrix, A represents the adjacency matrix, and
Ã = D̃

−1
2 ÃD̃

−1
2 indicates pretreatment step, Ã = A + I is a matrix with self connected

structure, I is the identity matrix, D̃is the order matrix, D̃ = ∑j Ãi,j . Our interaction model-
ing is a second-order interaction. In the output of each layer, we use layer normalization [9],
W0 and W1 represents the weight matrix of the first layer and the second layer respectively,
σ(·) and Relu represent activation functions.

The acquisition of temporal correlation is another key problem in trajectory prediction.
At present, recurrent neural network (RNN) is the most widely used neural network model
for processing sequence data, but it has some shortcomings, such as gradient disappearance,
gradient explosion and so on. LSTM [37] is a variant of recurrent neural network. It can
solve the above problems, store relevant information in a hidden state, and forget the less
important parts. In the SSTGCN model, LSTM is used as the output characteristic matrix
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of the processing map convolution layer, which can selectively process the time-varying
action characteristics.

Combining graph convolution network and LSTM to form SSTGCN model can obtain
the spatiotemporal correlation of trajectory information. As shown in Figure 3, (a) shows
that the feature matrix sequence with expanded dimensions generates a feature matrix
with new feature information after the graph convolution layer and LSTM layer. (b) shows
the specific internal structure of SSTGCN. On the one hand, SSTGCN can be used to obtain
the spatial structure between robot and human, human and human, and obtain the spatial
correlation, on the other hand, SSTGCN can be used to capture the changes of trajectory
information of robot and humans, and obtain the temporal correlation. After SSTGCN
propagation, we get the updated state matrix Pt = F2, and Pt[i, :] is the state representation
of agent i coding its local interaction.

L

S

T

M

SSTGCN

Feature matrix Updated 

feature matrix

Graph-Conv

LSTM

Graph-Conv

WSSTGCN

(a) (b)

GCN layers

Figure 3. Framework of SSTGCN. (a,b) show the structure of SSTGCN, consisting of two-layer graph
convolution and LSTM. (a) shows the flow in which the characteristic matrix is processed. (b) shows
the internal calculation process of SSTGCN

Value estimation module fvalue() contains two models: use the above graph model to
predict the robot’s state representation Pt[0, :], and the other is to predict the value of the
obtained state representation fv

(
Pt[0, :]

)
, where fv uses a forward propagating perceptron

MLP. We assume that state st passes through action at, and we can get s(t+1), which can be
calculated. In order to avoid the collision between robot and human, the state prediction
module is used to model the interaction between agents and predict the next state. Our state
prediction module fs() also contains two modules: the relationship graph model predicts
the relationship between agents and calculates the feature matrix, and then calculates the
next state s

′
i,t+1 = fa

(
Pt[i, :]

)
of agents through the value function module for prediction,

s‘
i,t+1 indicates the prediction state of the ith agent at t + 1 time, fa perceptron MLP is used.

We use Equation (5) to estimate the reward of the agent in the next state, expressed as
R‘
(

st, at, s(t+1)
)

. By learning the agent state value and predicting the agent trajectory, the
robot collision situation can be better solved.

3.3. Robot Forward Planning and Learning

The Monte Carlo tree search method is used for complex search problems. The go
game [38] introduces a value network to directly estimate the state of go in order to more
conveniently approach the state value of leaf nodes in the tree search process. In this part,
we use the value prediction network [33] to simulate future planning, but instead of using
the Monte Carlo tree search method for planning, we use a k-step depth planning method
to perform prediction at a certain depth using the value prediction network. Given a state
s and an action a, the definition of Q value calculation based on k-step depth planning is
as follows:

Qk(s, a) = R
′(

st, at, s(t+1)
)
+ γVk

(
s(t+1)

)
(8)
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Vk(st) =


V
(
st), i f k = 1,

1
d

V1(st)+ k− 1
k

maxat Q
k−1(s, a), k > 1.

(9)

where Qk(s, a) represents the Q value of k-step depth prediction, and Vk
(

s(t+1)
)

represents
the reward value of the predicted next status value, γ is the discount factor for future
rewards, maxat Q

k−1(s, a) represents the average of k− 1 estimated values. Our planning
algorithm includes depth prediction and forward propagation. Depth prediction is a k-step
prediction state based on the current state. As shown in Figure 4, in the forward propagation
step, the current state estimates V

(
st) and the weighted average value of maxat Q

k−1(s, a)
are calculated to calculate the estimated value Vk(st) of k-step depth prediction. The value
prediction network can be trained according to any existing value based reinforcement
learning algorithm, combined with supervised learning for reward and discount. Here
we use the training method of literature [33] and adopt the training method based on the
above planning method ε-greedy policy generates tracks

0
s

0
s

1
s

2
s

(b)Backup(a)Expansion

Figure 4. K-step Planning.

3.4. Joint Value Estimation and State Human Learning

Algorithm 1 shows the training code for learning based on value estimation and state
prediction. In the line 13 of Algorithm 1, it is shown that the state matrix is transferred to
SSTGCN as an input, the relationship matrix is calculated and added as a weight matrix
to the two GCN convolution layer for calculation, and LSTM is responsible for feature
extraction of the updated feature matrix. After several tests and referring to other research
work, the appropriate matrix dimension is selected. All required parameters are set in the
configuration file for training. In the training, firstly, the network is supervised and trained
to imitate the demonstration of OCRA strategy. The latter will drive the robot through
the crowd to reach the destination, initialize the model from the experience collected, and
then use reinforcement learning to train the strategy. Due to the sparse rewards in the
navigation process, imitation learning is very important in initializing the model, otherwise
reinforcement learning strategy will not converge. We use RL to train fvalue() and using
supervised learning training fs(). Using SSTGCN, we can integrate time-varying action
information and spatial information into trajectory prediction, and learn more accurate
value functions than these strategies [13,18].
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Algorithm 1. This table shows the training process of the algorithm, which includes
Imitation learning and Reinforcement learning

Deep learning for fvalue() and fs()
/* Imitation learning */
1: Input: collected state-value pair(snav, fvalue)
2: for epoch← 1 to num of epochs do
3: f̃value = F(snav, w)
4: e=MSE

(
fvalue, f̃value

)
5: w=backprop(e, w)
6: end
/* Reinforcement learning */
7: for episode← 1 to num of episodes do
8: while not reach goal, collide or timeout do
9: at←argmax(at∈A)R̃

(
st, at, s(t+1)

)
+ γ(∆tvp)Vk(st) where s(t+1) = fs

(
st, at

)
10: Get rt and s(t+1) after execute at

11: Store transition
(

st, at, rt, s(t+1)
)

in B

12: Sample random minibatch of transition
(

st, at, rt, s(t+1)
)

in B
13: Transfer the state matrix to SSTGCN for value estimation
14: yi = ri + γ(∆tvp)Vk

(
s(i+1)

)
15: Minimizing || fvalue(si − yi)|| for updating fvalue
16: Minimizing || fs(si, ai)|| for updating fs
17: Update target value network f̃value ← fvalue
18: end for
19: return fvalue, fs

4. Experiments

In this section, we carry out relevant experimental verification on our model. In
Section 4.1, we describe the experimental design scheme and parameter settings. We
analyze the experimental data in detail in Section 4.2. In Section 4.3, we make a quantitative
evaluation of the model and show that freezing behavior will not occur.

4.1. Simulation Environment and Experimental Parameter Setting

We use Crowd-Nav to simulate the environment [13]. The hidden units of frobot(),
fhuman(), fvalue(), fs() have dimensions (64, 32), (64, 32), (150, 100, 100), (64, 32). The learn-
ing rate is 0.001. The discount factor γ is set to be 0.95.The simulation environment is a
circular environment with a radius of 4 m. In the environment, humans use ORCA strategy
with parameters from Gaussian distribution to perform diversified behaviors. The x and
y coordinates of humans are subject to random disturbance. The maximum speed of the
robot is 1 m/s, and the coordinates of target points have been set. The robot is invisible to
human beings in order to simulate the natural behavior of human beings. The navigation
strategies in the experiment include the navigation strategy ORCA based on social model,
the deep reinforcement learning strategies LSTM and SARL based on non graph neural
network, the deep reinforcement learning strategy MP-RGL-Multistep based on graph
neural network, and the model SSTGCN-V-Learning (this strategy) of this study. The
experiment is divided into three groups of experiments. The first group of experiment
environment is 3 humans and 1 robot, 5 humans and 1 robot, 10 humans and 1 robot. The
depth of the depth planning tree is 1, and the navigation strategy is SSTGCN-V-Learning.
The second group of experiments included 3 humans and 1 robot, 5 humans and 1 robot,
10 humans and 1 robot. The depth of the depth planning tree is 1. The navigation strategies
were ORCA, LSTM, SARL, MP-RGL-Multistep and SSTGCN-V-Learning. The third group
of experimental environments are 3 humans and 1 robot, 5 humans and 1 robot, 10 humans
and 1 robot. The depth of the depth planning tree is 1 and 2, and the navigation strategy is
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SSTGCN-V-Learning. The purpose of the first group of experiments is to test the crowd
navigation function of the navigation strategy studied this time. The second group of
experiments is to test the navigation performance of the model, and also use this group
of experiments to analyze the robustness of two graph learning navigation strategies to
number of human changes. The third group of experiments is to test the influence of
predicted depth on navigation performance. Finally, we analyze whether freezing behavior
will occur when robots and humans are about to meet.

In order to ensure fairness, all experiments are implemented on the same platform. Only
the models are different. All models are evaluated with 200 random test cases. The indicators
of the evaluation model are success rate, collision rate, navigation time and average reward.
The navigation success rate represents the success rate in 200 tests, the collision rate represents
the collision rate in 200 tests, the navigation time is the average time in 200 tests, and the
total reward is the sum of the rewards in 200 tests. Set the training rounds of LSTM, SARL,
MP-RGL-Multistep and SSTGCN-V-Learning to 4000 episodes and batch size to 5. All codes
are based on Python. Hardware platform parameters are shown in Table 1.

Table 1. Hardware and Software Platform Parameters.

Hardware and Software Parameter

ARM 32GB
CPU Intel Xeon Silver 4210
GPU NVIDIA GeForce RTX 3080 with 10 GB

Operating System Ubuntu 18.04

4.2. Navigation Obstacle Avoidance Performance Test

This module contains four groups of comparative experiments, which are the bench-
mark experiment, performance comparison experiment, depth planning tree depth influ-
ence comparison experiment and robustness experiment to the change of human number.
Table 2 shows the success rate, collision rate, navigation time and average reward for
different strategies and different human numbers. The basic performance of the strategy
is tested in the environment where the depth and width of the k-step planning tree are
1 and the number of humans is 3, 5 and 10. Figure 5 shows the navigation examples in
different scenarios. (a) shows the scene when the number of humans is 3, (b) shows the
scene when the number of humans is 5, and (c) shows the scene when the number of
humans is 10. From the data in Table 2, it can be seen that the robot navigation success rate
is at a high level.

(a) (b) (c)

Figure 5. The black circle represents mobile robot. Colored circles represent human. The black
star represents the target point. (a) shows robot navigation scene when the number of humans is 3,
(b) shows robot navigation scene when the number of humans is 5, and (c) shows robot navigation
scene when the number of humans is 10.



Machines 2022, 10, 703 11 of 16

The performance comparison experiment was carried out in the environment where
the depth of the k-step planning tree were 1 and the number of human was 3, 5 and 10. The
violation of the preventive assessment of ORCA was violated in the invisible environment.
Since local collision free operation could not be guaranteed, the navigation success rate of
this method was low. The reward obtained by ORCA navigation strategy also shows the
poor navigation performance of this strategy when other intelligent body pose information
is not known. In the Figure 6, (a) shows the navigation success rate when the number of
human is 3, (b) the navigation success rate when the number of human is 5, (c) shows the
navigation success rate when the number of human is 10. In the Table 2, human number is
the number of human in the crowd, success rate is the proportion of robots reaching the
target point without collision, collision rate is the collision between robots and humans,
navigation time is the average time for robots to navigate to the target point, and total
reward is the reward value for robots to navigate to the target point. It can be seen from
the data shown in Figure 6 and Table 2 that the best model is SSTGCN-V-Learning model,
ORCA is the worst performing model. Compared with MP-RGL-Multistep, SSTGCN
has more advantages in navigation effect than GCN. The main reason is that LSTM uses
hidden states to capture these time-varying motion characteristics by using the updated
feature matrix of graph convolution network to improve the accuracy of decision-making.
However, the model with the best performance does not appear without collision. The
main reason is that humans cannot see the robot during walking. Robot navigation uses
the predicted trajectory of humans, not the real trajectory of the next time, which makes
collision inevitable.

  

 

Figure 6. Navigation success rate of related strategies in different scenarios. (a) shows the navigation
success rate when the number of human is 3. (b) shows the navigation success rate when the number
of human is 5. (c) shows the navigation success rate when the number of human is 10.
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Table 2. Performance comprison among the crowd navigation algorithms.

Method Human Number Success Rate Collision Rate Navigation Time (s) Total Reward

SSTGCN-V-Learning
3 0.99 0.01 10.12 0.3305
5 0.93 0.03 11.49 0.3017

10 0.85 0.13 14.01 0.1150

MP-RGL- Multistep
3 0.98 0.02 10.67 0.3104
5 0.90 0.05 11.05 0.2920

10 0.61 0.07 16.44 0.0754

SARL
3 0.98 0.01 10.51 0.3148
5 0.93 0.05 12.48 0.2203

10 0.83 0.10 14.38 0.1348

LSTM
3 0.97 0.02 10.91 0.3065
5 0.85 0.14 10.98 0.1895

10 0.80 0.19 13.38 0.1044

ORCA
3 0.96 0.03 10.87 0.3127
5 0.43 0.57 10.93 0.0615

10 0.25 0.30 17.66 −0.1499

The depth test of k-step planning tree (i.e., the test of predicted steps) is carried out
in the environment with different human numbers. The prediction of k-step number
will affect the decision-making of the robot and thus the navigation performance. In the
Figure 7, H represents the number of human in the environment, and D represents the
depth of the depth planning tree, that is, the number of prediction steps. In the Table 3,
Depth refers to the number of prediction steps, success rate refers to the navigation success
rate, navigation time refers to the average navigation time, and training time refers to the
time required for the training strategy. This parameter is related to the equipment used.
According to Figure 7, it can be seen that the navigation success rate and navigation time
increase slightly with the increase of the predicted step number. The main reason is that a
k-step depth planning method is usefull in this model, and the value prediction network is
used to perform the prediction of a certain depth. However, according to what we observed
in the experiment, it is not that the more prediction steps, the better. With the increase
of prediction steps, the training time will also increase significantly. This is because the
planning algorithm includes depth prediction and forward propagation. If a larger depth
is selected, these two calculation processes will consume more time. Therefore, selecting a
suitable depth will help to improve performance and save training time.

Figure 7. Navigation success rate in different environments.
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Table 3. Influence of Depth on navigation performance of SSTGCN-V-Learning.

Human Number Depth Success Rate Navigation Time (s) Training Time (h)

3 1 0.99 10.12 19
2 0.99 9.79 30

5 1 0.93 11.49 22.8
2 0.96 11.28 37

10 1 0.85 14.01 29.25
2 0.87 13.86 49

The robustness comparison experiment environment is mainly to compare MP-RGL-
Multistep and SSTGCN-V-Learning when the number of human is 3, 5 and 10. It is not
difficult to find from Table 2 that the navigation success rate of these two navigation
strategies decreases to varying degrees with the increase of the number of human, but
the performance of MP-RGL-Multistep strategy decreases significantly, and the success
rate declines more rapidly in the same environment as SSTGCN-V-Learning strategy,
MP-RGL-Multistep strategy is sensitive to changes in the number of human. According
to the experimental analysis, the MP-RGL-Multistep strategy can not well predict the
behavior trend between human when there are many human, resulting in the inability to
guide the robot to quickly move to the target point. More often, the robot generates other
actions according to the predicted complex human behavior, resulting in timeout. The
SSTGCN used in this strategy not only handles spatial features, but also handles long-term
dependency, It can be seen from the total reward in Table 2 that this strategy is more
accurate than MP-RGL-Multistep in predicting the performance of human behavior.

4.3. Qualitative Evaluation

We also studied the freezing behavior of robots when approaching human.
Figures 8 and 9 show the behavior of robot when they are near humans. Figure 8 shows
the performance of the navigation strategy when robot approaches human in the scene
with 3 and 10 humans. In the Figure 8, black star indicates the target point to be reached.
(a) and (b) is the performance of the robot when facing the freezing problem at one step
depth in the scene with 3 humans, showing that when it was about to meet human No.2,
the robot made a 90° left turn to try to bypass human No.2. (c) and (d) is the performance
of the robot when facing the freezing problem in a one-step depth in the scene where the
number of humans is 10. It shows that when the robot is about to meet human No.9, the
robot makes an evasion action in advance according to the predicted action of human No.9,
rotating 135° to the left to avoid human No.9.

In the Figure 9, (a) and (b) shows that when the robot is about to meet human No.3, it
turns 90° to the right to try to bypass human No.3. The robot will try to bypass human No.3
in front of human No.3, which will make the robot step into the comfortable range of human
walking and get a punishment because it does not conform to the social code of conduct. In
(c) and (d), the robot and human No.3 are about to meet. But due to two-step planning, it
is predicted that a higher reward value can be obtained by passing through the position
with the opposite movement direction of No.3 (that is, the position just passed by No.3).
Although they all face the situation of meeting human, the robot does not appear freezing
behavior and has reached the target point. From the side, it shows that the robot can use
this strategy to avoid freezing behavior when navigating, and the two-step planning has
better performance than the one-step planning.
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(a) (b) (c) (d)

Figure 8. (a–d) depict how the robot acts in different crowd navigation scenes, among which (a,b)
show the situation with 3 passers-by while (c,d) show the situation with 10 passers-by.

(a) (b) (c) (d)

Figure 9. The robot acts by K-step tree planning strategy with different depths. In (a,b), the depth is 1
while it is 2 in (c,d).

5. Discussion

In this study, we have implemented a deep reinforcement learning model based on
SSTGCN, which is used to solve safe navigation of robots in the crowd. In graph learning
module, latent features are taken advantage to reason about the relations among agents, and
SSTGCN is used to calculate the interaction features, where the graph convolution network
layer is used to update the spatial features and the LSTM layer is used to capture the
time-varying action characteristics. In addition, value estimation module calculates state
representation and state prediction module predicts the next state. In the robot forward
planning module uses k-step planning to estimate the quality of state. The model make
full use of the predicted human action trajectory for k-step planning to complete the path
planning of the robot.

The experiment results show that our model has great advantages over the model-
based navigation strategy. ORCA strategy is one of them [22]. When the number of human
increases, the navigation performance of the model-based strategy decreases sharply, and
robot freezing behavior often occurs. In the comparison of strategies based on learning,
our model is also better than other models, such as LSTM and SARL [13]. The main reason
is that our model uses graph neural network to model human–robot interaction, which
better reflects the association between pose information, and the depth planning tree of
our model completes k steps prediction which can improve the accuracy of robot path
planning in the future. Compared with MP-RGL-Multistep [18], which also uses graph
neural network, our model has obvious advantages in robustness. The LSTM layer in our
model takes advantage of hidden states to capture these time-varying motion characteristics
by updating the characteristic matrix of graph convolution network, so as to improve the
accuracy of decision-making.

The SSTGCN used in this model is composed of convolution layer and LSTM layer.
There are still some disadvantages in processing feature information. During the experi-
ment, we find that with the increase of the number of humans, the training time increases
more. After analysis, it is found that the model take a long time to calculate the graph
convolution neural network and LSTM . A feasible solution of this problem is to design
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a lighter neural network with processing time characteristics to replace the role of LSTM
layer in SSTGCN.

6. Conclusions

In this paper, we design a new structure of SSTGCN for the deep reinforcement learn-
ing to solve the crowd navigation . It is an advantageous to use the SSTGCN processing the
human–robot interaction model because of the association relationship of spatiotemporal
information. The model can make full use of the predicted human action trajectory for deep
k-step planning to complete the robot path planning. Our model is superior to the baseline
model and performs well in the face of robot freezing behavior. We focus on the theoretical
research and preliminary verification of the algorithm in the current phase. Therefore,
physical experiment has not been carried out . This will become the focus of our next work.
In the future, we will train the robot in the environment with static obstacles and humans,
and realize the robot navigation task in the complex real environment.
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