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Abstract: The evaluation of rolling bearing performance degradation has important implications
for the prediction and health management (PHM) of rotating equipment. A method for evaluation
of rolling bearing performance degradation based on comprehensive index reduction and support
vector data description (SVDD) is proposed in this study. Firstly, the improved variational mode
decomposition (VMD) method was used to decompose vibration signals, and the defect frequency
amplitude ratio index which is sensitive to early faults is extracted. Secondly, a comprehensive
feature index set of rolling bearings is constructed by combining traditional time-domain and time–
frequency-domain indexes, and the main features are extracted by the dimensionality reduction
algorithm of locally linear embedding (LLE). Finally, the SVDD evaluation model was utilized to
characterize and evaluate the rolling bearing lifetime degradation process using the distance from
the test sample to the trained hypersphere center. Results showed that the proposed comprehensive
degradation index can accurately detect the occurrence of early weak fault stage of rolling bearings
and objectively reveal the performance degradation process of rolling bearings.

Keywords: rolling bearings; composite indicator; locally linear embedding; support vector data
description; performance degradation assessment

1. Introduction

Rolling bearings are an important part of modern large rotating machinery systems.
Damage in bearings can lead to catastrophic accidents in the entire mechanical system.
Therefore, the performance of bearings directly affects the operational reliability of the
entire machinery and equipment [1–4]. Moreover, degradation stages of bearings begin
from the normal state to complete failure. If researchers can monitor the degradation
process and develop appropriate maintenance strategies to prevent bearing failures, then
production downtime can be significantly reduced while saving on maintenance costs [5].

Feature extraction of the bearing vibration signal is a critical step before degradation
assessment of rolling bearings [6,7]. Traditional time-domain feature indicators, such as root
mean square (RMS) and kurtosis, are often used for bearing degradation assessment [8,9].
Although the kurtosis index can appropriately reflect the shock signal during bearing
degradation, it fails to reflect the periodicity of the shock [10]. RMS can reflect energy
characteristics of data and correlate them with the development of bearing failure although
its sensitivity to early failures is insufficient [11]. Hence, understanding the vibration
characteristics of the bearing when a fault occurs is necessary to solve these problems.
The location of the damage will come into contact with the surface of other components
during operation and produce a shock that excites the resonance of the bearing system
when local damage of the types of crack, pitting, spalling, and indentation occur in a
rolling bearing [12]. Therefore, the resonance band caused by localized fault shocks can
be band-pass filtered via resonance demodulation to remove the interference and then
analyzed using envelope demodulation methods to determine the presence or absence of
the fault and the type of damage. The envelope signal contains information about pulses of
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each cycle and the severity of each pulse. Hence, fault characteristic parameters defined by
the envelope signal should accurately reflect the operating state and failure mode of the
faulty equipment [13]. For example, in Ref. [14], the frequency envelope method is used to
analyze the faults of rolling bearings, but it needs to be carried out by changing the motor
speed for the frequency spectrum obtained for normal and defective bearings in various
frequency ranges. In Ref. [15], an envelope harmonic-to-noise ratio method was proposed
to characterize the periodicity of fault pulses. The harmonic energy and noise energy of
the envelope signal are calculated by periodic pulses to realize the detection of the initial
fault. However, locating periodic pulses triggered by faults via autocorrelation methods in
signals heavily influenced by noise is difficult; hence, the true time of the detected fault
onset can lag behind the actual time [16]. The defect frequency amplitude ratio indicator
based on envelope spectrum analysis is sensitive to early faults and extracted and used as
a degradation assessment indicator in this work while considering the influence of inter-
ference factors. Although traditional time-domain features demonstrate low sensitivity to
initial faults, they present satisfactory consistency in the overall trend of degradation; the
frequency-domain method is an integral transformation method that can directly extract
useful frequency components from the signal despite its limited ability to extract features
of nonsmooth bearing signals with statistical characteristics that change with time [17]. The
time–frequency-domain method presents disadvantages of uncertainty and insensitivity
to early faults as well as advantages of acceptable characterization of nonsmooth signals
with statistical characteristics that change with time. Therefore, feature indicators con-
structed in this study are comprehensive because they consider the assessment limitations
of single indicators and integrate the advantages of traditional time-, frequency-, and time–
frequency-domain indicators to form a multidimensional feature space. The LLE nonlinear
dimensionality reduction algorithm is used to extract main features on the basis of the
original popularity given that the multi-Witt collection typically leads to computational
complication problems [18].

A similarity model based on feature extraction is commonly used for the assessment
of performance degradation. For example, Ref. [19] proposes a degradation assessment
model based on the hidden Markov model, but the number of hidden states must be
determined in advance and this scenario is unrealistic in practical applications. Refs. [20,21]
put forward a performance degradation evaluation model based on the Gaussian mixture
model (GMM). Although the GMM-based model can effectively address the distribution
of bearing data, its computation and processing are complicated. Refs. [22,23] propose an
equipment performance degradation assessment model based on fuzzy C-means clustering
(FCM) for rolling bearing performance degradation assessment although its model training
requires normal and completely failed data, which are inapplicable to actual situations.
SVDD is an effective single-value classification algorithm that can primarily map samples to
a high-dimensional inner product space through nonlinear mapping and find a minimum
hypersphere in the space that contains all or the majority of normal sample points. Data
that do not belong in this class are located outside the hypersphere. On the basis of this
principle, the SVDD model only needs the normal state to build and distinguish normal
data from data in other states. Notably, this model is widely used in the field of data outlier
detection and performance degradation because of its advantages of high computational
efficiency and robustness [24,25].

Accordingly, a comprehensive indicator dimensionality reduction method combined
with an SVDD assessment model for performance degradation assessment is proposed
in this study. The vibration signal is decomposed using an improved VMD method to
extract frequency-domain indexes that can provide an evident amplitude ratio of the
initial fault and are then combined with traditional time-domain and fast approximation
entropy indexes in time-domain indicators to build a comprehensive feature index. The
main features are extracted using the LLE dimensionality reduction algorithm and then
combined with the SVDD model to achieve the performance degradation assessment of
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the bearing. The effectiveness and superiority of the proposed method is verified using
experimental data on the full-life fatigue of rolling bearings.

2. Feature Extraction and Dimensionality Reduction
2.1. Improved Variational Mode Decomposition

VMD decomposition methods have been successfully used in fault diagnosis of rotat-
ing machinery. The VMD method can solve problems of modal mixing and endpoint effects
compared with empirical mode decomposition (EMD) and ensemble empirical mode de-
composition (EEMD) methods [26]. The specific decomposition steps are described in [27].
However, the requirement to set the number of decompositions before decomposition, the
presence of a memory overflow problem when data are excessively large, and possible
existence of over-decomposition after decomposition are limitations of the VMD method.
Therefore, combining the decomposition of low frequency with the principle of modal
reorganization is proposed in this work to achieve adaptive decomposition of the VMD
algorithm. The flowchart of the improved VMD method is shown in Figure 1.
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(1) Initialize X(t) and Ul(t). Assign the original signal to X(t), and assign the low-
frequency mode Ul(t) to 0.

(2) Remove low-frequency modes. remove the low-frequency mode Ul(t) from X(t) at
each run as follows:

X(t) = X(t)−Ul(t). (1)

(3) Perform VMD decomposition. The number of fixed decompositions K is set to 2, and
the penalty factor parameter alpha is set to 2000. The relevant literature showed that
the penalty factor demonstrates strong applicability when the penalty factor is set to
2000 and VMD is suitable for extracting low-frequency modal components when the
penalty factor is beyond 2000. Therefore, the VMD was run one at a time to obtain
both high- and low-frequency modes.
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(4) Iteration stop judgment. Stop the iteration when the posting progress of central
frequencies of the two modes obtained from the decomposition is less than the set
threshold to obtain the final decomposed mode. The posting progress is defined
as follows:

fd = ( fh − fl)/ fl , (2)

where fh and fl represent the posting progress of center frequencies of modes Uh(t)
and Ul(t), respectively. Step (2) is performed when fd is less than the set threshold;
otherwise, the sum of all low- and high-frequency modes is calculated. Finally, all
modes are outputted Ui(t).

Modal reorganization of components obtained after the decomposition of the delow-
ered VMD decomposition method [28] is carried out to avoid splitting of adjacent modes
due to over-decomposition and extract the signal effectively.

(5) Take the kurtosis. Mode Ui(t) is represented by uk, and the kurtosis is calculated for
all modes uk. The maximum kurtosis value is denoted as K1.

(6) Initial mode classification. Fast Fourier transform (FFT) is performed on mode uk to
obtain the corresponding spectrum of each mode as follows:

Uk = FFT[uk], k = 1, 2 · · · , K, (3)

where K represents the number of modal components, N represents the length of the
signal, and Uk represents the amplitude spectrum of modalities. The normalization of
Uk obtains Ûk as follows:

Ûk =
Uk√

N−1
∑

k=0
U2

k

, k = 1, 2, , K. (4)

Spectral correlation coefficients for all neighboring modes in mode uk are calculated
as follows:

SOCj =
N−1

∑
l=0

[Ûj(l) · Ûj+1(l)], j = 1, 2 . . . , K− 1. (5)

The average of all spectral coefficients obtained through Equation (5) is used as the
clustering threshold and calculated as follows:

Av =
∑K−1

j=1 SOCj

K− 1
. (6)

The relationship between the spectral overlap coefficient and the threshold value
initially classifies the decomposed modes. Two adjacent modes may contain the same fre-
quency components and a mixing problem may exist when SOCj > Av. The two modes are
then placed in one category; otherwise, the modes are placed in two categories, respectively.

(7) Modal reorganization determination. On the basis of the kurtosis, the reorganization
of the class with more than one mode is determined and the maximum kurtosis S of
modes in the class is compared with the value of kurtosis K2. When K2 < K1, the
modal classification in the class is considered to be dominated by noise, the modal
reorganization in the class. When K2 < K1, all modalities in the class are combined
with K2 corresponding modalities m0, respectively, and, based on the above principle,
the decision is made whether to reorganize or not. Finally, all modalities U are
outputted after regrouping.

2.2. Mode Selection Based on KCI Features

The feature selection indicator selects the modalities obtained after improving the
VMD and determines the acceptability of decomposed modalities. The kurtosis index
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is usually used as an indicator for evaluating the fault impact strength of mechanical
damage, but it relies on the distribution density of the shock. The correlation characterizes
the acquaintance of two signals but is susceptible to noise during the detection of the
shock signal. Therefore, advantages and disadvantages of both kurtosis and correlation
are combined to construct a weighted kurtosis index as the basis for feature selection
and achieve an effective selection of modes obtained from the improved VMD. KCIs are
expressed as follows:

KCI = K · |C|, (7)

K =

1
n

N
∑

n=1
yn

4

( 1
n

N
∑

n=1
yn2)2

, (8)

C(x, y) =
Cov(x, y)√
Var[x]Var[y]

, (9)

where K is the kurtosis, N is the signal length, C is the correlation, Cov[] is the covariance,
and Var[] is the variance.

2.3. Defect Frequency Amplitude Ratio

Probable fault index (PFI) is used to extract a valid indicator from the envelope
spectrum that can characterize the fault and evaluate the ability of the fault characteristic
frequency to behave in the envelope spectrum; hence, the relative change in amplitude
at the fault characteristic frequency of a certain fault type relative to the amplitude at
the characteristic frequency in the normal state is examined [29]. PFI can be expressed
as follows:

PFI =
A( fi)fault

A( fi)healthy

, (10)

where A( fi)fault is the amplitude at the fault characteristic frequency and A( fi)healthy is the
average value of the amplitude at the fault characteristic frequency for that type of fault
under healthy conditions.

Actual operating conditions are also considered although the fault is absent, PFI values
may be large due to strong noise effects, and deviations caused by speed variations or
relative sliding effects may lead to misdiagnoses. Therefore, the following indicator α is
introduced to solve this problem:

α =
A( fi)fault

{A( fi − 10), A( fi + 10)}
, (11)

where A( fi)fault is the amplitude at the fault characteristic frequency. The denominator is
the average of all amplitudes in the 10 Hz band around the fault characteristic frequency.

Although the α indicator is intended to address the impact due to interference factors,
the α indicator is limited by the overall frequency band around the defect frequency,
thereby resulting in a volatile indicator and increased computational difficulty of the
capture algorithm. Therefore, the β indicator is proposed in this work on the basis of these
indicators to highlight the influence of dominant frequency band peaks around the fault.
This indicator narrows the capture range to the influence of 10 dominant peak points on
the characteristic frequency of the fault to the left and right. The β indicator is calculated
as follows:

β =
A( fi)fault

{(A( fi)− 10), (A( fi) + 10)}
, (12)

where the denominator is the average of the amplitude of 10 peak points to the left and
right of the fault characteristic frequency (dominant peak point can be set according to the
complexity of actual data).
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2.4. Comprehensive Indicator Downscaling

The defect frequency amplitude ratio is proposed as a new index to assess the bear-
ing performance degradation and sensitivity to initial bearing degradation as well as
examine the bearing performance degradation as part of the frequency-domain index.
Meanwhile, the traditional time-domain and fast approximate entropy indexes in the time-
and frequency-domain are jointly constructed as a comprehensive characteristic parameter
to consider the limitation problem of a single index for assessment and investigate the
rolling bearing performance degradation and construct a comprehensive set of features.

The LLE dimensionality reduction algorithm is introduced to extract the main features
on the basis of the original popular structure given that a multidimensional feature set
will likely lead to computational complexity and high dimensionality may reduce the
performance of the evaluation model. The specific principle of LLE is referred to in
literature [18].

3. Support Vector Data Description

The main idea of the support vector data description is to find the minimum hyper-
sphere that can cover target samples, with inner samples of the hypersphere as target
sample points and outer sample points as nontarget sample points or outliers [30]. The
hypersphere model is shown in Figure 2, where a is the center that represents the model
and R is the radius of the sphere.
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The model takes into account that the target sample will contain a small number of
outlier points. A relaxation factor ξ and a penalty parameter C are introduced to improve
the robustness of training data and allow a small number of sample points to lie outside
the hypersphere. Thus, the model is transformed into the following minimization problem: min(R, a, ξ) = R2 + C

N
∑

i=1
ξi

s.t.‖φ(xi)− a‖2 ≤ R2 + ξi, ξi ≥ 0, i = 1, 2 · · · , N
. (13)

A Lagrange equation is introduced to solve the optimization problem of Equation (13)
as follows:

L(R, a, ξ, α, γ) = R2 + C
N
∑

i=1
ξi

−
N
∑

i=1
αi(R2 + ξi − ‖φ(xi)− a‖2)−

N
∑

i=1
γiξi,

(14)
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where α and γ are Lagrangian coefficients. Partial derivatives of R, a, and ξi in Equation (14)
are determined and then set to zero.

N
∑

i=1
αi = 1

a =

N
∑

i=1
αiφ(xi)

N
∑

i=1
αi

=
N
∑

i=1
αiφ(xi)

. (15)

Substituting Equation (15) into Equation (14) obtains the following optimization function:
max

N
∑

i=1
αiK(xi, xi)−

N
∑

i=1

N
∑

j=1
αiαjK(xi, xj)

s.t.
N
∑

i=1
αi = 1, 0 ≤ αi ≤ C

, (16)

where K(xi, xj) is the kernel function instead of the inner product operation. Thus, a low-
dimensional nonlinear problem is converted to a high-dimensional linear problem. The
radius R of the hypersphere can be calculated from the distance of an arbitrary support
vector to the center a as follows:

R2 =

∥∥∥∥φ(xsv)−
N
∑

i=1
αiφ(xi)

∥∥∥∥2

= K(xsv, xsv)

−2
N
∑

i=1
αiK(xi, xsv) +

N
∑

i=1

N
∑

j=1
αiαjK(xi, xj).

(17)

Furthermore, the distance of the new sample from the center of the sphere for an
arbitrary new sample z can be expressed as follows:

D2 = K(z, z)− 2
N
∑

i=1
αiK(z, xi)

+
N
∑

i=1

N
∑

j=1
αiαjK(xi, xj).

(18)

If D < R, then the new sample z is in the interior of the hypersphere and can be
considered normal; otherwise, z does not belong to the training sample category and is an
outlier. Therefore, according to this principle, the SVDD model can be applied to the field
of bearing performance degradation assessment.

4. Performance Degradation Assessment Based on Combined Metric Downscaling
and SVDD

A performance degradation assessment method based on comprehensive index dimen-
sionality reduction combined with the SVDD model is proposed in this study to understand
the degradation process of a set of full-life data samples from the normal state to final
failure. The model is divided into two parts, namely, offline and online, in which the
normal-state multidimensional data are downscaled as the training sample and the trained
model is evaluated online for the whole-life data, as shown in Figure 3.

Step 1: Feature extraction. Extract training samples, that is, time-, frequency-, and
time–frequency-domain feature indicators in the normal state, to construct a comprehensive
feature indicator set.

Step 2: Model training. Normal-state integrated feature indicators are dimensionalized,
and the extracted main features are used as training samples for the SVDD model to obtain
the optimal hypersphere containing normal feature samples with a hypersphere radius
of R.
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Step 3: Degradation evaluation. The degraded full-life data are inputted into the
established SVDD degradation model to obtain the distance D between the data and the
center of the hypersphere, and the performance degradation indicator (DI) is established
using the relationship between D and the radius of the hypersphere R [31]. The DI indicator
is calculated as follows:

DI =
D− R

R
. (19)

If DI ≤ 0, then the data are considered in the normal-state range. Otherwise, the data
are considered abnormal values and the bearing is in the degraded state. DI values are
normalized to solve the coordinate problem, ensure that vertical coordinates are the same,
and facilitate intuitive analysis.

5. Experimental Analysis and Validation
5.1. Presentation of Experimental Data

Data 1: Publicly available experimental data from the Bearing Data Center at Casey
Western Reserve University (CWRU), USA were used to verify the usefulness of the down-
scaling algorithm [32]. As shown in Figure 4, the test rig consists of a 2 hp drive motor,
a torque transducer, and a generator connected on the right side. The bearing type at
the drive end was SKF 6205 and the data were sampled at 12 kHz. The equipment was
machined on bearing parts using EDM cutting to simulate different types of failures and
various levels of the bearing failure. The bearing inner ring failure data were obtained at a
speed of 1750 r/min and a load of 0; the four levels of failure demonstrated a failure depth
of 0.007, 0.014, 0.021, and 0.028 inches; and normal-condition data were used in this study.

Data 2: Full-life data were publicly available information from the Intelligent Mainte-
nance Systems (IMS) Center at the University of Cincinnati, USA [33]. The experimental
device is shown in Figure 5, it is mainly composed of an AC motor, a shaft, and four
bearings (ZA-2115 double row roller bearings). The rotational speed was 2000 r/min, the
sampling frequency was 20 kHz, the sampling interval was 10 min, the sampling length
was 20480 points, and the bearing was subjected to a radial load of 6000 lbs.
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In this experiment, the bearing parameters are as follows: pitch diameter is 71, 5 mm,
rolling element diameter is 8.4 mm, number of rolling elements per row is 16. The char-
acteristic frequencies are as follows: outer ring defect frequency is 236 Hz, inner ring
defect frequency is 297 Hz, rolling element defect frequency is 279 Hz, and shaft rotation
frequency is 33.33 Hz. In this study, the outer ring fault data of bearing 1 and bearing 3 are
selected for analysis, which include the process from normal to failure of the bearing outer
ring. Among them, bearing 1 collected 984 data sets from 12 February 2004 10:32:39 to
19 February 2004 06:22:39. Since the last two data sets are completely invalid, only 982 data
sets are analyzed here.

5.2. Effectiveness of VMD Improvements

The enhanced decomposition characteristics of the improved VMD were analyzed
using a set of real laboratory signals to verify its effectiveness. The data were obtained from
publicly available full-life bearing data from the University of Cincinnati in the USA. These
laboratory data were used in the rolling bearing performance degradation assessment in
this study. During this experiment, the simulation software was MATLAB 2019, the CPU
configuration and operating system information is as follows: (1) i5-10210U CPU@1.60GHz
2.11 GHz, (2) Windows 21H2 RAM 16.0 GB.

A modified VMD analysis was performed on data sample 533, which is an early
degradation point that was analyzed through degradation analysis when the performance
degradation was examined. Figure 6 presents the waveform and envelope spectrum after di-
rect processing of the original signal. Although the outer ring fault characteristic frequency
in the envelope spectrum in Figure 6b was doubled, finding other octave components of
the outer ring fault characteristic frequency in the envelope spectrum is difficult.
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Figure 6. Time-domain waveform and envelope spectrum of the original signal; (a) time-domain
waveform; (b) spectral envelope.

The VMD method was used for the decomposition, and only the signal at 0.75 s was
used here for the analysis due to the limitations of the VMD decomposition on the computer
memory. Meanwhile, and VMD parameters α and K were set to 2000 and 6, respectively.
The histogram was obtained via KCI calculation on the basis of KCI for the selection of
decomposed modes (Figure 7). IMF3 is the optimal mode component for the envelope
analysis, as shown in Figure 8.
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Figure 7. Histogram of the model obtained by KCI.
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Figure 8. The envelope spectrum of IMF3.

The envelope spectrum demonstrated that one octave of the fault characteristic fre-
quency is only weakly highlighted by noise interference and other octave components of
the fault characteristic frequency are absent in the envelope spectrum.

The data were then processed using the modified VMD, and all modes obtained by
this method were subjected to the modal selection based on the weighted kurtosis index
(KCI). The selected modes were subsequently subjected to envelope analysis. Figure 9
illustrates the histogram obtained via KCI for the reconstituted modes. IMF2 is the optimal
mode component for the envelope analysis. The results are presented in Figure 10.
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Figure 9. Histogram of the recombination model obtained by KCI.
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Figure 10. The envelope spectrum of IMF2.

Figure 10 shows that the characteristic frequencies of bearing outer ring faults and
their multiples can be clearly observed in the envelope spectrum of the mode selected
via the improved VMD and the weighted kurtosis index. This finding indicated that the
improved VMD can successfully extract fault information. Meanwhile, the peak signal-
to-noise ratio of the optimal mode obtained using the VMD and the improved VMD was
calculated to compare the filtering effect of these two methods quantitatively; note that a
large peak signal-to-noise ratio of the mode corresponds to an enhanced filtering effect [35].
The two filtering results are shown in Table 1. The filtering effect based on the improved
VMD is significantly better than that of the VMD method and beneficial to the extraction of
feature indicators.

Table 1. Filtering effect comparison.

Method VMD Improvement of VMD

PSNR 19.627 22.495

5.3. Comparative Analysis of the Effect of LLE Downscaling

Degradation states can be denoted by representative features. An effective dimen-
sionality reduction algorithm is essential in extracting the main degradation features and
defining changes in the degradation process of the bearing because of the multidimensional
input of indicators with characterization of bearing degradation.

The LLE is a principal component analysis (PCA) algorithm that was used to assess
the two-dimensional visual space popularity performance of the data from data one. The
data were divided into four levels of failure for the inner ring at 0.007, 0.014, 0.021, and
0.028 inches as well as the normal condition. The data for each state consisted of 20 samples,
with 4096 sampling points in each sample.

Fault data were identified, and time-, frequency-, and time–frequency-domain feature
indicators were extracted as multidimensional feature indicators. The LLE prevalence
algorithm was used for feature dimensionality reduction, and the first two dimensions
of prevalence features, namely, y1 and y2, were used as the respective horizontal and
vertical coordinates of the two-dimensional spatial display, as shown in Figure 11a. The
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PCA method was also utilized for comparative analysis. The result of dimensionality
reduction based on popular features indicated that the enhanced projection performance
can improve the clustering and separation. Moreover, the data are changed according
to the trend of increasing severity level, except for faults with categories 0.007 and 0.014,
likely due to the small distance between these two fault levels that result in similar fault
performance. Notably, the trend of the LLE-based method varies strictly according to the
degree of fault. Meanwhile, the PCA-based method is a linear distribution of second-order
statistical significance in nature that fails to reflect the essential nonlinear characteristics of
the bearing performance degradation process clearly. Therefore, the LLE-based popular
feature algorithm can improve the degradation performance to a certain extent and be used
in the degradation assessment of bearings.
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Figure 11. Comparison of dimensionality reduction effects of different methods; (a) LLE feature
dimension reduction results; (b) PCA feature dimension reduction results.

5.4. Assessment of Performance Degradation of Full-Life Rolling Bearings

The range data and calculated data points of outer ring failure data of the time-domain
shape of the Cincinnati full-life cycle bearing 1 shown in Figure 12 demonstrated that
the waveform amplitude suddenly increases and the bearing shows evident failure when
data are located in group 703. Similarly, a significant increase in waveform amplitude
occurs again and the bearing should enter a failure condition when data are located in
group 970. Although the two significant locations of failure can be identified by looking
at the full-life time-domain waveform, the onset of weak failures cannot be identified by
direct observation until group 703. This phenomenon is not conducive to early failure
maintenance. Moreover, the whole bearing degradation process requires further evaluation.
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Figure 12. Time-domain waveforms of bearing 1 outer ring failure data for the full-life cycle.

The degradation assessment process refers to the effective identification of degradation
stages of a bearing. The key to degradation assessment is the extraction of degradation
indicators. Indicators should be simple to calculate, sensitive to early failure detection, and
able to provide consistency on the overall degradation trend. The RMS values for 982 data
sets are shown in Figure 13.
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Figure 13. RMS of original vibration signals.

According to the RMS value changes, a clear and abrupt change occurred at sample
point 705. Specifically, a weak monotonic increasing trend exists between points 533 and
705, thereby indicating that observing the early failure initiation and evolution process
through RMS is difficult. However, the RMS values show an overall trend of deterioration
and smoothing of the bearing at various stages, and the monotonic increase in fluctuations
reflects the impact strength of the signal to a certain extent. Hence, RMS values can be used
as a characteristic indicator for degradation assessment because this finding is consistent
with the bearing degradation process.

A characteristic indicator based on the amplitude ratio of defect frequencies is pro-
posed due to the insensitivity of traditional time-domain indicators, such as RMS values, to
the early degradation of rolling bearings. Note that the indicator concept has been intro-
duced in the previous Section 2.3. The extraction of the defect frequency amplitude ratio
indicator is achieved through the envelope capture combined with the indicator principle
by improving the VMD decomposition. The extracted defect frequency amplitude ratio
indicator is shown in Figure 14.
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Figure 14. α, β, and PFI indexes; (a) α index; (b) β index; (c) PFI index.

As shown in Figure 14, the indicator begins to increase significantly at around 530 sample
points and the value of the indicator remains high until the end of the experiment. Therefore,
the proposed indicator is more sensitive to early failures than the RMS indicator.
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In addition, a comprehensive set of characteristic indicators is established in this work
by considering the limitations of single indicators, the ability of time-domain indicators
to be consistent with the degradation trend, the ability of time- and frequency-domain
indicators to characterize nonstationary signals, and the sensitivity of the proposed defect
frequency amplitude ratio to early degradation in the frequency-domain.

The extracted degradation indicators demonstrated that when the bearing operation is
in the first 400 sets of data during the operation period, both from the data waveform and
from each characteristic indicator are relatively stable, and the bearing can be considered
to be working under normal conditions. SVDD model parameters were set to C = 1
and σ = 35. Feature indicators of full-life data are dimensionalized using LLE, and the
first two dimensional feature vectors are inputted into the established SVDD degradation
assessment model given that these vectors can appropriately characterize degradation
characteristics of bearings after dimensionalization. The variation trend of the proposed
method is presented in Figure 14.

The dynamic criterion 3σ is used as an adaptive alarm threshold [36]. The traditional
3σ threshold line is typically a horizontal state threshold. However, the threshold value can
suffer from abnormal fluctuations that lead to fault misclassification when perturbed by
external factors. Therefore, a dynamic and adaptive 3σ threshold line is used. This thresh-
old line is different from the traditional 3σ criterion because it sets multiple consecutive
indicator values beyond the 3σ value range delineated by previous indicator values as well
as assumes that the current operating state of the bearing equipment has transformed from
the previous stage.

As shown in Figure 15, the degradation curve exceeds the dynamic threshold line at
sample 533. This finding indicated the onset of failure. The rise in the curve in a gradual
increment between sample points 533 and 705 implied that the failure gradually increases.
The sharp change in the curve around sample point 705 is due to the failure deepening
and smoothing process, which can be considered the moderate degradation stage. The
same situation occurs at around 850 points, thereby indicating that the bearing degrades to
the next level again. This part is considered the severe degradation stage. A sudden drop
occurs after an uncontrollable rise at around 972. This scenario indicated that the bearing
has completely failed. Various stages of bearing degradation in the proposed method are
clearly distinguished and the sensitivity of degradation significantly increases in the early
stages, with the whole degradation process showing a monotonically rising process. This
finding is consistent with the degradation trend of the bearing.
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Figure 15. Degradation index based on LLE-SVDD.

Original data were subjected to PCA dimensionality reduction to highlight the ef-
fectiveness of the method, and the contribution rate of dimensionality reduction must be
more than or equal to 85% under normal circumstances to ensure that the information
can approximately reduce features without losing the main data. The contribution rate
in this study is set to 90%. Figure 16 presents that the contribution rate of the first two
principal components is already greater than 90%. Hence, the first two dimensions after
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dimensionality reduction are used as the feature input in the SVDD assessment model. The
obtained degradation curve is shown in Figure 17.
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Figure 17. Degradation index based on PCA-SVDD.

According to the results of the PCA method, the PCA-based method can also detect
early faults at 533 sample points because feature indicators extracted in this study exert a
strong effect on early faint faults but is not as sensitive to the initial degradation as the LLE-
based method. The PCA-based method combined with SVDD fluctuates more intensively at
each stage in the robustness analysis, likely due to some poor-quality influence, as shown in
the black box in the figure. Failure of the PCA-based method to extract effective components
results in more significant fluctuations, which are inconsistent with the monotonic variation
characteristics of faults and can easily cause misdiagnosis.

Similarly, raw data were inputted directly into the SVDD model for comparative
analysis. The degradation results are shown in Figure 18. The results are basically similar
to those of the PCA-based method combined with SVDD, and the curve fluctuates more
sharply. The influence of poor-quality feature indicators leads to a minimally robust curve,
which fails to reflect the degradation trend properly in the later stages of degradation.

The SVDD assessment model was replaced with a fuzzy C-mean clustering model to
highlight the superiority of the degradation assessment curve based on LLE downscaling
combined with the SVDD assessment model further. The model was first trained on a
number of groups of normal-state data and a number of groups of completely failed bearing
characteristics, with clustering centers for both types of data. The fluctuation range of the
degradation curve is set between the value of 0 and 1. The index value is 1 when the data
are normal-state data, that is, the subordination degree is 1. The subordination degree is
small as it approaches to 0, thereby indicating that the bearing degradation state becomes
increasingly serious. The results of LLE dimensionality reduction-based features combined
with the FCM assessment model are illustrated in Figure 19.
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Figure 18. Degradation index based on original features and SVDD.
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Figure 19. Degradation index based on LLE-FCM.

As shown in Figure 19, the FCM-based assessment model demonstrates multiple
consecutive samples that exceed the threshold line near sample point 553. This finding
is approximately 20 sample points later than the onset of degradation detected by the
proposed LLE-based reduced dimensional features combined with the SVDD assessment
model. Hence, a delay of 200 min exists in the detection of the initial degradation of
the bearing. This phenomenon is not conducive to the detection of early degradation
as well as the detection and repair of actual failures. Furthermore, the FCM assessment
model presented that the degree of affiliation reaches 0, which indicates complete failure,
and begins to increase again. This phenomenon is inconsistent with the actual situation,
as shown in the dashed black box. Moreover, the threshold line appears monotonically
uncontrollable at the late stage of degradation due to the misleading distortion of the
degradation curve.

The comprehensive analysis of this comparison showed that the proposed LLE-based
method combined with SVDD for bearing degradation assessment can clearly distinguish
between various stages, is clearly sensitive to early bearing degradation, and presents
a monotonically increasing degradation process. These findings are consistent with the
bearing degradation trend.

5.5. Fault Verification in All Stages of Bearing Degradation

Envelope analysis was conducted for key sample points 532, 533, 705, 850, and 972
in the degradation assessment curve to verify the inferences drawn from the degradation
assessment results in this study for the start of each stage. Data from each key sample
point were adaptively decomposed into a number of modes using the improved VMD
method, and the mode with the maximum corresponding weighted kurtosis index was
selected for the envelope analysis by means of the weighted kurtosis index. The envelope
demodulation results for each sample point are illustrated in Figure 20.
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Figure 20. Envelope demodulation of key sample points; (a) 532nd data point; (b) 533rd data point;
(c) 705th data point; (d) 850th data point; (e) 972nd data point.

The analysis of envelope results demonstrated that the envelope spectrum fails to find
components similar to the fault characteristic frequency at sample point 532, as shown
in Figure 20a. The envelope demodulation of sample point 533 at the beginning of the
early fault is presented in Figure 20b. The outer ring fault characteristic frequency and its
multiplier components can be clearly observed in the envelope spectrum, and the amplitude
at the fault frequency is 0.0087, thereby indicating the occurrence of early degradation. The
fault characteristic frequency and its multiplier at sample point 705 in Figure 20c become
increasingly clear, and the fault amplitude increases to 0.1215. The fault characteristic
frequency and its multiplication frequency at sample point 850 in Figure 20d are also
observed, and the amplitude increases further to 0.135. The fault characteristic frequency
amplitude at sample point 972 increases abruptly to 0.2787, thereby indicating that the
bearing has reached extremely severe degradation and is about to fail. The detailed analysis
results are shown in Table 2. The envelope analysis showed that the results are generally
consistent with the assessment results.

Table 2. Key sample point degradation analysis.

Sample point 533rd 705th 850th 972nd

Amplitude 0.0087 0.1215 0.135 0.2787
Bearing condition Early failure Medium failure Severe failure Very severe failure

To further verify the effectiveness of the model proposed in this paper, we have added
data analysis of bearing 3 of the same type in the case of data verification of bearing 1
(the Intelligent Maintenance Systems Center at the University of Cincinnati, Cincinnati,
OH, USA). In order to compare with bearing 1, one sample is drawn every seven samples
from the 6324 samples, and a total of 904 samples are drawn. The full-life degradation
time-domain waveform of bearing 3 is shown in Figure 21. From about the 874th sample
after filtering (point 17899520 of the original data), the amplitude of the time-domain
waveform rises significantly.
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Figure 21. Life-time degradation time-domain waveform of bearing 3.

The model proposed in this paper only uses the normal data of the rolling bearing
to train the SVDD model. When the performance degradation of the rolling bearing
needs to be verified, the failure or full-life cycle data of the rolling bearing can be used to
obtain the performance degradation index curve. Therefore, this method cannot directly
evaluate the degradation of rolling bearings that are not included in the learning process
(the SVDD model is not trained with normal data). Similarly, since the normal thresholds
corresponding to different bearings may vary greatly, and are prone to false alarms, the
degradation threshold curve corresponding to the rolling bearing 1 cannot be directly
used as the threshold curve of the rolling bearing 3. Therefore, the model still needs to
be trained using the normal data of the bearing being evaluated. Bearing 3 degradation
index based on LLE and SVDD is shown in Figure 22. Near the 108th sample point,
the degradation index DI value exceeds the threshold line (green) of bearing 1, which is
unreasonable, so the threshold line (red) trained by bearing 3 needs to be used. Similarly,
at the 854th sample, the degradation index DI exceeds the threshold line. Compared with
the time-domain waveform, the degradation index DI value not only clearly shows the
degradation trend of bearing 3, but also earlier than the degradation point reflected by the
time-domain waveform.

It can be seen from the above analysis that this method has nothing to do with the
number of bearings to be learned, but is related to whether the normal data of the bearings
can be obtained accurately, which is easier to realize in engineering practice.

To verify the degradation process of bearing 3, the 854th, 872nd, and 902nd sample
points after screening were selected for envelope demodulation analysis. The analysis
results are shown in Figure 23. It can be seen that the fault characteristic frequency of the
outer ring and its multiplier amplitude gradually increase until the bearing fails completely.
It should be pointed out that the degradation point of bearing 3 is later than that of bearing
1, but the degradation speed is faster in the later stage.
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6. Conclusions

A comprehensive index degradation and SVDD rolling bearing performance degrada-
tion assessment method is proposed in this study. The following conclusions can be drawn
from the results of this study.

(1) The original vibration signal is decomposed using the improved VMD method, and
modalities selected by the weighted kurtosis index are demodulated via enveloping
with evident filtering effect. This effect is beneficial for separating early fault character-
istics from the disturbance noise and conducive to the extraction of feature indicators.

(2) Defect frequency amplitude ratio indicators, which are sensitive to early faults and
more sensitive to early fault onset than traditional RMS indicators, are extracted
to address the problem of strong sensitivity of effective feature indicators to the
initial stage.

(3) LLE dimensionality reduction is carried out on extracted comprehensive feature in-
dicators to extract the main features, and the SVDD degradation assessment model
combined with the relative distance indicator is used in the degradation assessment
of the whole-life bearing. The proposed method is important for online health moni-
toring and early warning of bearings in practical production.
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