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Abstract: The need for a vehicle to perceive information about the external environmental as an
independent intelligent individual has grown with the progress of intelligent driving from primary
driver assistance to high-level autonomous driving. The ability of a common independent sensing
unit to sense the external environment is limited by the sensor’s own characteristics and algorithm
level. Hence, a common independent sensing unit fails to obtain comprehensive sensing information
independently under conditions such as rain, fog, and night. Accordingly, an extended network-
based fusion target detection algorithm for millimeter-wave radar and vision fusion is proposed in
this work by combining the complementary perceptual performance of in-vehicle sensing elements,
cost effectiveness, and maturity of independent detection technologies. Feature-level fusion is first
used in this work according to the analysis of technical routes of the millimeter-wave radar and vision
fusion. Training and test evaluation of the algorithm are carried out on the nuScenes dataset and
test data from a homemade data acquisition platform. An extended investigation on the RetinaNet
one-stage target detection algorithm based on the VGG-16+FPN backbone detection network is then
conducted in this work to introduce millimeter-wave radar images as auxiliary information for visual
image target detection. We use two-channel radar and three-channel visual images as inputs of the
fusion network. We also propose an extended VGG-16 network applicable to millimeter-wave radar
and visual fusion and an extended feature pyramid network. Test results showed that the mAP of the
proposed network improves by 2.9% and the small target accuracy is enhanced by 18.73% compared
with those of the reference network for pure visual image target detection. This finding verified
the detection capability and algorithmic feasibility of the proposed extended fusion target detection
network for visually insensitive targets.

Keywords: intelligent driving vehicle; multi-sensor fusion; object detection; extended network

1. Introduction

The demand for autonomous vehicle sensing capability has gradually increased with
the continuous development of vehicle collision avoidance, lane keeping, and autonomous
cruise control technologies. Independent sensing units, such as millimeter-wave radar,
ultrasonic radar, and vision cameras with satisfactory external sensing capabilities, have
gradually been applied to vehicle target detection [1–7]. However, a single type of sensing
unit fails to meet the demand for sensing capability in vehicle automation enhancement,
and researchers are gradually shifting their focus from single-sensor sensing toward the
direction of fusion sensing. The vision camera-based image target detection technology
has matured and can be used in practical scenarios due to the collaboration efforts of many
researchers [8,9].

Krizhevsky et al. [10] proposed the deep convolutional neural network called AlexNet
in the Visual Recognition Challenge, which laid the foundation for research in the field of
deep learning target detection. Girshick et al. [11] put forward an R-CNN detection model
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based on convolutional neural networks to identify candidate regions where targets may be
present. He et al. [12] established the spatial pyramid pooling algorithm SPPNet to solve the
fixed-size limitation on input images in R-CNNs. The algorithm outperforms the previously
proposed YOLO algorithm [13] in the detection of small targets and improves the detec-
tion capability of small targets. Radar imaging has been extensively investigated [14,15].
Chen [16] developed an extended algorithm that can effectively avoid errors caused by
energy distribution imbalance. Dong [17] proposed a compressed sensing algorithm for
synthetic aperture radar and provided ideas for multi-sensor fusion.

Visual target detection has undergone two stages of development: traditional and
deep learning-based target detection algorithms, which remarkably improved the detection
accuracy and speed of image targets [18,19]. However, pure vision-based target detection
still presents inherent disadvantages in addressing complex scenarios such as multiple
target overlap, pedestrian detection in dense traffic, and fog. Millimeter-wave radar shows
acceptable detection capability in target detection in terms of estimation of target position,
velocity, and other state data. However, using the millimeter-wave radar to perform
tasks, such as target class and target lane estimations, presents limitations. Therefore,
many researchers have considered the application of multi-sensor fusion methods in
target detection.

2. Related Work

The goal of multi-sensor fusion target detection is primarily to exploit the complemen-
tary nature of multiple sensors, such as detection capability, production, and maintenance
costs and stability, under a variety of conditions. Research on fusion between millimeter-
wave radar and vision is still in its infancy and is limited by the lack of publicly available
datasets containing millimeter-wave radar data [20–24]. Millimeter-wave radar-based fu-
sion algorithms have gradually attracted research attention with the release of the nuScenes
dataset and simulation software programs such as CARLA.

Ji et al. [25] created regions of interest for picture target detection with radar detection
in a simple neural network for target detection. Many studies have [26–28] also used
millimeter-wave radar detection to guide image target detection. Jin et al. [29] achieved
detection and recognition of multiple targets on the basis of regions of interest for image
detection by exploring the integration of millimeter-wave radar and vision fusion in spatial
and temporal dimensions. Song et al. [30] applied millimeter-wave radar with image 3D
target detection to divide the sensor task according to the radial distance of the target
for multi-sensor-supervised hazardous target detection and classification. Vijay et al. [31]
proposed the use of RVNet with millimeter-wave radar structures and camera image data
as inputs to the convolutional neural network. Jha et al. [32,33] used independent detection
results from millimeter-wave radar and vision sensors for decision fusion algorithms.
Lekic et al. [34] utilized a deep learning approach based on adversarial networks to fuse
camera and millimeter-wave radar data into a bird’s eye view for free-space detection.
Chadwick et al. [35] projected millimeter-wave radar data into the image plane, used
deep neural networks for detection, and fused radar features with visual features through
tandem fusion and achieved satisfactory performance in the authors’ self-defined dataset.

Millimeter-wave radar and vision fusion demonstrate advantages in small target
detection. Aziz et al. [36] proposed an algorithmic framework for fusing millimeter-wave
radar and visual information to achieve target detection. Chang et al. [37] put forward
a millimeter-wave radar and vision fusion target detection algorithm based on spatial
attention fusion to improve the detection of small and minimally deterministic targets
by introducing a spatial attention module. Nabati et al. [38] established a center-based
millimeter-wave radar and vision fusion 3D target detection algorithm for millimeter-
wave radar and vision target association. Jhon et al. [39] improved the weak detection
capability of vision cameras for target detection under night, rain, and fog conditions using
millimeter-wave radar, vision cameras, and thermal imaging cameras in a weak detection
environment. Nabati et al. [40] obtained a set of detection a priori frames by expanding
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from the center of the detection frame to all around the a priori frames for image detection
based on the uncertainty of the radar point detection target. Wang et al. [41] used coordinate
transformation with edge detection of vehicles to bridge the gap of single-sensor detection
of vehicles. Wang et al. [42] fused attentional mechanisms and driver awareness to improve
the integrated performance.

Research attention on fusion algorithms based on millimeter-wave radar and vision
information is generally focused on the decision layer. This approach is a fusion of in-
dependent millimeter-wave radar and vision detection results performed by a set logic.
However, the detection rate and environmental applicability still require improvement.
Therefore, an extended target detection network with multilayer feature fusion based on
millimeter-wave radar and visual raw information is proposed in this study to improve the
detection accuracy and robustness of the model under complex weather conditions.

3. Method
3.1. FPN Extended Network

Researchers have typically predicted features separately from each layer of the de-
tection network, thereby reducing the validity of information in the feature map as the
feature depth increases and rendering the algorithm ineffective in small target detection.
The proposed feature pyramid network (FPN) can provide a satisfactory solution for target
detection from multiscale features. Its main solution is the multiscale problem in object
detection. FPN adopts a top–down and lateral connection structure to fuse the underlying
location information with a semantic information-rich feature map at high levels. The
location information of the underlying target stored in the new feature map is obtained,
and the detection of small-scale targets is improved. Depth features obtained from different
convolutional layers are matched using 1 × 1 convolutional kernels for channel matching,
and fused feature maps are processed with 3 × 3 convolutional kernels to reduce the effect
of confusion caused by the fusion of features from different layers. We use a three-layer
FPN as an example and extend it. The FPN structure is shown in Figure 1a.
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Figure 1. Feature Pyramid Network and its extension. C denotes the convolutional layers of a CNN
and P denotes prediction layers. (a) FPN structure; (b) extended FPN (E-FPN).

Deep features are upsampled and fused with shallow features through addition (Add)
to obtain semantically enhanced feature maps P1 and P2 for image features C1, C2, and
C3 as well as to improve the algorithm’s recognition of small targets. The detection
results can still be improved on the basis of the FPN and its acceptable performance in
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synthesizing multilayer semantic information. We propose the extended FPN (E-FPN)
shown in Figure 1b. The proposed algorithm adds millimeter-wave radar features at the
corresponding scales for tandem (concatenation) fusion to P1, P2, and P3 feature maps,
which are extracted via the FPN to obtain the enhanced P1_E, P2_E, and P3_E fusion feature
maps for prediction. We employed a seven-layer FPN in this study to perform sensor data
fusion detection tasks. We also extended the VGG network in Section 3.2.

3.2. VGG Extended Network Block Design

The VGG network was proposed by the Visual Geometry Group at Oxford as an
abbreviation of the laboratory’s name. The VGG study illustrates some of its findings from
the ImageNet 2014 challenge and suggests that a deep model can be constructed by reusing
underlying blocks. Figure 2a shows the block structure of the VGG network. A CNN base
block is generally constructed as follows: a convolutional layer; a nonlinear activation
function, such as ReLU; and a pooling layer, such as the maximum pooling layer. The
method proposed in the VGG study aims to use several consecutive identical convolutional
layers with a padding of 1 and a window shape of 3 × 3, followed by a maximum pooling
layer with a step size of 2 and a window shape of 2 × 2. The convolutional layer maintains
the height and width of the input and output constant, while the pooling layer halves the
size of the input. We also propose the extended VGG network apart from the VGG network.
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Two channels are included in the radar image generated by the extension: radar cross
section (RCS) and range channels. The radar image size is the same as the visual image size.
The VGG network block structure is redesigned to accommodate the “millimeter-wave
radar–visual image” extended image as the input to the network and incorporate radar
image features into the convolutional network. Figure 2 presents the block structures of
VGG and the extended VGG network. Figure 2b illustrates that the extended VGG network
used millimeter-wave radar two-channel images and visual (R, G, B) three-channel images
as network inputs. The image channel completes the convolution and pooling of the
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original VGG block and concatenates with millimeter-wave radar image features. The
obtained feature map is then used as the input of the next-level VGG block.

The advanced architecture of the extended target detection network of millimeter-
wave radar and vision fusion based on the RetinaNet with extended VGG-16+E-FPN in this
work is shown in Figure 3. The extended VGG-16 backbone detection network structure
is presented in the left portion of Figure 3. Meanwhile, the extended FPN structure is
illustrated in the dotted box in the middle.
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Figure 3 shows that the extended network structure regards two channels of millimeter-
wave radar images and three channels of visual images as inputs, and cascades visual image
features with radar image features as composite features using tandem fusion (number
of composite feature channels = number of pretandem radar feature channels + number
of pretandem image feature channels). Composite feature outputs from each layer of the
extended VGG backbone detection network are C5_reduced, C4_reduced, and C3_reduced
and radar feature maps R1, R2, . . . , R7. Fusion and radar features obtained from the VGG
backbone detection network are used as inputs in the E-FPN. Meanwhile, extended feature
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maps P3_E, P4_E, P5_E, P6_E, and P7_E obtained from the extended pyramid network are
utilized as inputs in the target network.

A fundamental difference can be observed in the amount of information contained
in a pixel between millimeter-wave radar and image pixel points. Radar images use the
target distance as the pixel value, while the target information in visual images must be
represented by a single pixel point together with nearby pixel points. The shallow fusion
of radar images with visual images is poorly correlated with the information expressed
by the two, given that the input information shows minimal semantic similarity and only
indirectly associates features. Input data in deep networks can represent increasingly
dense semantic information and provide the feature information needed to facilitate the
classification task. Therefore, deep convolutional features C5_reduced, C4_reduced, and
C3_reduced are selected as feature outputs to ensure the unfolding of multiscale images in
the FPN and the semantic similarity between millimeter-wave radar and visual information
in deep features. Weights of different radar feature layers can be adjusted accordingly
during network training to train the network adaptively and obtain the optimal prediction
classification effect by fusing millimeter-wave radar features R1, R2, . . . , R7 with pyramid
network output features P3_E, P4_E, P5_E, P6_E, and P7_E in the E_FPN in series.

4. Result
4.1. Evaluation Indicators

The proposed millimeter-wave radar and vision fusion-based target detection algo-
rithm aims to enhance image target detection by guiding the network on the basis of
millimeter-wave radar data.

Target classification evaluation in the evaluation of image target detection is based
on the average accuracy, while target localization evaluation is based on intersection and
merge ratio. The evaluation indicators are presented as follows:

(1) True Positive (TP): Intersection over Union (IoU) of prediction and true value boxes is
greater than the threshold value, and the classification is correct.

IoU is the result obtained by dividing the overlapping part of two regions by the
aggregated part of the two regions. The result is compared with the findings of the IoU
calculation by means of a set threshold value. The IoU is defined as follows:

IoU =
Area o f Overlap
Area o f Union

(1)

(2) False Positive (FP): The prediction box contains the target but a truth box is absent or
the IoU with the truth box is less than the threshold.

(3) False Negative (FN): A missed detection situation where no prediction is made for the
real target although the target is real.

(4) Precision: The proportion of targets correctly classified among all detected targets
with IoUs meeting the threshold.

(5) Recall: The proportion of detected targets with correct classification, and the IoU is
greater than the threshold among all truth targets.

The accuracy and recall rates are calculated as follows:

Precision = TP / (TP + FP)
Recall = TP / (TP + FN)

(2)

4.2. Dataset Introduction

Autonomous driving datasets have been typically designed around visual images and
LIDAR raw data. The lack of millimeter-wave radar data in public datasets and the low
availability of self-built datasets have hindered the development of convergence, to some
extent. This problem was gradually alleviated when the nuScenes dataset [43] was released
in 2019. The nuScenes dataset is a large-scale public dataset for autonomous driving
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developed by the Motional team. The dataset was collected in Boston and Singapore with
1000 driving scenes of about 20 s each.

Sensor data acquisition is also performed in this work through the HYPERVIEW smart
driving car platform for testing and validation of the algorithm. Figure 4 shows the physical
diagram of the whole vehicle acquisition platform containing millimeter-wave radar, vision
camera, and LIDAR.
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ProtoBuf and SQLite data compression is used for the self-built data acquisition
platform for millimeter-wave radar and visual image acquisition during the road test.
Specific parameters of the millimeter-wave radar are listed in Table 1.

Table 1. Continental ARS410 mm-wave radar operating parameters.

Range Sampling Frequency Working Frequency Speed Accuracy

<170 m 20 Hz 76–77 GHz ±0.1 km/h

The data acquisition and playback HMI tool interface are shown in Figure 4b. This tool
is used to acquire millimeter-wave radar-structured data and visual images for real-time
display while storing self-vehicle motion information and sensor timestamps.

4.3. Comparison of the Detection Effect of Converged Network and Reference Network

Images in the nuScenes dataset and the generated radar image width and length are
adjusted to 360 × 640 as the input of the network. The subjective detection results in the
nuScenes and self-constructed datasets are presented in this section.

Obstacles detected by the millimeter-wave radar in the technical application of in-
vehicle millimeter-wave radar are distributed in the top-view plane within the millimeter-
wave radar field of view (FOV). Hence, it does not contain the physical coordinates of the
target in the vertical direction and it can be projected into the 2D plane for visualization and
data representation. The classical coordinate transformation method in the small-aperture
effectiveness model is chosen for the projection method. It can be represented in the image
and pixel planes in the form of point cloud images for mapping.

Figure 5 shows the comparison of the target detection effect of the fusion network
with the reference network performed on the test set of the nuScenes dataset. Figure 6
presents the comparison of the target detection effect of the fusion network with the
reference network performed on the homemade dataset. The reference network used
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in Figures 5 and 6 is the RetinaNet target detection network based on the VGG-16+FPN
backbone detection network. Each column in Figure 5 corresponds to a scene. The first
row shows the projection of the millimeter-wave radar point cloud used for prediction on
the visual image. The second row indicates the feature output of the first extended VGG
detection block of the extended target detection network and the feature output of the first
VGG detection block of the reference network. The third row presents the feature difference
between the first detection block of the extended network and the reference network. The
fourth row represents the feature output of the extended target detection network P3_E and
the reference network P3. The fifth row depicts the feature difference between the extended
network and the reference network FPN-P3 (P3_E). The sixth row shows the feature output
of the extended target detection network P5_E and the reference network P5.

Machines 2022, 10, x FOR PEER REVIEW 8 of 17 
 

 

presents the comparison of the target detection effect of the fusion network with the ref-
erence network performed on the homemade dataset. The reference network used in Fig-
ures 5 and 6 is the RetinaNet target detection network based on the VGG-16+FPN back-
bone detection network. Each column in Figure 5 corresponds to a scene. The first row 
shows the projection of the millimeter-wave radar point cloud used for prediction on the 
visual image. The second row indicates the feature output of the first extended VGG de-
tection block of the extended target detection network and the feature output of the first 
VGG detection block of the reference network. The third row presents the feature differ-
ence between the first detection block of the extended network and the reference network. 
The fourth row represents the feature output of the extended target detection network 
P3_E and the reference network P3. The fifth row depicts the feature difference between 
the extended network and the reference network FPN-P3 (P3_E). The sixth row shows the 
feature output of the extended target detection network P5_E and the reference network 
P5. 

  

      

   

      

  

      

   

   

Figure 5. Cont.



Machines 2022, 10, 675 9 of 17Machines 2022, 10, x FOR PEER REVIEW 9 of 17 
 

 

   
Figure 5. Comparison of Detection Results on the NuScenes Dataset. 

   

      

   

   

      

   

   

  
Figure 6. Comparison of Detection Effects on Data Collection Platforms. 

Figure 5. Comparison of Detection Results on the NuScenes Dataset.

Machines 2022, 10, x FOR PEER REVIEW 9 of 17 
 

 

   
Figure 5. Comparison of Detection Results on the NuScenes Dataset. 

   

      

   

   

      

   

   

  
Figure 6. Comparison of Detection Effects on Data Collection Platforms. Figure 6. Comparison of Detection Effects on Data Collection Platforms.



Machines 2022, 10, 675 10 of 17

The seventh row presents the feature difference between the extended network and
the reference network FPN-P5 (P5_E). The eighth row exhibits the detection effect of the
proposed extended fusion target detection network. Finally, the ninth row demonstrates
the detection effect of the reference network.

According to the comparative analysis in Figure 5, the fusion target detection network
shows an enhanced recognition and classification effect on difficult-to-identify feature
scenarios, such as small targets at long distances (e.g., pedestrians in shadows), multiple
targets with similar overlapping textures (e.g., multiple white vans shown in the second
column), and rain-obscured pedestrian targets (with features superimposed at different dis-
tances in the radial direction according to the radar extended image). The small pedestrian
target detected by the first column of the fusion network is used as an example. The location
of the pedestrian presents evident radar output features at the position corresponding to
the feature difference images of P3_E and P3. Meanwhile, the large target van detected
by the second column of the fusion network is used as an example. Multiple white vans
overlap and demonstrate inconspicuous texture contours, which cannot be recognized
and classified in the image target detection through the reference network but can be
applied to obtain satisfactory detection results in the fusion network on the basis of radar
image channels.

The fusion target detection network outperforms the reference network in the recog-
nition of small long-range targets in night scenes and overcast environments (Figure 6)
and the detection of small long-range targets in the homemade dataset. The feature en-
hancement of the P3 (P3_E) feature at the location of the detected small target in Figure 6
demonstrated that the addition of the millimeter-wave radar image channel information
can help the detection process by strengthening long-range small target and independent
feature recognition of overlapping vehicles shown in the second column.

4.4. Comparison of the Effect of Continuous Detection in a Variety of Scenes
4.4.1. Daytime Complex Scene Target Detection

Target detection effects of three consecutive frames of the daytime scene are compared
in Figure 7. The first row shows the effect of the proposed extended fusion target detection.
The second row presents the effect of the target detection of the reference network. The
figure demonstrates that the extended fusion target detection network in this work enhances
the detection continuity for small distant targets. A satisfactory detection effect can be
obtained for small fuzzy targets (vehicle) on the left side on the basis of radar point cloud
feature enhancement, and detection and classification can be achieved for large trucks in
close view with incomplete image information.
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As shown in Figures 8 and 9, a vehicle gradually approaches the self-vehicle to
the meeting process in the night scene. The first row shows the target detection effect
of the extended fusion network and the second row demonstrates the target detection
effect of the reference network in each set of images. Target detection is achieved three
detections earlier in the process of target approach through the extended fusion perception
network compared with that using the reference network (Figure 8). The reference network
produces classification errors during target detection and loses the ability to detect the
target because it gradually drives away from the field of view during the meeting process
shown in Figure 9.
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4.4.2. Nighttime Complex Scene Target Detection

The image in the first row of Figure 9 shows that the fused sensory detection network
can obtain the detection of distant pedestrian targets. It can improve the detection capability
of small targets in harsh environments and reduce the influence of possible accident hazard
targets on the motion state of self-vehicles.

4.5. Converged and Reference Network Detection Capability Analysis

The proposed extended fusion and reference networks for different classes of targets
were tested and statistically analyzed by randomly selecting 25 scenes from a total number
of 150 scenes in the v1.0-test subset of the nuScenes dataset. The analysis results are shown
in Figure 10.
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The total number of detection acquisition targets was determined for each category
(Figure 10).

The extended fusion network presents an overall improvement of 25.36% in the
number of detected targets compared with the reference network, and the improvement in
the detection capability of large sample targets, such as cars and pedestrians, is around 20%
(Table 2). The comparative analysis of target detection effects described in the previous
section showed that the fusion target detection algorithm based on the proposed extended
network significantly improves the detection effect compared with that of a single type
of sensor.

Table 2. Structure of the millimeter-wave radar data from the nuScenes dataset.

Category Pedestrians Bicycles Bus Cars Sedans Motorcycles Trailers Trucks Total

Number of converged
network detections 1089 32 72 3777 9 88 302 5369

Number of reference
network detections 911 23 55 3049 2 22 218 4283

Effectiveness
enhancement

Percentage (%)
19.53 23.07 30.91 23.88 – 300 38.53 25.36

4.6. Objective Analysis of Values

We verified the practical effectiveness and detection accuracy of the proposed extended
fusion target detection algorithm by extracting 20% of the algorithm from the v1.0-trainval
subset of the nuScenes dataset and using them as the validation set.

Figure 11 illustrates the statistical analysis of the average accuracy of the proposed
extended fusion target detection (solid part) and reference (dashed part) networks in
different categories. The overall average accuracy (mAP) of the two algorithms is calculated,
compared, and then plotted with curves.
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Figure 11. Comparison of Extended and Reference Networks Tested by Category in the
nuScenes Dataset. Solid lines represent the proposed technique, and dotted lines represent the
reference network.

The comparison of the average accuracy of different algorithms by category on the
nuScenes dataset is presented in Table 3. RRPN is a millimeter-wave radar and vision
fusion target detection network. Fast R-CNN and baseline are pure vision target detection
networks. The comparison is illustrated with these algorithms because the nuScenes dataset
contains only a few 2D target detection algorithms. The authors use real-time millimeter-
wave radar data in the RRPN algorithm to generate region suggestion frames instead of the
selective search algorithm in the fast R-CNN algorithm to generate detection frames. This
approach improves the accuracy and recall and remarkably reduces the time consumption
of the selective search algorithm.

Table 3. Comparison of the different algorithms by category AP on the nuScenes dataset.

mAP Pedestrians Bicycles Bus Cars Sedans Motorcycles Trailers Trucks

RRPN 0.430 0.220 0.306 0.664 0.442 0.434 - 0.516
Fast R-CNN 0.418 0.155 0.241 0.722 0.472 0.354 - 0.545

Baseline 0.436 0.372 0.169 0.517 0.514 0.285 0.096 0.272
Paper 0.465 0.380 0.202 0.566 0.547 0.305 0.168 0.305

The analysis of mAP metrics demonstrated that the proposed extended network-based
fusion target detection algorithm in this work improves mAP by 3.5%, 4.7%, and 2.9%
compared with the RRPN, Fast R-CNN image target detection network, and reference
network in this work, respectively (Table 3). According to the analysis of AP metrics by
category, the proposed detection algorithm achieves the best performance in the nuScenes
dataset among several common targets on the road, such as pedestrian, car, and trailer
targets. The proposed feature-level fusion target detection network based on extended
fusion that generates detection frames on the basis of regions of interest significantly
outperforms the RRPN algorithm from the perspective of fusion algorithms. This work
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uses the following methods according to the definition of AP at different scales in the
COCO dataset to verify the improvement effect of the proposed fusion target detection
method on the detection ability of targets at various scales.

(1) Aps: Average accuracy of small-scale targets with prediction frame area less than 322.
(2) APm: Average accuracy of medium-scale targets with prediction frame area within

[322, 962].
(3) API: Average accuracy of large-scale targets with prediction frame area greater

than 962.

This work was tested against the v1.0-trainval training validation set of the nuScenes
dataset. Figure 12 and Table 4 show that the proposed algorithm outperforms the target
detection algorithm of the vision-based reference network on all scales. The average
accuracy for small targets is improved by 18.73%, which is significantly higher than the
detection capability for medium and large targets.
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Table 4. Comparison of the extended converged network in this paper with the reference network by
scale AP.

mAP APs APm APl

Baseline 0.436 0.299 0.483 0.345
Paper 0.465 0.355 0.502 0.363

Performance boost 6.65% 18.73% 3.93% 5.22%

5. Discussion

The driving environment in which smart cars are located is different from the working
environment in which other artificial intelligence machines are located, with high speed and
complexity. Cameras used to acquire image data are susceptible to light, and LIDAR, which
acquires point cloud data, is susceptible to harsh environments. Millimeter-wave radar is
not good at detecting stationary targets, and the defects of the sensors themselves make it
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impossible for smart cars to perform sensing tasks with only a single sensor. Because LIDAR
is expensive, this paper focuses on how to achieve surrounding environment detection
by fusing millimeter-wave radar data with camera data. A reliable sensing system is a
prerequisite for a smart car to operate properly under complex traffic conditions, and the
researchers hope that the multi-sensing technology can not only improve the detection
accuracy, but can also be robust. For example, the sensing system can still operate properly
in a low-light environment where the detected objects are too small. Thus, this paper
proposes a target detection algorithm that fuses millimeter-wave radar with camera data.
First, based on the analysis of feasible technical routes for millimeter-wave radar and vision
fusion, the fusion route in this paper is determined as feature-level fusion, and the training
and test evaluation of the algorithm are carried out based on the nuScenes dataset. Then,
millimeter-wave radar images are introduced as auxiliary information for visual image
target detection. In this paper, the scalability of the RetinaNet one-stage target detection
algorithm based on the VGG-16+FPN backbone detection network is investigated. The
extended VGG-16 network and extended feature pyramid network (E-FPN) applicable
to millimeter-wave radar and vision fusion are proposed through the study of VGG-16
and feature pyramid networks. The deep extended fusion target detection network for
millimeter-wave radar and vision fusion is proposed by performing tandem fusion of
millimeter-wave radar features and visual features in each layer of the backbone detection
network. By training and testing the proposed network on the nuScenes dataset, compared
with the (VGG-16+FPN) RetinaNet reference network (Baseline) for pure visual image
target detection, the mAP of the proposed network in this paper is improved by 2.9% and
the small target detection accuracy is improved by 18.73%, which verifies the extended
fusion target detection network proposed in this paper. The detection capability and
algorithmic feasibility of the extended fusion target detection network proposed in this
paper for visually insensitive targets are also verified. The research in this paper has
a certain reference value for the research of multi-sensor fusion perception technology
for smart driving vehicles, especially in the field of fusion target detection, which is
of positive significance for the research of breaking the bottleneck of traditional single-
sensor detection capability and improving the comprehensive perception performance of
complementary sensors.

6. Conclusions

The current single-sensor-based perception and logic-based heterogeneous sensor
fusion can no longer meet the in-depth needs of high-level autonomous driving for envi-
ronmental sample information. The market-oriented application of smart driving cannot
hope for a substantial improvement of single-sensor detection capability in the short term
with the development of sensor technology research and target detection technology en-
tering a bottleneck period. Based on smart driving cars, with millimeter-wave radar and
vision detection as research objects, this work proposes an extended fusion target detection
network by conducting research on multi-sensor fusion target detection algorithms to cope
with the higher demand for intelligent sensing capabilities in urban environments and
high-speed road environments where high-level smart driving is taking place. In this
work, the RetinaNet algorithm based on the VGG-16+FPN backbone detection network is
extended to address the shortcomings of the RetinaNet one-stage target detection algorithm
in terms of detection accuracy. The extended VGG-16 network and E-FPN suitable for
multi-channel input of millimeter-wave radar images and visual images are proposed. The
millimeter-wave radar feature extraction network and visual target detection network are
introduced for deep fusion, and the network is trained in the nuScenes dataset. Based
on the validation of the proposed network and the comparison with the reference net-
work, the proposed network improves the target detection rate by about 25%, the mAP by
2.9%, and the average accuracy of small targets by 18.73%. The experiments in this work
validate the feasibility of the proposed extended fusion target detection network based
on millimeter-wave radar filtering algorithms in enhancing the capability and technical
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approach in traffic environment target detection applications, especially for small targets,
which is greatly improved.
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