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Abstract: With the development of high-speed and lightweight mechanisms, and the continuous
improvement of manufacturing accuracy requirements in industrial production, clearance joints have
increasingly become one of the key factors affecting dynamics performance. Poor clearance will
seriously compromise stability, accuracy, and dynamics performance. Based on a genetic algorithm,
an efficient modeling methodology for the dynamics optimization of a planar complex multi-link
mechanism containing multiple clearance joints is put forward. The model comprises a 2-degree
of freedom (DOF) nine-bar mechanism that can be used as the main transmission mechanism of a
hybrid drive multi-link press, which is taken as the research object. The optimization objective is to
minimize the maximum acceleration of the slider and minimize the difference between the actual
central trajectory and the ideal trajectory. By optimizing the quality parameters of key components, an
optimal solution for the design parameters is obtained, and the effects of the different optimizations
of the objective functions on dynamics response are compared and analyzed. At the same time, a
new modeling and calculation methodology of the dynamics accuracy and reliability of a complex
multi-link mechanism in terms of multiple clearances is proposed, and the effect of optimization
on dynamics accuracy and the reliability of the mechanism is analyzed. Based on the optimization
results obtained by taking the minimum difference between the actual center trajectory and the ideal
trajectory as an optimization objective, the nonlinear characteristics before and after optimization
are analyzed through a phase diagram and Poincaré map. A test platform was built to study the
dynamics of the mechanism with clearances. Research not only provides a basis for the dynamics
optimization of a multi-link mechanism containing clearances but also provides reference significance
for the reliability analysis of a multi-link mechanism containing clearances.

Keywords: dynamics optimization; clearances; dynamics response; dynamics accuracy reliability;
nonlinear characteristics

1. Introduction

As an important element of mechanical structures, the multi-link mechanism has
the advantages of a simple structure, good reliability, and strong bearing capacity. In
recent years, it has been the focus of mechanism research and has attracted the attention of
many scholars. In the analysis of such a mechanism’s motion, it is usually assumed that
a kinematic pairing is ideal. However, in practice, the clearance of kinematic pairing is
inevitable due to tolerances in the design, manufacturing defects, and wear. Clearances will
increase certain additional and uncontrollable degrees of freedom, cause additional wear,
and impact various elements in the kinematic pair. It will also lead to the deterioration of
dynamics performance or adverse vibrations and will mean that the dynamics behavior
of the actual mechanism with clearance will deviate from the dynamics behavior of an
ideal mechanism. The degree of freedom brought by a clearance joint is a significant
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source of error [1–11]. Aiming at the problems of low stability and intensified wear
during the operation of a mechanism containing clearances, according to its kinematic and
dynamics characteristics, we addressed this problem through the dynamics optimization
of a mechanism with a clearance. The vibration and noise caused by poor clearance
can be effectively reduced and the stability and reliability of the mechanism could be
improved [12–14].

How to reduce the adverse effects of clearances on dynamics performance and improve
the accuracy and performance of mechanisms is a hot topic. Many scholars have carried
out a series of theoretical studies examining this problem. Based on the continuous contact
model, some scholars have carried out the dynamics optimization of a four-bar mechanism
containing revolute clearances [15,16]. Sardashti et al. [15] assumed a four-bar mechanism,
considering a single clearance as an example, and proposed an algorithm based upon
particle swarm optimization to solve the optimization problem. Erkaya et al. [16] regarded
kinematic clearance as a massless virtual rigid bar; they established a dynamics equation
for a four-bar mechanism, considering revolute clearance using the Lagrange equation, and
optimized the parameters at joint clearance with a genetic algorithm. Based on the Taguchi
method, Meng et al. [17] considered clearance, the pin radius, and the friction factor as
controllable factors and used collision force as the noise factor to optimize the transmission
mechanism of a high-voltage circuit breaker and found that the three controllable factors
can effectively affect the dynamics performance of the mechanism. Bai et al. [18] established
the normal contact force at clearance by using a nonlinear spring-damper model. The influ-
ence of the clearance of a kinematic pair on the dynamics response of a satellite antenna
mechanism is studied, and a dynamics optimization method for a satellite antenna driving
mechanism with clearance was proposed. Li et al. [19] analyzed the dynamics response and
optimized design of a planar rigid–flexible-coupling crank-slider mechanism with double
clearances, established a motion differential equation based on the absolute node coordinate
method, and studied the effects of a single clearance joint, double clearance joints, and
harmonic drive on rigid body dynamics and the rigid–flexible coupling dynamics of the
mechanism. Varedi et al. [20] proposed an optimization methodology for a crank-slider
mechanism containing clearances based on the particle swarm optimization algorithm,
which reduces or eliminates the collision force at the clearance joint by optimizing the mass,
centroid position, the moment of inertia of the connection rod, and the mass of the end
effector. Sun et al. [21] took a crank-slider mechanism as an example to carry out kinematic
analysis and a robust optimization design for a mechanical system containing clearances
and proposed a prediction methodology, based on the Baumgarte method and confidence
region methodology, to analyze the motion error of a mechanical system. In order to
improve the pointing accuracy of a satellite antenna, Ding et al. [22] took the deployment
mechanism of a plate satellite antenna as the research object, studied the influence of
revolute clearance on pointing accuracy, proposed an analytical method of block modeling
using the matrix method, optimized the model based on the particle swarm optimization
algorithm, and obtained an optimal solution with a specific configuration. Li et al. [23] opti-
mized the dynamics of the actuator of a multi-link articulated high-voltage circuit breaker
with clearance, using the selected clearance size as a design variable. Daniali et al. [24]
proposed a comprehensive optimization methodology for the kinematic optimization and
dynamics optimization of a four-bar mechanism while considering clearance at the same
time, which can reduce the collision of a clearance pair in terms of the dynamics response of
the whole mechanism by modifying the mass distribution of the rod, and solved this highly
nonlinear optimization problem based upon particle swarm optimization. Ahmedalbashir
et al. [25] added a spring between the connecting rod and the swing rod to improve the
dynamics responses of a planar four-bar mechanism containing clearances and improve
the mechanism’s dynamics performance.

Dynamics accuracy refers to the accuracy changes of a mechanism under the influence
of working conditions. The reliable performance of dynamics accuracy could better reflect
the actual situation of the mechanism. However, research on the dynamics reliability of a
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mechanism with clearance has mainly focused on a simple mechanism containing a single
clearance, while studies on the reliability of the kinematic and mechanical characteristics of
a complex mechanism with multiple clearances were relatively few. Gao et al. [26] analyzed
the reliability and sensitivity of a crank-slider mechanism considering multiple clearances
and optimized the design of a mechanism containing several clearances, based on an
analysis of the design’s reliability and sensitivity. Zhang et al. [27] proposed a novel time-
dependent reliability methodology to forecast the probability of meeting specific motion
requirements within a predetermined time. Through the analysis of many kinds of four-bar
mechanisms, the effectiveness of this method was proved. Wei et al. [28] introduced a
reliability sensitivity analysis of time-varying parameters and a global reliability sensitivity
analysis. An envelope function methodology and the first-order approximation of a motion
error function were introduced to effectively estimate several time-dependent PRS and GRS
indices. The importance and effectiveness of the proposed methodology were proved with a
four-bar mechanism and automobile rack and pinion steering linkage. Zhang et al. [29] took
a multi-loop Hoberman radial linkage as their research object, its reliability having been
analyzed. Based on the effective length model, the influence of universal joint clearance
on dynamics response was established, and the position deviation of the mechanism
was analyzed with an improved loop increment methodology. A reliability evaluation
model based on the probability density function was established, and the structure of
the mechanism was optimized. Chen et al. [30] took a 2-DOF seven-bar mechanism
containing clearances as an example, for which a dynamics accuracy and reliability model
was established based upon the stress strength interference theory. The influences of the
different parameters on dynamics accuracy and the reliability of the mechanism were
studied. Yu et al. [31] built a comprehensive reliability analysis model of a rolling bearing.
By modeling the probability distribution of an actual bearing’s working clearance and
studying the life factor, the reliability of the results was analyzed. Zhao et al. [32] analyzed
the reliability of a slider’s displacement of a crank-slider mechanism containing clearance
and friction and investigated the effect of different random parameters on the reliability of
the slider’s displacement.

To sum up, the working of a clearance pair leads to a series of problems, such as
poor stability, high noise levels, and intensified wear of the mechanism, which reduces the
stability, accuracy, and service life of the mechanism. Therefore, it is urgent to optimize
the dynamics of a mechanism with clearance to reduce the negative impact of clearance
on the dynamics response of the mechanism. However, the published research on the
optimization of a mechanism with clearance mainly focuses on a simple mechanism with
a single rotating-pair clearance or on improving the performance of the mechanism by
adding springs. There are relatively few studies on the dynamics optimization of a complex
mechanism with multiple clearances. The center track at a clearance joint reflects the
real motion track of the shaft in the bearing, including their function in free flight mode,
continuous contact mode, and impact mode, which directly determines the mechanism’s
dynamics performance. It is necessary to optimize and improve the dynamics performance
of a multi-link mechanism with multiple clearances by reducing the difference between
an actual center track and an ideal track, so as to reduce the adverse impact caused by
clearance. Clearance exists in almost all motion mechanisms and has a significant impact
on motion accuracy. Reliability analysis of a mechanism with clearance has important
research significance and application value as a way to improve a mechanism’s reliability.

The main aim of this paper is to propose an efficient dynamics optimization method
for a planar complex multi-link mechanism including multiple clearances. In this paper,
a 2-DOF nine-bar mechanism that can be used as the main transmission mechanism of
a hybrid drive multi-link press is taken as the research object. In order to improve the
dynamics performance of the mechanism, based on the principle of mass distribution,
a dynamics optimization model of a 2-DOF nine-bar mechanism, considering multiple
clearances by using a genetic algorithm is proposed. Two optimization criteria are used to
minimize the maximum acceleration of the slider and to minimize the difference between



Machines 2022, 10, 698 4 of 23

the actual central trajectory and the ideal trajectory. Based on the optimization results, the
nonlinear characteristics before and after optimization are analyzed via a phase diagram
and a Poincaré map. The effect of dynamics optimization on the dynamics accuracy and
reliability of the mechanism are also analyzed.

The main structure of this paper is as follows. The clearance model is built in Section 2.
The dynamics optimization model of the mechanism, containing clearances, is built in
Section 3. The dynamics accuracy and reliability model of the mechanism, including the
clearances, is established in Section 4. In Section 5, the effects of optimization on the
dynamics responses and dynamics accuracy and reliability of a mechanism with clearances
are analyzed. A test platform was built to study the dynamics of the mechanism when
incorporating clearances. Our conclusions are presented in Section 6.

In view of the adverse effect of the clearance of the kinematic pair on the dynamics
response of the mechanism, based on the genetic algorithm, this paper proposes two differ-
ent dynamics optimization modeling methods for a multi-link mechanism with multiple
clearances. Two optimization criteria are used to reduce the influence of clearance on
the mechanism, which are to minimize the maximum acceleration of the slider as the
optimization objective function and to minimize the difference between the actual center
trajectory and the ideal trajectory as the optimization’s objective function. According to
the optimization results, it was found that when the optimization’s objective function is to
minimize the difference between the actual trajectory and ideal trajectory, the optimization
effect is stronger than that when the optimization objective function is to minimize the
maximum acceleration of the slider. The results show that the peak and vibration frequen-
cies of dynamics response are significantly reduced. Based on the optimization results
obtained by taking the minimum difference between the actual center trajectory and the
ideal trajectory as the optimization objective, the nonlinear characteristics and dynamics
accuracy and reliability before and after optimization were analyzed. The results show that
optimization improves the nonlinear characteristics and reliability of the mechanism and
also makes the mechanism more stable.

2. Establishment of the Clearance Model

A clearance model of a revolute pair is shown in Figure 1. R1 and R2 are the radii of
the bearing and shaft, respectively. The eccentricity vector of dry friction clearance can be
written as:

e = rP
2 − rP

1 (1)

where rP
1 and rP

2 are the position vectors of the centroid of the shaft and the bearing of the
dry friction revolute clearance joint in the fixed coordinate system, respectively.
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The unit vector of the eccentric vector is:

n =
e
e

. (2)

The embedding depth of clearance of the rotating pair can be expressed as:

δ = e− c (3)

where c is the clearance value, c = R1 − R2, e represents the magnitude of eccentricity
vector of dry friction revolute clearance joint, and e =

√
e·e.

Due to the clearance of the revolute pair, according to the geometric relationship
between the bearing and shaft, motion states between the shaft and bearing are divided
into the free flight state, continuous contact state, and impact state, as shown in Figure 2.

Machines 2022, 10, x FOR PEER REVIEW 5 of 25 
 

 

 
Figure 1. Clearance model of a revolute pair. 

The unit vector of the eccentric vector is: 

e
= en . (2)

The embedding depth of clearance of the rotating pair can be expressed as: 

e cδ = −  (3)

where c  is the clearance value, 1 2c R R= − , e  represents the magnitude of 

eccentricity vector of dry friction revolute clearance joint, and e = ⋅e e . 
Due to the clearance of the revolute pair, according to the geometric relationship 

between the bearing and shaft, motion states between the shaft and bearing are divided 
into the free flight state, continuous contact state, and impact state, as shown in Figure 2. 

 
(a) (b) (c) 

Figure 2. The motion mode of revolute clearance. (a) Free flight state; (b) continuous contact state; 
(c) impact state. 

The criteria for collision between elements in the revolute clearance are as follows: 

Figure 2. The motion mode of revolute clearance. (a) Free flight state; (b) continuous contact state;
(c) impact state.

The criteria for collision between elements in the revolute clearance are as follows:
δ < 0, f ree f lightstate
δ = 0, continuouscontactstate
δ > 0, impactstate

. (4)

When the embedding depth δ < 0, there is no collision between the shaft and bearing,
and they are in free flight mode, with a contact force Fn = 0. When the embedding depth
δ > 0, the shaft and bearing collide with each other and they are in impact mode, so that
the contact force Fn 6= 0. When the embedding depth δ = 0, the shaft and bearing are in
continuous contact mode, with a contact force Fn 6= 0. The change in contact status could
be further detected as:

δ(tn)δ(tn+1) ≤ 0. (5)

When δ(tn)δ(tn+1) ≤ 0, δ(tn) < 0 and δ(tn+1) > 0, at this moment, the motion state at
the clearance joint changes from a free flight state to an impact state. When δ(tn)δ(tn+1) ≤ 0,
δ(tn) > 0 and δ(tn+1) < 0, at this moment, the motion state at the clearance joint changes
from an impact state to a free flight state.

The position vector of the collision point can be expressed as:

rQ
j = rP

j + Rjn (j = 1, 2). (6)
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When the bearing collides with the shaft, the speed at the contact point is:

.
rQ

j =
.
rP

j + Rj
.
n (j = 1, 2) (7)

where
.
n =

.
ee− .

ee
e2 .

The Lankarani–Nikravesh model (L–N model) is a nonlinear viscoelastic model that
is suitable for general mechanical contact and collision problems, especially when the
coefficient of restitution is high and the energy dissipation in the collision process is
relatively small. In addition, the model considers not only energy loss but also the material
properties, local elastic deformation, collision speed, and other factors. This model has the
advantages of convenient calculation, a fast convergence speed, and so on. It is widely
used in the study of the dynamics of mechanisms with clearances [2,18,26,33,34]:

Fn =
4δn

3(σ1 + σ2)

(
R1R2

R1 + R2

) 1
2
(

1 +
3
(
1− c2

e
)

4
.
δ
(−)

.
δ

)
(8)

where σ1 =
(
1− υ2

1
)
/E1, σ2 =

(
1− υ2

2
)
/E2, υ1 and υ2 are the Poisson’s ratio, E1 and E2

are the elastic modulus, ce is the recovery coefficient, and
.
δ
(−)

is the initial impact velocity.
When δ(tn)δ(tn+1) ≤ 0, δ(tn) < 0 and δ(tn+1) > 0, the time of collision is between tn and

tn+1 and the impact velocity at time tn+1 is
.
δ
(−)

.
A modified Coulomb friction model is used for tangential friction [2,13,27,35,36]:

Ft = −c f cdFn
vt

|vt|
(9)

where c f is the friction coefficient and cd is the dynamics correction coefficient, and

cd =


0 , |vt| < v0

|vt |−v0
v1−v0

, v0 ≤ |vt| ≤ v1

1 , |vt| > v1

.

3. Dynamics Optimization Model of a Mechanism with Clearances

The diagram for a 2-DOF nine–bar mechanism is shown in Figure 3. The 2-DOF
nine–bar mechanism is composed of crank 1 (L1), rod 2 (L2), rod 3 (L3), crank 4 (L4), frame
5 (L5), rod 6 (L6), a triangle plate 7 (L71, L72, L73), rod 8 (L8), and a slider (S9). It is known
that the mechanism has eight movable members (crank 1, rod 2, rod 3, crank 4, rod 6,
triangle plate 7, rod 8, and the slider) and one fixed member (frame 5). The revolute pair
and translational pair are lower pairs; the number of lower pairs in this mechanism is 11.
According to the calculation formula for the degree of freedom (DOF), the DOF of this
mechanism is:

FDOF = 3n− 2PL − PH = 3× 8− 2× 11− 0 = 2 (10)

where FDOF is the DOF of the mechanism, n is the total number of moving components of
the mechanism, PL is the number of lower pairs, and PH is the number of higher pairs.

It can be seen that the DOF of the mechanism is 2. When the mechanism has two
drives, the mechanism has a unique motion; that is, the slider makes a reciprocating linear
motion along the guide rail. The 2-DOF nine–bar mechanism has the following positive
motion characteristics, such as the low and stable running speed of the slider at the bottom
in the dead center, rapid return characteristics, good flexibility, the strong bearing capacity
of the mechanism, etc. This 2-DOF nine–bar mechanism could be effective when applied to
the main transmission mechanism of a hybrid drive multi–link mechanical press.
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Since the clearance of the revolute pair A is between crank 1 and rod 2, and the
clearance of the revolute pair B is between crank 4 and rod 3, the impact forces at clearances
A and B directly affect the dynamics of the mechanism. Consequently, this paper focuses on
the influence of revolute pair clearances A and B on the mechanism. A structural diagram
of the 2-DOF nine-bar mechanism with revolute clearances is shown in Figure 4.
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3.1. Design Variable

Since clearances A and B are located on two separate driving components, the end
effector directly affects the motion characteristics of the whole mechanism, and the pa-
rameters of rod 2, rod 3, and the slider are selected for optimization. Mass, the centroid
position, and the moment of inertia are important factors determining the mass distribution
of components. Because rods 2 and 3 are long bars, the mass, the center of mass position,
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and the moment of inertia of the rods will affect the dynamics of the mechanism. Therefore,
it is necessary to optimize mass, centroid position, and the moment of inertia of rods 2
and 3. As an end effector, the slider directly affects the motion characteristics of the whole
mechanism, so it needs to be optimized. Because the slider moves in translation within the
guide rail, its moment of inertia has little effect on the dynamics response of the mechanism.
Compared with rods 2 and 3, the length of the slider is relatively short, resulting in the
relatively small influence of its center of mass position on the dynamics of the mechanism.
Therefore, the quality of the slider is selected as the optimization design variable. To sum
up, taking the mass, centroid position, and moment of inertia of rod 2 and rod 3 and the
slider’s mass as the optimization design variables:

Xc = (m2, Ls2, J2, m3, Ls3, J3, m9)
T

=
(

x(1), x(2), x(3), x(4), x(5), x(6), x(7)
)T (11)

3.2. Constraint Conditions

The constraints of the dynamics optimization model are:

XL
c ≤ Xc ≤ XU

c (12)

where Xc
U and Xc

L are the upper and lower limits of the optimized design variables.
The value ranges of Xc

U and Xc
L are shown in Table 1. Among them, the lower limit of

component quality is half the size of the original quality, and the upper limit of component
quality is twice the size of the original quality. The upper limit and lower limit of the
centroid position of the member are taken as the limit positions of the member, respectively.
The lower limit of the moment of inertia assumes that the rotating shaft passes through the
center of mass of the rod, and the upper limit of the moment of inertia assumes that the
rotating shaft passes through the end point of the rod [20,33].

Table 1. Value ranges of Xc
U and Xc

L.

m2/kg Ls2/mm J2/(kg · m2) m3/kg Ls3/mm J3/(kg · m2) m9/kg

Xc
L 1

2 m2 0 1
12 m2L2

2 1
2 m3 0 1

12 m3L3
2 1

2 m9

Xc
U 2m2 L2

1
3 m2L2

2 2m3 L3
1
3 m3L3

2 2m9

3.3. Objective Functions
3.3.1. Optimize the Maximum Acceleration of the Slider

As the end effector of the 2-DOF nine–bar mechanism, the kinematic characteristics
of the slider have important research significance. Acceleration is a bridge connecting
kinematics and the dynamics of the mechanism, which is closely related to the force of the
system. At the same time, the peak value of the slider’s acceleration intensifies the vibration
due to the surge of its clearance value. Therefore, it is of great practical significance to
optimize the maximum acceleration of the slider. The objective function of the optimization
design is to minimize the maximum value of the slider’s acceleration; the specific expression
can be expressed as:

Fo = min(‖aH‖∞) (13)

where aH is the slider’s acceleration. Here, ‖aH‖∞ = max
i
|aH |, which is the maximum of

all the absolute values of slider acceleration.

3.3.2. Optimize the Central Trajectory at the Clearance Joint

Due to the existence of clearance, the movement of the clearance shaft in the bear-
ing may be random and arbitrary. Therefore, by optimizing the central trajectory at the
clearance point, increasing the continuous contact state between the shaft and bearing, and
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reducing the generation of the collision state, the undesirable influence of clearance on the
mechanism can be reduced effectively.

Taking the minimum difference between the actual center trajectory and the ideal
trajectory as the optimization objective, the specific expression of the objective function can
be expressed as:

Fo = min(ωA fA + ωB fB) (14)

where ωA and ωB are the weighing factors, and expressions of fA and fB can be written as:
fA =

√(
ex

A
)2

+
(

ey
A

)2
− cA

2

fB =

√(
ex

B
)2

+
(

ey
B

)2
− cB2

(15)

where ex
A and ey

A are the components of eccentricity between the shaft and bearing in
revolute joint A in the X and Y directions, respectively. ex

B and ey
B are the components of

eccentricity between the shaft and bearing in the revolute joint B in the X and Y directions,
respectively. cA and cB are the clearance sizes of joints A and B, respectively.

Based on the structural diagram of the mechanism with clearances shown in Figure 1,
the expressions of ex

A and ey
A can be expressed as:

eA =
(

x2 − Ls2 cos θ2 − L1 cos θ1 y2 − Ls2 sin θ2 − L1 sin θ1
)T

=
(

ex
A ey

A
)T

eB =
(

x3 − Ls3 cos θ3 − L4 cos θ4 y3 − Ls3 sin θ3 − L4 sin θ4 + L5
)T

=
(

ex
B ey

B
)T

(16)

3.3.3. Optimization Method

The genetic algorithm is a multi-objective optimization algorithm that can find an optimal
solution by simulating the process of natural evolution. Firstly, the initial population is
randomly generated as the candidate solution. Then, according to the fitness value, individuals
are selected, crossed, and mutated. The cycle is repeated to obtain a group satisfying the
conditions. Finally, the optimal solution of the optimal design variables is obtained.

The steps of the optimization are as follows

(1) Set the initial parameters: chromosome length, population size, maximum genetic
algebra, coding type, mutation probability, crossover probability, etc;

(2) Randomly generate an initial population with size N, P(0) =
{

x0
1, x0

2, · · · , x0
N−1, x0

N
}

;
(3) Calculate the fitness value of each individual xt

i (i = 1, 2, · · · , N) in the population
P(t) =

{
xt

1, xt
2, · · · , xt

N−1, xt
N
}

;
(4) By comparing the fitness value of each individual, select individuals according to the

selection operator, and keep the selected individuals with a larger fitness value until
the number of the population is N;

(5) Optimize the combination of some genes of the surviving parent individuals, exchang-
ing the genes at some corresponding positions of the two parent individuals according
to the crossover probability, so as to produce two new individuals; the individuals
that have not been crossed directly replicate into the new species group;

(6) The genes at some coding positions are mutated according to the mutation proba-
bility. The mutated individual replaces the original individual in the new species
group. Individuals without compilation directly enter the new population. This
completes an evolutionary process and selects the next generation of the population
P(t+1) =

{
xt+1

1 , xt+1
2 , · · · , xt+1

N−1, xt+1
N

}
;

(7) If the fitness has reached saturation or the number of iterations has reached the upper
limit, it will stop. Otherwise, go to step 3.
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3.4. Establishment of a Dynamics Optimization Model of a 2-DOF Nine-Bar Mechanism with
Multiple Clearances

The generalized coordinates of each component are set as:

qi =
(
xi yi θi

)T (17)

where xi and yi are the position components of component i in the X and Y directions in
the system coordinate system, and θi is the rotation angle of member i.

The 2-DOF nine-bar mechanism has 24 generalized coordinates; the generalized
coordinates of the mechanism can be expressed as:

q = (
x1 y1 θ1 x2 y2 θ2 x3 y3 θ3 x4 y4 θ4 · · ·
x6 y6 θ6 x7 y7 θ7 x8 y8 θ8 x9 y9 θ9

)T (18)

The dynamics optimization model of the mechanism with clearances is the set of the
dynamics model and the optimization design variables. A displacement constraint equation
with multiple clearances, including optimization design variables, could be written as:

Φ(q, t) =



x1 − Ls1 cos θ1
y1 − Ls1 sin θ1
x4 − Ls4 cos θ4
y4 − Ls4 sin θ4 + L5
x7 + Ls72 cos(α1)− x2 − (L2 − x(2)) cos θ2
y7 + Ls72 sin(α1)− y2 − (L2 − x(2)) sin θ2
x7 + Ls72 cos(α1)− x3 − (L3 − x(5)) cos θ3
y7 + Ls72 sin(α1)− y3 − (L3 − x(5)) sin θ3
x6 − Ls6 cos θ6 − Hx
y6 − Ls6 sin θ6 − Hy
x7 − Ls71 cos(α2)− x6 − Ls6 cos θ6
y7 − Ls71 sin(α2)− y6 − Ls6 sin θ6
x7 + Ls73 cos(α3)− x8 + Ls8 cos θ8
y7 + Ls73 sin(α3)− y8 + Ls8 sin θ8
x9 − Hx − L6 cos θ6 − L72 cos(α4)− Ls8 cos θ8
y9 − Hy − L6 sin θ6 − L72 sin(α4)− Ls8 sin θ8
x9 − Hx
θ9 − 1.5π
θ1 −ω1t− 5.7645
θ4 −ω4t + 2.4934



= 0 (19)

where the values of β, β1, β12, and ω12 are 34.11◦, 22.22◦, 83.24◦, and 36.19◦, respectively. Hx
and Hy are 0.08 m and 0.645 m, respectively. α1 = θ7− β1, α2 = θ7 + β, α3 = θ7 + β12 + ω12,
α4 = θ7 + β12.

Velocity is a constraint equation that can be expressed as [37]:

Φq
.
q = −Φt ≡ υ (20)

where Φq is the Jacobian matrix, Φq = ∂Φ/∂q,
.
q represents the generalized velocity vector,

Φt = ∂Φ/∂t, and Φt can be written as

Φt =
∂Φ
∂t

= (01×18,−ω1,−ω4)
T (21)

The Jacobian matrix of the mechanism can be expressed as:

Φq =
(

Φq(1) , Φq(2) , Φq(3) , · · · , Φq(22) , Φq(23) , Φq(24)

)
(22)
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where Φq(1) = (1, 019×1)
T, Φq(2) = (0, 1, 018×1)

T, Φq(3) = (Ls1 sin θ1,−Ls1 cos θ1, 016×1, 1, 0)T,

Φq(4) = (04×1,−1, 015×1)
T, Φq(5) = (05×1,−1, 014×1)

T, Φq(6) = (04×1, Ls2 sin θ2,−Ls1 cos θ2,

014×1)
T, Φq(7) = (06×1,−1, 013×1)

T, Φq(8) = (07×1,−1, 012×1)
T, Φq(9) = (06×1, Ls3 sin θ3,

−Ls3 cos θ3, 012×1)
T, Φq(10) = (02×1, 1, 017×1)

T, Φq(11) = (03×1, 1, 016×1)
T, Φq(12) = (02×1, Ls4,

sin θ4,−Ls4 cos θ4, 015×1, 1)T, Φq(13) = (08×1, 1, 0,−1, 09×1)
T, Φq(14) = (09×1, 1, 0,−1, 08×1)

T,
Φq(15) = (08×1, Ls6 sin θ6,−Ls6 cos θ6, Ls6 sin θ6,−Ls6 cos θ6, 02×1, Ls6 sin θ6,−Ls6 cos θ6,

04×1)
T, Φq(16) = (04×1, 1, 0, 1, 03×1, 1, 0, 1, 07×1)

T, Φq(17) = (05×1, 1, 0, 1, 03×1, 1, 0, 1, 06×1)
T,

Φq(18) =

 04×1,−Ls72 sin(α1), Ls72 cos(α1),−Ls72 sin(α1), Ls72 cos(α1), 02×1,
Ls71 sin(α2), · · ·
−Ls71 cos(α2),−Ls73 sin(α3), Ls73 cos(α3), L72 sin(α4),−L72 cos(α4), 04×1

T

,

Φq(19) = (012×1,−1, 07×1)
T, Φq(20) = (013×1,−1, 06×1)

T, Φq(21) = (012×1,−Ls8 sin θ8, Ls8,

cos θ8, Ls8 sin θ8,−Ls8 cos θ8, 04×1)
T, Φq(22) = (014×1, 1, 0, 1, 03×1)

T, Φq(23) = (015×1, 1, 04×1)
T,

Φq(24) = (017×1, 1, 02×1)
T.

The acceleration constraint equations could be expressed as [37]:

Φq
..
q = −

(
Φq

.
q
)

q
.
q− 2Φqt

.
q−Φtt ≡ γ (23)

where
..
q represents the generalized acceleration vector, Φqt is the partial derivative of the

Jacobian matrix with respect to time, Φqt = 020×24, Φtt is the partial derivative of Φt with
respect to time, Φtt = 020×1, and γ is the vector of quadratic velocity terms.

Φqq can be written as:

Φqq =
(

Φq(1)q(1) , Φq(2)q(2) , Φq(3)q(3) , · · · , Φq(22)q(22) , Φq(23)q(23) , Φq(24)q(24)

)
(24)

where: Φq(1)q(1) = Φq(2)q(2) = Φq(4)q(4) = Φq(5)q(5) = Φq(7)q(7) = Φq(8)q(8) = Φq(10)q(10) =
Φq(11)q(11) = Φq(13)q(13) = Φq(14)q(14)= Φq(16)q(16) = Φq(17)q(17) = Φq(19)q(19) = Φq(20)q(20)

= Φq(22)q(22) = Φq(23)q(23) = Φq(24)q(24) = 01×20, Φq(3)q(3) = (Ls1ω1 cos θ1, Ls1ω1 sin θ1, 018×1)
T,

Φq(6)q(6) = (04×1, Ls2ω2 cos θ2, Ls1ω2 sin θ2, 014×1)
T, Φq(9)q(9) = (06×1, Ls3ω3 cos θ3, Ls3ω3

sin θ3, 012×1)
T, Φq(12)q(12) = (02×1, Ls4ω4 cos θ4, Ls4ω4 sin θ4, 016×1)

T, Φq(15)q(15) = (08×1,
Ls6ω6 cos θ6, Ls6ω6 sin θ6, Ls6ω6 cos θ6, Ls6ω6 sin θ6, 03×1, Ls6ω6 cos θ6, Ls6ω6 sin θ6, 04×1)

T,

Φq(18)q(18) =


04×1,−Ls72ω7 cos(α1),−Ls72ω7 sin(α1),−Ls72ω7 cos(α1),−Ls72ω7
sin(α1), 02×1, Ls71ω7 cos(α2), · · ·
Ls71ω7 sin(α2),−Ls73ω7 cos(α3),−Ls73ω7 sin(α3), L72ω7 cos(α4),
L72ω7 sin(α4), 04×1


T

,

Φq(21)q(21) = (012×1,−Ls8ω8 cos θ8,−Ls8ω8 sin θ8, Ls8ω8 cos θ8, Ls8ω8 sin θ8, 04×1)
T.

The system dynamics equation considering optimal design variables can be expressed
as follows [38]:

M
..
q + ΦT

q λ = g (25)

where M is the mass matrix of the system, λ is the Lagrange multiplier, and g is the
generalized force of the system, including gravity, external force, and external torque.

A quality matrix considering the optimal design variables of a 2-DOF nine–bar mecha-
nism with clearances can be expressed as:

M= diag
(

m1 m1 J1 x(1) x(1) x(3) x(4) x(4) x(6) m4 m4 J4 · · ·
m6 m6 J6 m7 m7 J7 m8 m8 J8 x(7) x(7) J9

)
. (26)
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The generalized force of a system with optimal design variables can be expressed as:

g =

(
FA

x , FA
y , MA1, −FA

x , −FA
y , MA2, FB

x , FB
y , MB1, · · ·

−FB
x , −FB

y , MB2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

)
(27)



MA1 = −
(

OQy
1 − y1

)
Fx

A +
(
OQx

1 − x1
)

Fy
A

MA2 = −
(

OQy
2 − y2

)
Fx

A + (OQx
2 − x2)Fy

A

MB1 = −
(

OQy
4 − y4

)
Fx

B +
(
OQx

4 − x4
)

Fy
B

MB2 = −
(

OQy
3 − y3

)
Fx

B +
(
OQx

3 − x3
)

Fy
B

(28)

where Fj
i (i = A, B; j = X, Y) are the components of contact force in the j directions at clearance

joint i, respectively. Q1 and Q2 are the collision points of the bearing and shaft in rotating
pair A, respectively. Q3 and Q4 are the collision points of the bearing and shaft in rotating
pair B, respectively: 

OQ1 = OP1 + R1nA
OQ2 = OP2 + R2nA
OQ3 = OP3 + R2nB
OQ4 = OP4 + R1nB

(29)

where nA and nB are unit normal vectors of clearances A and B, respectively. P1 and P2
are the center points of the bearing and shaft in revolute A, respectively. P3 and P4 are the
center points of the bearing and shaft in revolute A, respectively:

OP1 =
(

L1 cos θ1 L1 sin θ1
)

OP2 =
(

x2 − x(2) cos θ2 y2 − x(2) sin θ2
)

OP3 =
(

x3 − x(5) cos θ3 y3 − x(5) sin θ3
)

OP4 =
(

L4 cos θ4 L4 sin θ4 − L5
) . (30)

The dynamics equation of the mechanism can be obtained by solving Equations (23)
and (25), and the equation expression is as follows:(

M ΦT
q

Φq 0

)( ..
q
λ

)
=

(
g
γ

)
. (31)

In order to overcome the default of the dynamics equation, based on the Baumgarte
default stability algorithm, a strong nonlinear equation with optimal design variables is
solved [39–41]: (

M ΦT
q

Φq 0

)( ..
q
λ

)
=

(
g

γ− 2α
.

Φ− β2Φ

)
(32)

where α and β are the correction parameters, and
.

Φ = dΦ
dt .

Because the dynamics equation of the mechanism containing the clearances is a very
nonlinear equation, it is difficult to solve the equation stably. Variable-order numerical
differentiation algorithms (NDFs) are used to solve the dynamics equations, while the high-
order equations are transformed into low-order equations. Therefore, the ode15s function in
MATLAB is used to solve Equation (32) and convert the second-order differential equation
into a first-order differential equation:

d
.
q1

dt = g1, dq1
dt =

.
q1

d
.
q2

dt = g2, dq2
dt =

.
q2

...
d

.
qi

dt = gi,
dqi
dt =

.
qi

(33)

where qi represents the generalized coordinates and i is the number of generalized coordinates.
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4. Establishment of a Dynamics Accuracy and Reliability Model

It is assumed that the error function of the mechanism is h(x, t) = P − P′, where P is the
actual situation of the dynamics c response of the mechanism, and P’ is the ideal situation of
the dynamics response of the mechanism. According to the error characteristics of random
variables, while |h(x, t)| ≤ |ε|, the mechanism is reliable; if not, the mechanism fails.

For mechanism reliability, the actual error is stress, and the allowable error is strength.
Assuming that these are the actual and allowable errors of the motion characteristics, where
driving torque meets a normal distribution, the reliability of the mechanism can be solved
according to the stress-strength interference theory. Based upon the stress-strength interference
theory, reliability is defined as the probability that strength is greater than stress [27]:

R = P
(

S− S̃ > 0
)
= P(Z > 0) (34)

where Z is the safety margin.
It is assumed that stress and strength obey a normal distribution, and the safety margin

also obeys normal distribution:

f (Z) =
1√

2πσZ
e−

1
2 (

Z−µZ
σZ

)
2

(35)

where µZ = µS − µS̃, σZ =

√(
σ2

S + σ2
S̃

)
, µS and σS are the mean value and variance of

intensity, and µS̃ and σS̃ are the mean value and the variance of stress.
Reliability could be written as:

P(Z > 0) =
∞∫

0

1√
2πσZ

e−
1
2 (

Z−µZ
σZ

)
2

dZ =

∞∫
z0

ϕ(z)dz = 1−Φ(z0) (36)

where ϕ(z) = 1√
2π

e−
1
2 z2

, z = Z−µZ
σZ

, and z0 = − µZ
σZ

= − µS−µS̃(
σ2

S+σ2
S̃

) 1
2

.

The reliability index can be expressed as:

β =
µZ
σZ

=
µS − µS̃√

σ2
S + σ2

S̃

. (37)

5. Effect of Optimization on the Dynamics Responses and the Dynamics Accuracy and
Reliability of a Mechanism with Clearances
5.1. Simulation Parameters

The mass, moment of inertia, geometric parameters, and clearance parameters are
shown in Tables 2 and 3.

Table 2. Geometric and inertial parameters.

Component Length of Rod (mm) Centroid Position Length (mm) Mass (kg) Moment of Inertia
(10−3 kg·m2)

Crank 1 45 23 0.148 0.2382

Rod 2 326 163 0.805 8.007

Rod 3 497 248.8 0.603 13.37

Crank 4 95 48 0.265 1.210

Frame 5 430 — — —

Rod 6 230 115 0.581 12.12

Triangular panel 7

L71 325 Ls71 147

38.02 4.334L72 250 Ls72 219

L73 386 Ls73 190

Rod 8 335 167.6 0.827 8.663

Slider 9 — — 0.801 —
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Table 3. Clearance simulation parameters.

Parameter Parameter Values Parameter Parameter Values

Bearing radius R1 15 (mm) Clearance value 0.1 (mm)

Restitution coefficient ce 0.9 Speed of crank 1 2π rad/s

Poisson ratio ν1, ν2 0.3 Speed of crank 4 −2π rad/s

Elastic modulus E1, E2 207 (GPa) Integral tolerance 0.000001

Friction coefficient 0.01 Integral step 0.0001 s

In order to exaggerate the influence of the clearance parameters on the dynamics
response of the mechanism, the clearance value at revolute pairs A and B is set as 0.1 mm,
and the friction coefficient at the clearance is set as 0.01, which will lead to a sharp increase
in the peak value of the dynamics response.

When the optimization objective is to minimize the maximum acceleration of the slider,
rod 2, rod 3, and the slider are optimized according to the principle of mass distribution.
The optimization results are as follows:

m2 = 1.574 (kg)
Ls2 = 0.241 (m)
J2 = 0.007 (kg ·m2)
m3 = 1.12 (kg)
Ls3 = 0.235 (m)
J3 = 0.033 (kg ·m2)
m9 = 1.574 (kg)

. (38)

When the optimization objective is to minimize the difference between the actual
center trajectory and the ideal trajectory, the optimization results are as follows:

m2 = 0.538 (kg)
Ls2 = 0.244 (m)
J2 = 0.004 (kg ·m2)
m3 = 0.862 (kg)
Ls3 = 0.319 (m)
J3 = 0.006 (kg ·m2)
m9 = 0.4 (kg)

. (39)

5.2. Comparative Analysis of Dynamics Behavior before and after Optimization
5.2.1. Comparative Analysis of Dynamics Response of the Mechanism before and
after Optimization

Based on Equations (26) and (27), the dynamics response of the mechanism after
stabilization is shown in Figure 5. When the optimization’s objective function is to minimize
the maximum acceleration of the slider, it is characterized by a blue line in Figure 5 and
is named “Optimization 1”. When the optimization objective function is to minimize the
difference between the actual trajectory and ideal trajectory, it is characterized by a green
line in Figure 4 and is named “Optimization 2”.

According to the acceleration curve, there are two optimization methods that can both
effectively reduce the peak value of acceleration. It shows that the two methods have a good
effect on improving the slider’s acceleration, but the optimization effect in “Optimization
2” is better than that of “Optimization 1”. Similarly, it can be seen from the contact force at
the clearance joint and center trajectory diagram that when “Optimization 2” is adopted,
the optimization effect is significant, and the times of peak and large amplitude of the
dynamics are significantly reduced. However, when “Optimization 1” is adopted, the peak
value of the contact force at the clearance joint is sometimes smaller than it was before
optimization, and sometimes increases sharply. To sum up, when the objective function
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of optimization is to minimize the difference between the actual trajectory and the ideal
trajectory, the optimization effect is stronger than that when the optimization objective
function is to minimize the maximum acceleration of the slider.
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One of the cycles of data is selected for analysis, and the effects of the different
optimization objective functions on the dynamics responses of the mechanism are analyzed
numerically. The diagram for the dynamics response is shown in Figure 6. It can be seen
from the diagram that clearances have little effect on displacement and velocity, which
is almost close to an ideal state. When the mechanism has not been optimized, the peak
value of the acceleration of the slider, the contact force of joint A, the contact force of joint
B, the driving torque of crank 1, and the driving torque of crank 4 are 146.9 m/s2, 1157 N,
1001 N, −70.09 N·m, and 52 N·m, respectively. When the objective function of optimization
is to minimize the maximum acceleration of the slider, the corresponding peak values are
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98.13 m/s2, 806 N, 820.2 N, −52.29 N·m, and 36.11 N·m, respectively. When the objective
function of optimization is to minimize the difference between the actual trajectory and
ideal trajectory, the corresponding peak values are 76.81 m/s2, 469.4 N, 395.7 N,−26.11 N·m,
and 20.95 N·m, respectively. When the objective function of optimization is to minimize
the maximum acceleration of the slider, the optimization efficiencies are 33.20%, 30.34%,
18.06%, 25.40%, and 30.56%, respectively. When the objective function of optimization is to
minimize the difference between the actual trajectory and ideal trajectory, the corresponding
optimization efficiencies are 47.71%, 59.43%, 60.47%, 62.75%, and 59.71%, respectively. It
can be seen that the optimization effect of “Optimization 2” is significantly better than that
of “Optimization 1”.
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5.2.2. Comparative Analysis of the Nonlinear Characteristics of the Mechanism before and
after Optimization

Based on the optimization data obtained by optimizing the central trajectory at the
clearance joints, the nonlinear characteristics of the clearance before and after optimization
are analyzed. When the mechanism runs for 500 cycles, the nonlinear characteristics of
a mechanism containing clearances before and after optimization are analyzed with a
phase map and Poincaré map. The nonlinear characteristics of joints A and B are shown in
Figures 7–10. The nonlinear characteristics of the slider’s error are shown in Figure 11.
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It can be seen from the phase diagrams and Poincaré maps that the area of the phase
diagram after optimization decreases; the dispersion of mapping points after optimization
weakens and becomes relatively concentrated. It can be seen that clearance optimization
can effectively improve both the chaos and the stability of the mechanism.

5.3. Dynamics Accuracy and Reliability Analysis of a Mechanism with Clearances before and
after Optimization

Based on the data yielded after optimization (where the optimization objective is to
minimize the difference between the actual trajectory and ideal trajectory), the dynamics
accuracy and reliability of the mechanism before and after optimization are compared and
analyzed. The reliability index diagrams of displacement, velocity, acceleration, torque 1,
and torque 4 are shown in Figure 12.

Because the clearance of the kinematic pair has little effect on the slider’s displacement,
the change in the reliability index of the slider’s displacement is not obvious, but the
reliability of the slider’s displacement has been improved after optimization. The sensitivity
of the slider’s velocity to the clearance is stronger than that of the slider’s displacement,
so the reliability index of velocity is significantly improved. The sensitivity of the slider’s
acceleration and the driving torque to clearance are strong, dynamical response curves
with an obvious vibration and peak, and the response curves have been significantly
improved after optimization. Therefore, the reliability indexes of acceleration and torque
are obviously larger. In general, optimization enhances the reliability of the mechanism,
and the mechanism becomes more stable.
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5.4. Experimental Research into a Mechanism with Clearances

Design of the Test Platform for a Mechanism with Clearances
The 2-DOF nine–bar mechanism test bed is shown in Figure 13. The structural diagram

of the 2-DOF nine–bar mechanism test platform is shown in Figure 14. The two motors are
installed under the support plate, and the two cranks are driven by motors to drive the
slider to move back and forth along the guide rail. The clearances between the two cranks
and connecting rods are considered (revolute clearances A and B). The component is made
of aluminum alloy, the elastic model is 70 Gpa, the bearing radius is 12 mm, and pin shafts
with a clearance value of 0.1 mm are shown in Figure 15. In order to facilitate the processing
and installation of parts, we have modified the dimensions to some extent. However, the
theoretical results shown in Figure 16b are based on the theoretical model proposed in this
paper. The geometric and inertial parameters of the test platform are shown in Table 4.
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7—Triangular panel 7, 8—Rod 6, 9—Rod 8, 10—Slider, 11—Guide rail, 12—Motor.
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Table 4. Geometric and inertial parameters of the test platform.

Component Length of Rod (m) Mass (kg) Moment of Inertia
(10−3 kg·m2)

Crank 1 0.08 0.142 0.303
Crank 4 0.08 0.142 0.303
Rod 2 0.250 0.284 1.479
Rod 3 0.350 0.396 4.043

Triangular panel 7
0.247
0.140
0.270

0.837 3.076

Rod 6 0.180 0.206 3.6863
Rod 8 0.300 0.341 2.558

Slider 9 — 0.112 —

When the operating speeds of Crank 1 and Crank 4 are 60 rpm and −60 rpm, respec-
tively, the comparison between the experimental results and theoretical results is shown in
Figure 16. According to Figure 16a, the peak value of acceleration corresponding to the
experimental results is 50.36 m/s2. According to Figure 16b, the peak value of acceleration
corresponding to the theoretical calculation results is 65.43 m/s2. As shown in Figure 16c,
it can be seen from the figure that the two curves are basically consistent in trend, but there
is a certain difference in value. The comparison between the theoretical and experimental
numerical results of the maximum acceleration is shown in Table 5. According to the data
in Table 5, the error between the theoretical result and the experimental result is 15.07 m/s2,
and the error rate is 23.03%. The main reason is that the vibration of the mechanism and the
friction of the components lead to a decrease in the peak value of the experimental results
and the acceleration of the vibration frequency. This can basically verify the correctness of
the theoretical results.

Table 5. The comparison between the theoretical and experimental results.

Parameter Theoretical Result (m/s2) Experimental Result (m/s2) Error

Acceleration 65.43 50.36 23.03%

6. Conclusions

The dynamics optimization research and dynamics accuracy and reliability analysis of
a complex multi-link mechanism containing clearances are researched in this paper.

(1) The dynamics optimization model and dynamics accuracy and reliability model of
a mechanism are built, considering the clearances.

(2) The effects of two different optimization objective functions on the dynamics
optimization of a mechanism with clearances are compared and analyzed, and the effects
on dynamics responses and the nonlinear characteristics of the mechanism before and after
optimization are analyzed. It is found that optimization effectively improves the dynamics
performance of the mechanism considering clearances; it weakens the mechanism’s chaos
phenomena and improves the mechanism’s stability.

(3) The dynamics accuracy and reliability of the mechanism containing clearances
before and after optimization is studied. It is found that the optimization effectively
improves the reliability of the mechanism containing clearances.

(4) A test platform was built to study the dynamics of the mechanism with clearances.
The theoretical result and the experimental result are basically consistent in terms of trends,
but there is a certain difference in value. The error rate between the theoretical result and the
experimental result is 23.03%, which basically verifies the correctness of the theoretical results.
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