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Abstract: A method of machining the internal double-arc spiral bevel gear with a finger milling
cutter was presented. The mathematical model of the internal spiral bevel gear tooth profile was
established considering the principle of machining a spiral bevel gear by the generating method,
and a three-dimensional (3D) tooth profile graph was developed. Subsequently, by applying the
gear meshing theory, the 3D model of the tooth alignment curve for the finger milling cutter was
established. Based on the tooth surface equation of crown gear, the cutter intercept equation was
derived. The cutter was divided into four finger milling cutters considering the design difficulty
of the cutter, which is used to manufacture different arc segments of the double-arc tooth profile,
respectively. The special machining tool model of the internal spiral bevel gear was further developed
by using SolidCam, and the simulation experiment was carried out. The simulated gear model
was compared with the theoretical gear model and the error of the simulation experiment was
estimated. Actual machining on the machine tool and the internal spiral bevel gear were inspected.
The maximum error is 0.035 mm, and the minimum error is 0.005 mm. The machining accuracy
meets the requirements. The feasibility of machining the internal double-arc spiral bevel gear with a
finger milling cutter was verified.

Keywords: double-arc tooth profile; crown gear; internal double-arc spiral bevel gear; finger milling
cutter; tooth alignment curve; error

1. Introduction

Nutation drive is a key assembly for different applications in aerospace, helicopter
power transmissions, robot joint transmission, etc., [1–4]. However, the lack of an efficient
manufacturing method for the internal spiral bevel gear tooth profile poses certain chal-
lenges. The nutation motion is a new transmission mode based on the motion principle
of celestial planets and gyroscopes. This transmission mode supports a large transmis-
sion ratio, stable transmission, high transmission efficiency, and encapsulates in a simple
structure. According to the principle of nutation motion, Yao et al. proposed a nutation
reducer based on the nutation principle [5]. By improving the transmission mechanism
of the nutation reducer, they developed accurate modeling of complex tooth surfaces and
established a nutation transmission kinematics and dynamics model. Presently, the new
nutation transmission equipment such as the single-stage nutation reducer, a double arc
spiral bevel gear nutation reducer [6] and a contactless magnetic nutation reducer [7] have
been developed.

The internal and external spiral bevel gears are the main structures of the nutation
reducer. Most of the current literature focuses on the structural design, gear meshing
analysis, strength analysis and transmission dynamics of nutation mechanisms [8]. How-
ever, the lack of an efficient manufacturing method for the internal spiral bevel gear tooth
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profile poses certain challenges. To solve this problem, the machining of the spiral bevel
gear generating method is taken as a reference guide for the double-arc internal spiral
bevel gear.

Machining methods of the spiral bevel gear mostly include face hobbing [9] and face
milling [10]. Wang proposed an advanced comprehensive approach to accurately model
the face-milled-generated spiral bevel gears for subsequent manufacturing [11]. Zhou
proposed a new method of designing the tooth surfaces of spiral bevel gears with the aim
to develop a new technique for the five-axis flank milling of spiral bevel gears [12]. Zheng
et al. proposed a face milling method for manufacturing noncircular spiral bevel gears
using computer numerically controlled (CNC) hypoid generators [13,14]. Li proposed a
novel approach aimed at quality improvement of surface texture in the face milling of
workpieces with discontinuous surfaces [15]. Meanwhile, a novel dynamic model for
the face milling process is built to overcome the chatter generated in face milling [16].
Shih proposed a flexible cutting method that eliminated the need for too many cutters for
producing the gears with a similar size and module by employing cutters with standard
profile angle blades on a general five-axis machine [17]. Peng presented a new category of
5-axis flank CNC machining. Instead of using a predefined set of milling tools, they used
the milling tool shape as a free parameter [18]. However, this method results in excessive
use of cutting tools, so only limited enterprises have adopted this method [19]. Huynh
presented systematic modeling of multibody dynamics of a five-axis machine tool which
aimed to develop computationally efficient mathematical models [20]. The efficient two
knife method has also increased the manufacturing cost of gears [21]. Ignacio proposed a
methodology for producing the spiral bevel gears through reverse engineering by point
clouds [22,23]. Álvarez et al. designed a bevel gear finishing tool for the finishing of spiral
bevel gears [24]. Rong et al. explored the use of a computer-aided design module for
NC machining of spiral bevel gear [25]. Gonzalez proposed a derivation scheme of the
machine toolset to avoid machine tool motion errors caused by no-load conditions [26].
Celikag et al. investigated self-excited vibrations in milling and concluded that the mode
coupling chatter is not possible in milling operations [27]. Some computational studies
have also extended research on spiral bevel gears machining. For instance, Tajima and
Sencer presented a computationally efficient, real-time global interpolation method for
5-axis machining tool paths involving densely discretized linear moves [28]. Franco et al.
proposed an alternative spectra computational technique and obtained an accurate stability
boundary through sweep milling force excitation [29]. Tehranizadeh et al. investigated the
mechanics and dynamics of milling by using crest-cut end mills and concluded that the
effectiveness of the crest-cut tools improves the stability of milling processes [30].

However, no specified manufacturing method can be used directly for the manufac-
turing of the internal spiral bevel gear. The main reason for this is that the teeth of the
internal spiral bevel gear are distributed on the internal cone surface. Although it has the
commonality of tooth milling, it has its own unique structure of individuality [6]. As shown
in Figure 1, the bending and twisting of the bevel gear tooth surface geometry may lead to
the tool cutting surface becoming embedded in the theoretical tooth surface. The material
within the theoretical tooth surface will be removed; that is, the tool cutting surface on the
theoretical tooth surface may produce an overcutting phenomenon. Meanwhile, the actual
process of machining the parts is easy and involves cutting the completed surface again,
resulting in secondary cutting, which affects the smooth processing of tooth cutting and
reduces the working performance of the gear.

To solve the machining problem of the internal spiral bevel gear, special finger milling
cutters were designed in this paper considering the characteristics of double-arc tooth
profile. The innovativeness of the developed methodology is that the section shape of the
finger milling cutter is designed as a double-arc curve in this paper. At the same time,
considering the complexity of its design and manufacture, the double-arc curve is divided
into four segments, and four finger milling cutters are designed to machine different arc
segments. Compared with the general form milling cutter, the machining efficiency and
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accuracy have been greatly improved. The efficient machining method of the internal spiral
bevel gear will further promote the application of a nutation reducer in a joint reducer.
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Figure 1. Double-arc spiral bevel gear nutation reducer.

2. Mathematical Modeling of the Tooth Profile with a Double-Arc Internal Spiral
Bevel Gear

To solve the manufacturing problem of the internal spiral bevel gear, it is essen-
tial to establish a mathematical model of the tooth profile for the finger milling cutter
design and carry out trajectory planning, manufacturing interference inspection and
manufacturing simulation.

2.1. Tooth Profile Design

The normal tooth profile of the internal spiral bevel gear is adopted from the national
standard double circular arc tooth profile (GB/T12759-1991) [5]. The basic double circular
arc tooth profile is shown in Figure 2. The standard tooth profile is suitable for a double
circular arc gear transmission with normal modulus mn = 1.5~50 mm. The tooth profile
is composed of two convex arcs, two concave arcs, two transition arcs and two tooth root
arcs. In the meshing process, the convex and concave arcs contact each other. Because
of the two pairs of convex and concave arcs, the transmission is called a double meshing
line transmission.
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Figure 2. Double circular arc basic tooth profile (GB/T12759-1991).

The coordinate system is established on the face balance line of the double circular arc
teeth. The coordinates of any point on each circular arc can be determined by using the
circular arc radius (Ei, Fi) and the starting and ending positions angle of the circular arc
[αi
′, ai
′′]. This is expressed by:
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rni = [xni, yni, zni]
T =

ri cos αi + Ei
ri sin αi + Fi

0

 (1)

The tooth profile parameters of the double circular arc tooth profile can be calcu-
lated according to the GB/T12759-1991 standard. After substituting these parameters in
Equation (1), eight segment double-arc standard tooth profiles with different modulus can
be obtained. Table 1 shows the calculation parameters of each arc in the standard double
arc basic tooth profile.

Table 1. Calculation parameters of standard double circular arc tooth profile.

Convex Arc rn1 Transition Arc rn2 Concave Arc rn3 Root Arc rn4

E1 = −la − 0.5πmn E2 = −(pa + rt) cos δ11 − la − 0.5πmn E3 = l f E4 = 0
F1 = xa + h f F2 = (pa + rt) sin δ11 + h f F3 = x f F4 = rg

r1 = ρa r2 = rt r3 = ρ f r4 = rg

α1
′ = δ11 α2

′ = π + δ11 α3
′ = π + δ22 α4

′ = −π
2 − arctan l f

h f−rg+x f

α1
′′ = arcsin ha−xa

ρa
α2
′′ = π + arcsin xa+(ρa+rt) sin δ11+ρ f sin δ22−x f

rt
α3
′′ = π + arccos l f

p f−rg
α4
′′ = −π

2

Where, la is the offset of convex tooth profile center, l f is the offset of concave tooth
profile center, xa is the displacement of convex tooth profile center, x f is the displacement
of concave tooth profile center, h f is dedendum and ha is addendum. δ11 is the convex
tooth process angle and δ22 is concave tooth process angle. ρa is the convex tooth profile
radius and ρ f is the concave tooth profile radius. rt is the transition arc radius and rg is the
radius of the tooth root arc.

2.2. Tooth Alignment Curve Design

In Figure 3, a coordinate system is established at the center of the crown gear. The
Tooth alignment curve ρ located at the center of the left and right tooth profile is called the
central tooth direction line.
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The tooth alignment curve equation is given by:{
xc = ρ cos θ = eθ cot β cos θ

yc = ρ sin θ = eθ cot β sin θ
(2)
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In Equation (2), θ is the rotation angle of the tooth alignment curve meets the require-
ments, which θs is the small end rotation angle and θb is the large end rotation angle.

rcs =
mnzc

2 cosβs
, rcb = R (3)

where βs is the helix angle at the small end of the tooth alignment curve, so βs = β, R is the
internal cone distance.

θb = ln rcb · tan β

θs = ln rcs · tan β
(4)

To obtain the boundary curves of the left and right tooth profiles of the double circular
arc tooth profile ρl and ρr, the tooth alignment curve is rotated to the left and right by an
angle ∆φj around the coordinate system.

∆ϕj = arctan
ρj − lj

rcs cos β
(5)

where ρj is the arc radius of the arc tooth profile and lj is the offset of the arc center.
P is the point on the boundary of the tooth profile with double arc. The boundary

curve equation of the double circular arc tooth profile is established as:{
xp = eθ cot β cos(θ ± ∆ϕj)

yp = eθ cot β sin(θ ± ∆ϕj)
(6)

To process the left and right boundaries of the tooth profile, the machining path of the
cutter tip is taken as the normal isometric curve corresponding to the boundary curve. The
unit normal vector is estimated with the help of the following relation:

np =

∣∣∣∣∣ ic jc
dxp
dθ

dyp
dθ

∣∣∣∣∣√
(

dxp
dθ )

2
+ (

dyp
dθ )

2
= sin(θ ± ∆ϕj + β)ic − cos(θ ± ∆ϕj + β)jc (7)

With the help of the above relations, the equidistant curve of the boundary curve ρl
′

and ρr
′ is transformed into:{

x′ = eθ cot β cos ∆θ ± ∆ϕj∆± (ρj − lj) sin(θ ± ∆ϕj + β)

y′ = eθ cot β sin ∆θ ± ∆ϕj∆∓ (ρj − lj) cos(θ ± ∆ϕj + β)
(8)

For Equations (6) to (8), the left side of the central tooth alignment curve is positive,
and the right side is negative.

2.3. Tooth Alignment Curve Equation of the Internal Spiral Bevel Gear

The tooth alignment curve of the internal spiral bevel gear is an important parameter
to describe the tooth shape of the internal spiral bevel gear. It also tracks the motion of the
finger milling cutter tip during the internal spiral bevel gear machining by the forming
method. As mentioned before, it is our best understanding that until now, no research has
investigated the tooth alignment curve equation of the internal spiral bevel gear. Based
on the machining principle, the expression of the tooth alignment curve of the internal
spiral bevel gear is derived from the tooth alignment curve equation on the crown gear
coordinate system.

As shown in Figure 4, the position of the actual tooth direction line also shows the
feed direction of each cutting depth tool while machining the left and right tooth profiles.
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[xc, yc, zc, 1]T = R2
c [xz, yz, 0, 1]T =


eθ cot β[− cos ϕ2 cos(θ − ϕc) + sin ϕ2 sin δ2 sin(θ − ϕc)]

eθ cot β[sin ϕ2 cos(θ − ϕc) + cos ϕ2 sin δ2 sin(θ − ϕc)]
−eθ cot β cos δ2 sin(θ − ϕc)

1

 (9)

where, ϕc is the angle of the crown gear and ϕ2 is the angle of the internal double-arc spiral
bevel gear. δ2 is the indexing angle of the internal double circular arc spiral bevel gear
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2.4. Mathematical Modeling Method

In the nutation reducer, the meshing motion of the internal and external double circular
arc spiral bevel gears can be replaced by an imaginary crown gear. The pitch cone angle
of the crown gear is 90◦ and the tooth depth along the pitch cone generatrix remains
unchanged. The generation of the internal and external double-arc spiral bevel gears can
be regarded as the envelope process of crown gear. The design and manufacturing of the
internal spiral bevel gears can be based on the crown gears.

The meshing coordinate system is established according to the correlation between
the crown gear and the internal meshing of the double-arc spiral bevel gear. Figure 5
shows the meshing coordinate system of the crown gear and the internal spiral bevel gear,
whereas S0(i0, j0, k0) is the fixed coordinate system of the crown gear and Sc(ic, jc, kc) is
the motion coordinate system of the crown gear. It must be noted that the initial positions
of the coordinate systems coincide. During the meshing process, the coordinate system
Sc(ic, jc, kc) rotates around the axis at a uniform angular speed. Here, the relative angle for
the fixed coordinate system of the internal spiral bevel gear is φc. Sm(im, jm, km) is the fixed
coordinate system of the internal spiral bevel gear and S2(i2, j2, k2) is the motion coordinate
system of the internal spiral bevel gears. During the meshing process, the coordinate
system S2(i2, j2, k2) rotates uniformly around the k2 axis, and the relative angle is φ2.

According to the coordinate system established by the above meshing relation, the
coordinate transformation matrix of the crown gear dynamic coordinate system Sc(ic, jc, kc)
and internal spiral bevel gear dynamic coordinate system S2(i2, j2, k2) is obtained as:

R2
c =


b11 b12 b13 0
b21 b22 b23 0
b31 b32 b33 0
0 0 0 1

 (10)
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where,
b11 = − cos φ2 cos φc − sin φ2 sin φc sin δ2

b12 = − cos φ2 sin φc + sin φ2 cos φc sin δ2

b13 = − sin φ2 cos φc

b21 = sin φ2 cos φc − cos φ2 sin φc sin δ2

b22 = sin φ2 sin φc + cos φ2 cos φc sin δ2

b23 = − cos φ2 cos φc

b31 = sin φc cos δ2

b32 = − cos φc cos δ2

b33 = − sin δ2
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As shown in Figure 6, the coordinate system Sn(in, jn, kn) is established on the actual
tooth alignment curve. The double-arc tooth profile scanned along the actual tooth align-
ment curve to form the tooth profile of the crown gear. The E and R change, and their
change law is related to the tooth alignment curve equation. The βd is the included angle
between the tangent passing through any point and the connecting line between the point
and the origin, and the central tooth alignment curve meets when βd = β. The equidistant
curves of the left and right boundary tooth profiles meet at βd = β± ∆ϕj.

The coordinate transformation matrix Rc
n for the coordinate system Sn to Sc is ex-

pressed as:

Rc
n =


sin(θ + βd) 0 − cos(θ + βd) E
− cos(θ + βd) 0 − sin(θ + βd) R

0 1 0 0
0 0 0 1

 (11)
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where β′ = βd, E = x′, R = y′, the tooth profile equation of the crown gear is:

[xm, ym, zm, 1]T = R0
n[rni, 1]T

=


sin(θ + βd)(ri cos αi + Ei ± (ρj − lj)) + eθ cot β cos(θ ± ∆ϕj)

− cos(θ + βd)(ri cos αi + Ei ± (ρj − lj)) + eθ cot β sin(θ ± ∆ϕj)
ri sin αi + Fi

1

 (12)

where ri is the radius of each arc of the double-arc tooth profile, αi corresponds to the angle
of each arc, and αi ∈ (αi

′, αi
′′ ), (Ei, Fi) is the center coordinate of the arc, i = 1, 2, ..., 8.
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Equation (13) is the tooth surface equation of the internal spiral bevel gear through
the coordinate transformation of Equation (10):

[xn, yn, zn, 1]T = R2
c [xm, ym, zm, 1]T

⇒



xn = − cos ϕ2 sin(θ + βd − ϕc)[ri cos αi + Ei ± (ρj − lj)]

− sin ϕ2 sin δ2 cos(θ + βd − ϕc)[ri cos αi + Ei ± (ρj − lj)]

+eθ cot β[sin ϕ2 sin δ2 sin(θ ± ∆ϕj − ϕc)− cos ϕ2 cos(θ ± ∆ϕj − ϕc)]

− sin ϕ2 cos δ2(ri sin αi + Fi)

yn = sin ϕ2 sin(θ + βd − ϕc)[ri cos αi + Ei ± (ρj − lj)]

− cos ϕ2 sin δ2 cos(θ + βd − ϕc)[ri cos αi + Ei ± (ρj − lj)]

+eθ cot β[− cos ϕ2 sin δ2 sin(θ ± ∆ϕj − ϕc) + sin ϕ2 cos(θ ± ∆ϕj − ϕc)]

− cos ϕ2 cos δ2(ri sin αi + Fi)

zn = − cos δ2 cos(θ + βd − ϕc)[ri cos αi + Ei ± (ρj − lj)]

−eθ cot β cos δ2 sin(θ ± ∆ϕj − ϕc)− cos δ2(ri sin αi + Fi)

1

(13)

The tooth profiles drawn by the derived tooth profile Equation (12) and Equation (13)
are shown in Figure 7.
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The tooth profiles drawn by the derived tooth profile Equation (12) and Equation (13) 
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Figure 7. Double-arc tooth profiles: (a) The tooth profile of a crown gear. (b) The tooth profile of 
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arc tooth profile, special finger milling cutters for machining internal double-arc spiral 
bevel gear are designed. 

3.1. Solving the Tool Rotation Surface with the Known Tooth Profile Equation 

Figure 7. Double-arc tooth profiles: (a) The tooth profile of a crown gear. (b) The tooth profile of
internal spiral bevel gear.

3. The Design of the Finger Milling Cutter

The tooth profile equation derived in the previous section considers 8 arcs in the tooth
profile of internal double-arc spiral bevel gear. Due to the complexity of the double-arc
tooth profile, special finger milling cutters for machining internal double-arc spiral bevel
gear are designed.

3.1. Solving the Tool Rotation Surface with the Known Tooth Profile Equation

As shown in Figure 8, the machining coordinate system St(it, jt, kt) is established with
the tangent vector, main normal vector and auxiliary normal vector of the path curve as the
coordinate axis. A contact curve exists with the movement of the finger milling cutter, the
shape of which is also the axial section of the finger milling cutter.
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where, 

Figure 8. Coordinate system for tool section solution.

During the processing of the finger milling cutter, the contact curve shall meet the
following requirements:

(K×R)·n = 0 (14)

where, K is the unit vector of the main normal vector; R is the radial vector that is obtained
from the origin of the tool coordinate system to the point M on the tooth profile surface,
and n is the normal vector of M on the tooth profile surface. Geometrically, this expression
means that the radial vector R, normal vector n, and the unit vector K are collinear.
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We simplify the solution method to the crown gear. The above equation of crown gear
tooth surface is expressed as:

t = t(αi, θ) = x(αi, θ)i + y(αi, θ)j + z(αi, θ)k (15)

According to the above established coordinate system, the expression of K and R in
the internal spiral bevel gear coordinate system is obtained as:

K = sin(θ + βd)i− cos(θ + βd)j + rk

R = (x− E)i− (y− R)j + (z− F)k
(16)

Then:

(K×R) =

∣∣∣∣ sin(θ + βd) − cos(θ + βd) r
x− E y− R z− F

∣∣∣∣
= [−(z− F) cos(θ + βd)− (y− R)r]i

+[(x− E)r− (z− F) sin(θ + βd)]j

+[(y− R) sin(θ + βd) + (x− E) cos(θ + βd)]k

(17)

Therefore, the conditional formula of the contact line becomes:
Then, the normal vector n at any point M of the surface is:

n =
∂t
∂αi
× ∂t

∂θ
= (nx, ny, nz) (18)

where,

nx =

∣∣∣∣∣
∂y
∂αi

∂z
∂αi

∂y
∂θ

∂z
∂θ

∣∣∣∣∣ = ri sin αi[ri sin αi + Ei ± (ρj − lj) +
eθ cot β

sin β ] sin(θ + βd)

ny =

∣∣∣∣∣ ∂z
∂αi

∂x
∂αi

∂z
∂θ

∂x
∂θ

∣∣∣∣∣ = ri sin αi[ri sin αi + Ei ± (ρj − lj) +
eθ cot β

sin β ] cos(θ + βd)

nz =

∣∣∣∣∣ ∂x
∂αi

∂y
∂αi

∂x
∂θ

∂y
∂θ

∣∣∣∣∣ = ri cos αi[ri sin αi + Ei ± (ρj − lj) +
eθ cot β

sin β ]

The unit vector is given by:

(nx, ny, nz) = (sin αi sin(θ + βd), sin αi cos(θ + βd), cos αi) (19)

By substituting the obtained contact line condition formula into the tooth surface
equation of the crown gear, the rotating surface can be obtained as:

x = sin(θ + βd)(ri cos αi + Ei ± (ρj − lj)) + eθ cot β cos(θ ± ∆ϕj)

y = − cos(θ + βd)(ri cos αi + Ei ± (ρj − lj)) + eθ cot β sin(θ ± ∆ϕj)

z = ri sin αi + Fi + r

(20)

The equation of the tool can be obtained by converting to the tooth coordinate system:{
x0 = ri cos αi + Ei

y0 = ri sin αi + Fi
(21)

The tool revolution surface equation obtained above is consistent with the standard
tooth profile equation. This shows that the double circular arc tooth profile can be taken as
the rotating surface of the selected cutter to design the milling cutter.
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3.2. The Designing of Finger Milling Cutter

In this paper, considering that the design of the finger milling cutter with double-arc
tooth profile is complex, it is resolved into four finger milling cutters. There are, respectively,
used to machine the convex tooth surface, concave tooth surface, transitional tooth surface
and tooth root surface, as shown in Figure 9.
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The tool used for the real machining process is shown in Figure 10. The material of
the tool is cemented carbide and the front angle is 5◦ and the rear angle is 15◦, open at the
double edge.
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The finger milling cutters were created by a company called Walter. The machining
method proposed in this paper can effectively solve the machining problem of the internal
double-arc spiral bevel gear. The change in modulus will lead to the change in double
arc size. At this time, the tool can no longer meet the milling conditions and needs to be
redesigned. This will result in an increase in machining costs. The commonly used modulus
needs to be considered in the actual machining process. In order to ensure the practical
application of this method in industrial practice, it is important to focus on machining the
internal double-spiral bevel gears with limited modules, so that it can bring economic and
social benefits.

4. Simulation and Verification of the Tooth Surface of the Internal Spiral Bevel Gear

The last section completed the design of the finger milling cutters. This section
simulates and verifies the actual condition of machining the internal spiral bevel gear with
a set of designed finger milling cutters. At the same time, the size of machining error
is estimated. The actual machining processing on the machine tool was also carried out.
Lastly, measuring the error of the finished gear and verifying the feasibility and superiority
of this method was carried out.

4.1. Determination of Machining Parameters

The internal spiral bevel gear in the prototype is machined in this paper, and its
parameters are shown in Table 2:

Table 2. Parameters of the spiral bevel gear.

Gear Parameters Numerical Value

Nutation dynamic angle 5◦

Spiral angle 25◦

Internal bevel gear knuckle taper angle 127.81◦

Spiral cone tooth taper 50 mm
Number of internal bevel gear teeth 28

Normal face modulus 2 mm

4.2. Simulation Machining Process of the Internal Spiral Bevel Gear

The finger milling cutter models designed in the previous section were imported into
the tool system of SolidCam. Preliminary machining was completed with a flat bottom
cutter. The purpose was to reserve machining allowance for subsequent machining, as
shown in Figure 11. Figure 11a shows the machining of the convex tooth surface and rough
machining of the transitional tooth surface; Figure 11b further shows the machining of the
transitional tooth surface. Figure 11c shows the machining of the concave tooth surface,
and also the final preliminary machining of the tooth root tooth surface; and Figure 11d
shows the finished machining of the tooth root surface on this basis.

4.3. Machining Interference Inspection

To simulate the cutting process of each finger milling cutter through programming,
and judge whether there is cutting interference at the same time, Figure 12 shows the
simulated machining process of each finger milling cutter.

Figure 13a shows the simulated machining process of one finger milling cutter with
a double-arc, in which exists machining interference. With the continuous feeding of the
finger milling cutter from the small end to the large end, the overlapping part of the finger
milling cutter and the tooth profile also gradually increases. This means that the machining
interference is gradually increases. This is related to the spiral angle of the tool path curve,
but the error is very small.
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the root tooth surface.

Machines 2022, 10, x FOR PEER REVIEW 14 of 20 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 12. Machining simulation: (a) Machining the convex tooth surface; (b) Machining the transi-
tion tooth surface; (c) Machining the concave tooth surface; (d) Machining the root tooth surface. 

Figure 13a shows the simulated machining process of one finger milling cutter with 
a double-arc, in which exists machining interference. With the continuous feeding of the 
finger milling cutter from the small end to the large end, the overlapping part of the finger 
milling cutter and the tooth profile also gradually increases. This means that the machin-
ing interference is gradually increases. This is related to the spiral angle of the tool path 
curve, but the error is very small. 

  
(a) (b) 

Figure 13. Machining process of finger milling cutter with double-arc: (a) Machining without error 
compensation; (b) Machining with error compensation. 

Appling the method of error compensation to calculate the machining error, Figure 
13b shows the position relationship between the milling cutter and the tooth surface after 
error compensation. Compared with Figure 13a, there is no overlapping part, which 
means no machining interference. The tooth surface in Figure 13b is also the actual ma-
chined tooth surface. Among them, the error compensation of the convex tooth surface is 
the smallest, which is 0.005 mm. The error of the concave tooth surface and the transitional 
tooth surface is 0.030 mm, and the error of the tooth root surface is 0.032 mm. 
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Figure 13. Machining process of finger milling cutter with double-arc: (a) Machining without error
compensation; (b) Machining with error compensation.

Appling the method of error compensation to calculate the machining error, Figure 13b
shows the position relationship between the milling cutter and the tooth surface after error
compensation. Compared with Figure 13a, there is no overlapping part, which means no
machining interference. The tooth surface in Figure 13b is also the actual machined tooth
surface. Among them, the error compensation of the convex tooth surface is the smallest,
which is 0.005 mm. The error of the concave tooth surface and the transitional tooth surface
is 0.030 mm, and the error of the tooth root surface is 0.032 mm.

4.4. Real Machining Process of the Internal Spiral Bevel Gear

The workpiece material is aluminum. The specific sizes are shown in Figure 14. The
cutting speed is 3000 rpm, and the feed rate is 40 mm/min.
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In order to verify the simulation results, the five-axis machine tool GMU-400 was used
for actual machining, as shown in Figure 15. At the same time, the tooth surface of the
machined internal spiral bevel gear was tested and compared with the simulation results.

The points to be tested were randomly selected on the same tooth side surface of the
internal spiral bevel gear. A total of 26 sample points were randomly collected for the
error testing.

The measuring device is a Hexagon Pioneer 3-CMM. Angle beam design, aluminum
alloy material technology and integral granite platform improve the accuracy of measure-
ment and stability of operation. Equipped with global PC-DMIS measurement software
and various triggering and scanning detection systems, the device is suitable for general
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measurement requirements and can complete the measurement and quality control tasks
of various workpieces.
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Figure 15. Actual machining process: (a) Fixing of the blank and tool setting; (b) Preliminary
machining with a flat bottom cutter; (c) Machining the convex tooth surface; (d) Machining the
transition tooth surface; (e) Machining the concave tooth surface; (f) Machining the root tooth surface.

The specific detection process is as follows. Moving the probe to the measured point,
the probe contacts the workpiece and sends a point acquisition signal. The control system
collects the coordinate value of the current three-axis coordinate of the machine tool.
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Then, the computer system processes the data, and the digital display device displays the
coordinates. The measurement accuracy is 0.001 mm, and the measurement uncertainty is
0.021 mm.

The specific distribution is shown in Figure 16. The measured coordinates are then
compared with the theoretical coordinates to obtain the errors in each direction and the
total error is calculated. The specific results are shown in Table 3.

As shown in Figure 17, the error of each measured point can be analyzed more clearly.
It can be seen that the maximum error is 0.035 mm, and the minimum error is 0.003 mm.
Average error is less than 0.02 mm. It is obvious that the error in the Z-direction has the
greatest impact on the accuracy of the internal bevel gear from the figure. The reason is
that the vertical high-speed machining center is selected. The overlapping of vibration
frequencies in machining will cause resonance. The vibration of the machine tool will cause
the tool to vibrate up and down. The pitch cone angle of the machined internal double-arc
spiral bevel gear is 127.81◦. The error of the internal double-arc spiral bevel gear in the
Z-direction will be larger than any other directions during machining. Bearing wear will
also lead to tool vibration, which will result in machining errors.
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Table 3. Date of the error of each direction.

Point X-Direction Error
(mm)

Y-Direction Error
(mm)

Z-Direction Error
(mm)

Total error
(mm)

1 0.000 0.014 −0.018 −0.023
2 0.003 0.013 −0.017 −0.021
3 0.004 0.009 −0.013 −0.016
4 0.005 0.007 −0.011 −0.013
5 0.007 0.006 −0.012 −0.015
6 0.007 0.003 −0.010 −0.012
7 0.006 0.001 −0.008 −0.010
8 0.004 0.000 −0.005 −0.007
9 0.003 −0.001 −0.004 −0.005

10 0.002 −0.001 −0.002 −0.003
11 0.002 −0.002 −0.004 −0.005
12 0.002 −0.007 −0.009 −0.012
13 0.000 −0.009 −0.012 −0.015
14 −0.002 −0.010 −0.014 −0.017
15 −0.005 −0.010 −0.015 −0.018
16 −0.007 −0.009 −0.015 −0.019
17 −0.010 −0.008 −0.017 −0.022
18 −0.013 −0.007 −0.019 −0.024
19 −0.018 −0.004 −0.023 −0.029
20 −0.017 0.000 −0.022 −0.028
21 −0.019 0.004 −0.026 −0.032
22 −0.020 0.009 −0.028 −0.035
23 −0.017 0.013 −0.028 −0.035
24 −0.013 0.015 −0.025 −0.032
25 −0.008 0.016 −0.023 −0.030
26 −0.004 0.015 −0.020 −0.025

The manufacturing error and uneven wear of guide rail are important factors of
machine tool error. The manufacturing and assembly errors of the transmission chain will
cause the position offset between the tool and the workpiece. The thermal error of the
machine tool has the greatest influence on machining accuracy. In addition to the heat of the
equipment, it is mainly concentrated in the cutting part, which will lead to the deformation
of tools and workpieces. The force generated in the cutting process will also deform the
tool and workpiece. The dimensional errors of tools and workpieces in the manufacturing
process will reduce the machining accuracy and increase the surface roughness. At the
same time, due to the small size of the tool, it is not easy to clamp. Sliding may occur under
the action of force.

The machining accuracy can be raised by improving the machining condition in the
Z-direction, such as ensuring the lubrication conditions of bearings to reduce bearing wear,
finding the parts that produce resonance and change the frequency to avoid resonance, mea-
suring the original error in the Z-direction of the machine tool with the laser interferometer
and considering the original error in the process of NC programming.

The result is consistent with the simulation results, which verifies the feasibility of
machining the internal double-arc spiral bevel gear with a group of finger milling cutters.

There is limited research by scholars on the machining of the internal double-arc spiral
bevel gears. Other similar studies focus on the machining of the external spiral bevel gears.
Comparing the results with other similar studies, this paper analyzes not only the overall
error but also the errors in all directions. The method proposed in this paper can ensure the
machining quality; however, special tools need to be customized. The processing cost and
efficiency are inferior to other similar studies.
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5. Conclusions

We provide a method for machining the internal double-arc spiral bevel gears. This
method can effectively solve the machining problem of the internal spiral bevel gears. It
provides a successful case for the machining of complex surfaces.

(1) Aiming at the proposed method of machining the internal double-arc spiral bevel
gear with a finger milling cutter, the intercept equation of the finger milling cutter
is solved. Considering the processing difficulty, it is divided into four finger milling
cutters, which are used to process the convex tooth surface, transitional tooth surface,
concave tooth surface and tooth root surface, respectively.

(2) A simulation machining experiment with the designed finger milling cutter was
carried out. Compared with the ideal tooth surface, the error of the convex tooth
surface is the smallest, which is 0.005 mm. The error of the concave tooth surface and
transitional tooth surface is 0.030 mm, and the error of the tooth root surface is 0.032
mm. The 26 sample points on the machined gear were measured. The maximum
error was 0.035 mm, the minimum error was 0.003 mm, and the average error was
0.019 mm, meeting the machining requirements. The Z-direction error has the greatest
influence on the overall error.

(3) This method requires the design and manufacture of special milling cutters, which
increases the machining cost. The size of the tool is small, and it is easily deformed
under stress and heat during machining. At the same time, many tool changes are
required in the machining process, which result in the low efficiency of small batch
production.

(4) This method does not consider the heat and force generated in the processing process.
Subsequent research can reduce the machining error and improve the machining ac-
curacy by analyzing the coupling of the stress field and temperature field. Meanwhile,
the tool structure can be optimized to improve the tool life and machining accuracy.
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