
Citation: Tong, B.; Chen, W.; Li, C.;

Du, L.; Xiao, Z.; Zhang, D. An

Improved Approach for Real-Time

Taillight Intention Detection by

Intelligent Vehicles. Machines 2022,

10, 626. https://doi.org/10.3390/

machines10080626

Academic Editors: Antonios

Gasteratos and Ioannis Kostavelis

Received: 28 June 2022

Accepted: 27 July 2022

Published: 29 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

An Improved Approach for Real-Time Taillight Intention
Detection by Intelligent Vehicles
Bingming Tong 1 , Wei Chen 1, Changzhen Li 2 , Luyao Du 1,*, Zhihao Xiao 1 and Donghua Zhang 3

1 School of Automation, Wuhan University of Technology, Wuhan 430070, China; 307311@whut.edu.cn (B.T.);
greatchen@whut.edu.cn (W.C.); 320940@whut.edu.cn (Z.X.)

2 School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China;
changzhen.li@whut.edu.cn

3 Wuhan Zhongyuan Electronics Group Co., Ltd., Wuhan 430070, China; zhangdonghua@710g.com
* Correspondence: duluyao@whut.edu.cn; Tel.: +86-158-2715-3041

Abstract: Vehicle taillight intention detection is an important application for perception and decision
making by intelligent vehicles. However, effectively improving detection precision with sufficient
real-time performance is a critical issue in practical applications. In this study, a vision-based
improved lightweight approach focusing on small object detection with a multi-scale strategy is
proposed to achieve application-oriented real-time vehicle taillight intention detection. The proposed
real-time detection model is designed based on YOLOv4-tiny, and a spatial pyramid pooling fast
(SPPF) module is employed to enrich the output layer features. An additional detection scale is
added to expand the receptive field corresponding to small objects. Meanwhile, a path aggregation
network (PANet) is used to improve the feature resolution of small objects by constructing a feature
pyramid with connections between feature layers. An expanded dataset based on the BDD100K
dataset is established to verify the performance of the proposed method. Experimental results on
the expanded dataset reveal that the proposed method can increase the average precision (AP) of
vehicle, brake, left-turn, and right-turn signals by 1.81, 15.16, 40.04, and 41.53%, respectively. The
mean average precision (mAP) can be improved by 24.63% (from 62.20% to 86.83%) at over 70 frames
per second (FPS), proving that the proposed method can effectively improve detection precision with
good real-time performance.

Keywords: intelligent vehicle; taillight intention; real-time detection; multi-scale feature

1. Introduction

The driving safety of vehicles greatly concerns both the public and researchers.
With the development of artificial intelligence algorithms [1–3] and internet-of-vehicles
technology [4,5], intelligent vehicles can perceive their surrounding environment more
effectively. In real traffic scenes, most information transmitted between vehicles is signaled
by vehicle lights. Therefore, vehicle taillight signals represent indispensable information in
driving behavior decisions such as lane-changes [6,7] and overtaking.

Over the last decade, vehicle taillight intention detection has been widely studied,
combining knowledge-based methods with statistical machine learning models. These
traditional methods have performed well owing to the handcrafted features of taillight
color and structure designed in the specific scenarios studied. However, in the real world,
traditional methods may not be able to adapt to changing environments consistently and
effectively due to changes in the driving environment (i.e., lighting conditions, occlusion,
road slope). As a result, the generalization ability and robustness of the traditional methods
need to be further improved.

In recent years, deep learning has received more attention in the field of computer
vision. Traditional algorithms such as HOG [8], SIFT [9], and LBP [10,11] based on hand-
crafted features have turned to machine learning techniques based on deep neural networks.
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Convolutional Neural Networks (CNN) have been widely applied in the field of computer
vision for image classification (e.g., GhostNet [12], ResNet [13]), semantic segmentation
(e.g., Mask R-CNN [14]), and object detection (e.g., SSD [15], Faster R-CNN [16]). In the real
world, taillight intention detection is essentially regarded as a type of multi-object detection,
which can be achieved using a CNN-based object detector. In general, CNN-based object
detectors are mainly divided into two categories. The first consists of two-stage detectors
based on region proposal generation, represented by the R-CNN series [14,16,17]; the
proposal generation approach improves detection precision at the cost of more inference
time. The second category consists of one-stage detectors that refactor object detection
into a regression task, represented by the YOLO series [18–22] and SSD. These algorithms
directly calibrate grids on the output layers of different sizes, then generate the category
score of the object in regressed grids.

Successes have been achieved in applying deep learning to vehicle taillight intention
detection. Nevertheless, there is room for improvement. Meanwhile, in order to improve
the precision of vehicle taillight intention detection, the high quality of datasets should be
guaranteed. Numerous standard datasets (e.g., BDD [23], KITTI [24], and Bosch small traffic
lights [25]) have been established for the transportation industry. However, to the best of
our knowledge, there is no public dataset dedicated to the detection of vehicle taillights.

In this paper, an end-to-end method is proposed to detect rear braking and turn signals
from video streams in real-time. To this end, YOLOv4-tiny is used as the base model, and
three strategies are adopted to balance efficiency and effectiveness with less computational
resource occupancy.

The main contributions can be summarized as follows:

• An expanded dataset based on BDD100K is established for vehicle taillight intention
detection, which includes 3316 challenging images under different roads, time periods,
lighting, and weather conditions in real traffic scenes.

• A lightweight model for real-time vehicle taillight intention detection is proposed.
An SPPF module that can be used to enrich the deep semantic information is com-
bined with a CSPDarknet53-tiny backbone to improve the performance of taillight
intention detection.

• A multi-scale detection strategy based on the lightweight model is proposed to expand
the receptive field focusing on small objects. PANet is leveraged to utilize contextual
information to further improve the resolution of small objects such as turn signals.

The rest of the article is organized as follows. In Section 2, related works on taillight
detection are reviewed. Section 3 presents the experimental dataset. In Section 4, our
proposed method is described in detail. Section 5 provides the experimental results and
analysis of the proposed method performed on the modified dataset. Finally, conclusions
are drawn in Section 6.

2. Related Works

Traditional knowledge-based taillight detection methods utilize handcrafted features
to match and classify them with statistical machine learning classifiers. Among them, Chen
et al. [26] proposed a vision-based method employing a fast radial symmetry transform
algorithm to match the taillights symmetrically for daytime brake light detection. Cui
et al. [27] developed a layered framework for detecting vehicle taillight signals. The first
layer detected vehicles with deformable part models, while the second layer extracted
taillight candidates using clustering techniques. The last layer used sparse representation
to estimate taillight states.

Leading up to the current study, researchers have been gradually shifting their research
interest in vehicle taillight intention detection from traditional knowledge-based methods
to deep learning methods. These can be roughly divided into two categories.

Methods in the first category split vehicle taillight intention detection into vehicle
localization and taillight state estimation. Nava et al. [28] leveraged the YOLO detector
to detect the front vehicle. Then, the brake signal state was determined through the SVM
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classifier. Zhong et al. [29] first localized each vehicle using a Fast R-CNN detector with
kernel correlation tracking. The position of the brake light area was obtained by a fine-tuned
fully convolutional networks and the SVM classifier was used to determine the brake light
state. Vancea et al. [30] presented a convolutional neural network architecture composed
of a Faster R-CNN for detecting vehicles and a sub-network for classifying the obtained
pairs of taillights within the vehicle. This type of approach uses a deep learning model to
detect vehicles in real scenes, followed by taillight detection using a separate classifier (i.e.,
statistical machine learning, deep learning) without end-to-end detection.

The second category of methods performs vehicle taillight intention detection in an
end-to-end fashion. Hsu et al. [31] proposed a method to build two classifiers based on the
CNN-LSTM model to identify vehicle taillight signals. Brake signal spatial features were
extracted through the CNN. For turn signals, the differences between images in consecutive
frames with ROI regions were input to the model for state recognition. Frossard et al. [32]
proposed an architecture to detect taillight signals directly. A fully convolutional network
was added to the CNN-LSTM model in this architecture to generate masks, removing the
influence of unnecessary spatial features. Lee et al. [33] improved detection precision by
integrating an attention model in their CNN-LSTM network, where the learning process of
the attention model was selectively focused on the spatial and temporal features. However,
these approaches have only been validated on sequences of cropped vehicle images.

Different from the above methods, the proposed method models taillight detection as a
regression problem and improves the performance of YOLOv4-tiny for small objects. With a
multi-scale strategy, the proposed method can achieve effective performance in real taillight
detection scenarios. Meanwhile, the proposed method seamlessly integrates YOLOv4-tiny,
SPPF, and PANet to provide an end-to-end trainable network for taillight detection.

3. Dataset Establishment

In this section, we establish an expanded dataset based on BDD100K with three
categories for vehicle taillights intention detection, including vehicle, brake signal, and
turn signal. The turn signal category is further classified into left and right turn signals
during the decoding process.

3.1. Data Acquisition

An expanded dataset with 3316 images was established based on selected images
from the BDD100K dataset. The collection work sought to emphasize different roads, time
periods, lighting, and weather conditions. All the images were from a car-front camera.
Samples of the dataset are shown in Figure 1.
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The datasets used in machine learning methods often include training, test, and
validation sets. Consistent with the YOLOV4-tiny ratio [22], 2685, 332, and 299 images were
selected as the training set, test set, and validation set, respectively. The training set was
used to train the method weights. The test set was used to verify the detection performance
of the proposed method on unseen data. The validation set was used to prevent over-fitting
and tune the hyper-parameters.

3.2. Data Augmentation

The richness of the dataset plays a vital role in experimental results. To increase
the richness of the dataset, data augmentation operations can be performed on images.
Mirroring of the images can enlarge the sample size of the dataset. When the camera
encounters dark lighting and electromagnetic interference, noise appears as a random
distribution of bright spots on the image. Neural networks are not robust to noise, and it
can be advantageous to employ models which have learned using noisy data [34]. Therefore,
adding impulse noise to dataset images aims to improve the robustness of the method.
Mosaic data augmentation on the images can be further employed to enrich the dataset.
New training images are formed by flipping, scaling, and changing the color space of
the four images to enrich the background of detected objects, thereby enhancing the
generalization ability of the trained method.

3.3. Data Annotation

The images classified by the three categories (vehicle, brake, turn) were labelled
manually after being numbered. Bounding boxes were drawn manually according to the
VOC data format. LabelImg software, which provides the location and category information
of objects, was used for data annotation. Images with the occlusion areas of objects more
than 50% and unlabeled objects tend to be extremely small in an image. The work of data
pre-processing was carried out through the above stages. The dataset statistics and the
number of objects in each category are shown in Table 1.

Table 1. Vehicle taillight detection dataset.

Vehicle Brake Turn

Training set 6538 1662 1734
Test set 808 201 231

Validation set 728 179 197
Total 8074 2042 2162

4. Proposed Method

In this section, an improved method to detect vehicle taillight intention more effectively
by combining YOLOv4-tiny architecture with three modifications is proposed.

4.1. YOLOv4-Tiny Model

Aiming at the real-time requirements of vehicle taillight intention detection, our
method was designed based on YOLOv4-tiny. YOLOv4-tiny, which combines two detection
layers for feature fusion, is a lightweight model based on the CSPDarknet-tiny backbone.

Because YOLOv4-tiny is a lightweight model, its precision performance has difficulty
meeting the detection requirements. To address this issue, three strategies were applied to
improve its precision performance. First, the SPPF module was adapted for the YOLO-tiny
model to extract different scale features from the same layer. Second, a 52 × 52 scale output
layer was added to provide fine-grained features in multi-scale detection. Third, PANet
was employed for feature fusion in the multi-scale output layer.
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4.2. SPPF Module

The SPPF module decreases computational resource occupancy in the spatial pyramid
pooling (SPP) module [35] by replacing the 5 × 5, 9 × 9, and 13 × 13 max-pooling layers
with three 5 × 5 max-pooling layers. The max-pooling layer size represents the number of
parameters required for calculation. Therefore, the parameter quantity of the SPPF model is
less than half that of the SPP model. The SPPF module schematic is illustrated in Figure 2.
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Figure 2. Schematic of the SPPF module.

In our proposed method, the SPPF module is inserted after the last convolutional layer
of the CSPDarknet53-tiny backbone. The SPPF module was applied in YOLOv4-tiny to
obtain features of different scales through multiple pooling, effectively avoiding incomplete
cropping and shape distortion of image objects caused by the cropping and scaling operations
of convolution as well as increasing the receptive field. The input feature layer undergoes
three instances of 5 × 5 max pooling, and is connected to the input layer after each pooling.
After concatenation, the output of the SPPF module is used for 13 × 13 scale detection.

4.3. Multi-Scale Detection

Multi-scale detection is utilized in YOLOv4-tiny to detect objects of different sizes.
However, in YOLOV4-tiny, only two scale feature layers (26 × 26, 13 × 13) are extracted for
feature fusion to form the feature pyramid network (FPN) [36]. It is difficult for YOLOv4-
tiny to regress the final position information of objects as small as 26 × 26 scale [37].

The backbone network increases the network layer to extract semantic information
as a way of reducing the spatial scale [38]. Thus, it is generally believed that backbone
networks contain higher spatial resolution feature maps on shallow feature layers and
represent rich semantic information on deep feature layers. Shallow feature maps usually
focus on small object detection, and deeper features are conducive to large object detection.

The size distribution of the object detection bounding box (BBOX) used in the dataset
is shown in Figure 3. Notably, the dataset covered objects with large, medium, and small
sizes. Small object detection is indispensable in vehicle taillight intention detection.

Based on the rationales above, we added an additional 52 × 52 detection scale in
YOLOv4-tiny to improve detection precision for small objects. Feature maps from shallower
layers have higher resolution with detailed spatial information, and outputs from deeper
layers have smaller resolution with rich semantic features. Multi-scale detection can
simultaneously utilize richer deep semantic information and shallow higher-resolution
image spatial features. Specifically, the improved method was able to predict the BBOXs of
three different scales, namely, 13 × 13, 26 × 26, and 52 × 52. The outputs of the 13 × 13
and 26 × 26 detection layers contained rich semantic information, whereas small object
features were ignored during down-sampling. The 52 × 52 output divided more grid cells
in the image, meaning that smaller image areas could be detected.
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4.4. PANet

PANet was first proposed in [39] to boost information flow in instance segmentation
frameworks. PANet is considered an enhanced version of FPN. Here, it was used to enhance
the representation capability of the proposed method by fusing down-up and top-down
path augmentation. The PANet structure is shown in Figure 4.
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We used PANet to construct a feature pyramid with connections between feature
layers to leverage contextual information passed both down-up and top-down. To improve
the precision of small object detection, PANet was implemented in two aspects. The first
aimed to fully exploit the deeper spatial information and shallower semantic information
of the CSPdarknet_tiny network. The second was adopted to accommodate the feature
fusion scale changes induced by the additional detection layer.

PANet selects different feature maps when predicting different objects, avoiding hard
matching of object size and network depth. An additional 52 × 52 feature layer is extracted
from the backbone network for multi-scale detection. PANet fully integrates the semantic
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information from multi-scale detection to provide important features for small object
detection, further improving the detection results.

4.5. Designed Model

The designed model for our method is shown in Figure 5. Am image with a pixel of
416 × 416 is input to the CSPDarknet-tiny backbone in the form (R, G, B). Feature maps
with sizes of 52 × 52, 26 × 26, and 13 × 13 are extracted from the backbone network for
multi-cross feature fusion and multi-scale detection.
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4.5.1. Multi-Cross Feature Fusion

The multi-cross feature fusion process can be divided into three steps. First, the
13 × 13 feature layer is pooled and concatenated three times through the SPPF module.
Second, the pooled 13 × 13 feature layer is up-sampled twice to 52 × 52 scale and con-
catenated along the channel dimension with the corresponding feature layer extracted
from the backbone network. Finally, the 52 × 52 feature layer is down-sampled twice
by convolution transformation, and channel-wise concatenation is performed with the
corresponding size feature layer. The maps that have undergone feature fusion are then
sent to the corresponding detection head layers to output the results.

4.5.2. Loss Function

The loss function in the proposed method consists of three parts, regression loss,
category probability loss, and confidence loss, which can be written as
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(1)

Here, there are S2 grids in the input image, and each grid generates B BBOXs; 1obj
ij and

1noobj
ij represent the j-th BBOX in grid i, which contains and excludes objects, respectively;
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Pj
i,c and P̂j

i,c represent the predicted value and true probability indicating that the object

belonging to category c in grid i, respectively; Cj
i refers to the confidence of the predicted

BBOX containing the object; and Ĉj
i denotes the intersection over union (IoU) of the real

object and the BBOX. The IoU is a measure that quantifies the degree of overlap between
two boxes, and is defined as follows:

IoU(A, B) =
|A ∩ B|
|A ∪ B| =

|A ∩ B|
|A|+ |B|−|A ∪ B| , (2)

where | |means the cardinality of the set and A and B represent two separate boxes.
The complete intersection over union (CIoU) loss function [40] was chosen for the

regression loss. CIoU considers the distance between the target and the predicted box,
the overlap rate, the scale, and the penalty terms, making the object BBOX regression
more stable.

4.5.3. Decoding Process

Benefiting from the end-to-end approach, the input image is directly transformed into
predicted coordinates and categories.

Specifically, the three detection layers have grids of 52 × 52, 26 × 26, and 13 × 13,
respectively. Each grid is configured with three anchor boxes, outputting a total of
3 × (5 + 3) = 24 pieces of feature information. Each anchor box will have four coordi-
nates, one confidence score, and three category (Vehicle, Brake, and Turn) probabilities.
During the decoding process in Algorithm 1, anchor boxes for which the confidence score is
less than 0.5 are ignored. The redundant information is filtered out by the Soft-NMS [41] al-
gorithm. Then, the three output overlays are mapped to the input image size. Detected turn
signals are further classified into Left-Turn (LT) and Right-Turn (RT) with the corresponding
IoU vehicle box. Finally, taillight information that is not in the vehicle box is discarded.

Algorithm 1 Output Decoding Process

Input: O1, O2, and O3 correspond to the output of the 13 × 13, 26 × 26, 52 × 52 detection layers.

Output: Om ∈ Rl×6, l represents the number of results. Each result contains 4 coordinate, 1
confidence score, and 1 category symbol.

1: for n = 1 to 3 do
2: On ← Soft−NMS(On −On

confidence<0.5)
3: end for
4: Om ←map(O1, O2, O3)
5: for Om

category=Turn in Om do
6: for Om

category=Vehicle in Om do
7: Om

left, Om
right ← Om

category=Vehicle
8: if IoU(Om

right, Om
category=Turn) > 0.5

9: Om
category=Right−Turn ← Om

category=Turn
10: else if IoU(Om

left, Om
category=Turn) > 0.5

11: Om
category=Left−Turn ← Om

category=Turn
12: end if
13: end for
14: Om ← Om −Om

category=Turn
15: end for

5. Experiment and Result Analysis

In this section, the experimental evaluation metrics and environments are introduced.
Then, the effectiveness of our method is verified. Ablation experiments are carried out to
demonstrate the effect of different improvements. Three state-of-the-art object detectors
are compared with the proposed method in terms of detection precision and rate. In
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addition, the proposed method is deployed on real traffic scene detection to verify its
stability and practicality.

5.1. Evaluation Metrics

The precision (P) and recall (R) are employed as two metrics for a more fair and
reasonable comparison, as follows:

P =
True Positive

True Positive + False Positive
, (3)

R =
True Positive

True Positive + False Negative
. (4)

F1-score is the harmonic mean of precision and recall. It is a comprehensive evaluation
index, as follows:

F1− score =
(

P−1 + R−1

2

)−1

. (5)

The precision recall (PR) curve is a visual metric for evaluating the performance of
object detection algorithms. The closer the PR curve of the algorithm is to the upper right
corner of the graph, the better the performance. The area under the PR curve is AP, which
is used to quantitatively evaluate the performance of the algorithms and can be defined as

AP =
∫ 1

0
P(R)dR . (6)

The mAP is an indicator of the performance of the overall situation. Typically, mAP
can be defined as

mAP =
1
4 ∑

c∈categories
AP(c) . (7)

5.2. Experimental Environment

The experimental hardware environment consisted of a Windows PC with an Intel(R)
Core (TM) i7-10750H CPU @ 2.60GHz 2.59 GHz, 16 G DDR4 of RAM, and an NVIDIA
GeForce RTX 2070 with 8 GB of memory. The relevant software environment is shown
in Table 2.

Table 2. Version parameters of the environment.

Environment Python Torch CUDA cuDNN

version 3.8.8 1.70 10.2 8.2.1

In the training strategy, the input images from the dataset were resized to 416 × 416 pixels.
The pretrained weights of CSPdarknet53-tiny were used. After this configuration, the training
process was optimized using Adam [42] with a momentum of 0.937. The maximum number
of training iterations was set to be 300. The batch size was 24. The initial learning rate was set
to be 0.001 and to decrease at a rate of a minimum value of one tenth of the initial learning
rate as the iteration period increased.

We denoted AP@0.5 as the average precision under IoU, from 0.5 to 0.95. The detection
confidence was set to 0.5, which is the default detection confidence of YOLOv4-tiny.

5.3. Ablation Experimental

The proposed method was compared with the baseline YOLOv4-tiny on the collected
dataset. Ablation analyses were performed to investigate the impact of each modification.
The detailed results are outlined in Tables 3 and 4.
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Table 3. Precision, recall, and F1-score results of the ablation experiment on the test dataset.

Method Precision (%) Recall (%) F1-Score (%)

YOLOv4-tiny [22] 74.72 53.09 60.25
YOLOv4-tiny-SPPF 77.27 58.35 65.75

YOLOv4-tiny-SPPF-3l 83.50 80.96 82.25
YOLOv4-tiny-SPPF-PANet-3l (ours) 91.78 87.52 89.50

Table 4. AP results of the ablation experiment on the test dataset.

Method mAP (%) @0.5
AP (%) @0.5

Vehicle Brake LT RT

YOLOv4-tiny [22] 62.20 96.48 74.76 35.59 41.95
YOLOv4-tiny-SPPF 65.18 97.86 78.06 39.54 45.25

YOLOv4-tiny-SPPF-3l 76.07 96.65 90.27 51.79 65.58
YOLOv4-tiny-SPPF-PANet-3l (ours) 86.83 98.29 89.92 75.63 83.48

YOLOv4-tiny-SPPF refers to the YOLOv4-tiny framework with employed SPPF mod-
ule, in which AP performance gains for Vehicle, Brake, LT, and RT were 1.38, 3.3, 3.95, and
3.30%, respectively. The increase in mAP illustrates that it is beneficial to enrich the features
of a feature layer by multiple pooling and concatenation of the same feature layer in the
SPPF module.

YOLOv4-tiny-SPPF-3l extracted an additional 56 × 56 detection layer from the back-
bone network into the method, in which AP increased by 12.21, 12.25, and 20.33% for Brake,
LT, and RT, respectively, while the AP for Vehicle dropped 1.21%. The experimental results
show that multi-scale detection greatly improves the detection ability for small objects
without contributing to large-sized objects.

As can be seen from Table 3, the recall rate of YOLOv4-tiny-SPPF-3l is greatly improved.
The detection performance of small objects greatly benefits from the additional prediction
layer. Early high-resolution CNN layer feature maps provide valuable information for
locating small objects.

On the basis of YOLOv4-tiny-SPPF-3l, our method (YOLOv4-tiny-SPPF-PANet-3l)
further integrated PANet. As shown in Table 4, the AP of our method increased by 1.64,
23.84, and 17.90% for Vehicle, LT, and RT respectively, while the AP for Brake fell by
0.35%. Because PANet fuses features from three detection layers of different sizes top-
down and down-up, it can make full use of the contextual information of the backbone.
Compared to the up-sampling feature fusion of the FPN in the baseline, the bidirectional
sampling process of PANet fuses more fine-grained shallow features. The results show
that the mechanism greatly enhances the detection ability for small objects, whereas the
contribution for the situation of medium objects is moderate.

The PR curves for the four objects (Vehicle, Brake, LT, and RT) of the vehicle taillight
detection dataset are shown in Figure 6. Compared with the PR curves of the baseline, the
PR curves of all four categories obtained by our method are improved. For turn signals, our
PR curves fully encompass the baseline, which verifies the detection ability of the proposed
method for small objects.

The ultimate method, YOLOv4-tiny-SPP-PANet-3l, yielded a 24.63% mAP perfor-
mance gain over the baseline YOLOv4-tiny on the test set. The AP of Vehicle, Brake, LT, and
RT increased by 1.81, 15.16, 40.04, and 41.53%, respectively. Although significant progress
has been made at the expense of smaller computation consumption, the improved method
continues to meet the real-time requirements of most actual applications. The proposed
method runs at 73 FPS on an RTX-2070 GPU, which is apparently lower than the 144 FPS
of the YOLOv4-tiny. The memory size of the method is 47.0 MB, which meets the storage
condition limitations of the vehicle platform.
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5.4. Comparison of Detection Performance with Other Algorithms

This study evaluated three state-of-the-art object detectors, SSD, Faster R-CNN, and
YOLOv4, on the test set.

We can conclude from Table 5 that the precision of these detection algorithms in
vehicle detection is above 90% and YOLOv4 (92.13% mAP) has the most outstanding
performance. The proposed method (86.83% mAP) possesses better performance than
SSD (56.11% mAP) and Faster R-CNN (77.40% mAP). The main reason is that the SSD and
Faster R-CNN detectors are not sensitive to small objects, especially turn signals. As the
vehicle detection performance of these detection algorithms is good enough, the gap in the
overall performance of the detection algorithm is specifically reflected in the precision of
the detection of braking and turn signals.

Table 5. Comparison experiment results for vehicle taillight detection.

Method mAP (%) @0.5
AP (%) @0.5

Vehicle Brake LT RT

SSD [15] 56.11 91.69 73.40 28.51 30.87
Faster-RCNN [16] 77.40 98.13 89.92 59.37 62.20

YOLOv4 [21] 92.13 99.45 94.92 84.41 89.74
YOLOv4-tiny(baseline) [22] 62.20 96.48 74.76 35.59 41.95

YOLOv4-tiny-SPPF-3l-PANet (ours) 86.83 98.29 89.92 75.63 83.48
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As can be seen from Table 6, SSD, the baseline, and our method are lightweight and
have advantages in terms of detection rate, computation, and memory size. For SSD,
this detector is the most lightweight, with a detection speed up to 80 FPS. This is mainly
due to the fact that the backbone of the SSD, Mobilenetv2, is a lightweight classification
network specifically designed for mobile platforms. The floating-point operations per
second (FLOPTS) of Faster-RCNN is greater than 300 G. More importantly, Faster R-CNN
cannot be used for real-time detection owing to its inference speed of 9 FPS. The memory
size of YOLOv4 is as high as 244 MB, which is high for the limited in-vehicle platform. As
a lightweight version of YOLOv4, the detection speed of YOLOv4-tiny is up to 144 FPS.
However, the detection performance of YOLOv4-tiny is not satisfactory. Viewed this way,
our method can balance detection precision, computation overhead, memory size, and
inference time.

Table 6. Detection speed and model memory size.

Method Input Size Backbone FLOPS Memory Size (MB) FPS

SSD [15] 300 Mobilenetv2 2.53 G 15.2 81
Faster-RCNN [16] 600 VGG16 369.96 G 108.0 9

YOLOv4 [21] 416 CSPDarknet 59.77 G 244.0. 35
YOLOv4-tiny(baseline) [22] 416 CSPDarknet-tiny 6.83 G 22.4 144

YOLOv4-tiny-SPPF-3l-PANet(ours) 416 CSPDarknet-tiny 9.39 G 47.0 73

5.5. Visualization of Detection Results

For a visual evaluation of the proposed method, Figures 7 and 8 show the detection
performance of the proposed method compared to the baseline.
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Figure 7. Visualization of interest regions for the baseline and the proposed method. (a–d) four consecutive
pictures of left-turn signals from the preceding vehicle. (e–h) the interest regions of the baseline. (i–l) the
interest regions of the proposed method.
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Figure 8. Detection results of the baseline and proposed method on the test set. (a–d) the detection
results of the four test images in the baseline. (e–h) the detection results of the four test images in the
proposed method.

Figure 7a–d are four consecutive turn signal pictures, with (a) and (c) having left turn
signals and (b) and (d) having no turn signals. Figure 7e–l are the interest regions of the
baseline and the proposed method, respectively. We found that the baseline can only focus
on the vehicle object in the images. Our proposed method can recognize the turn signal
while focusing on the vehicle object, indicating that the proposed method can detect turn
signals better. Figure 8a–h shows the detection results of the baseline and the proposed
method, respectively, on the test set.

Based on the discussion above, the proposed method showed better performance in
detection ability than YOLOv4-tiny. This experimentally observed excellent performance
should be ascribed to the feature-rich mechanism and multi-scale detection head strategy
adopted in this article. In Figure 8, there are many turn signals and brake lights in the
intersection driving traffic detection scene and the vehicle lane change scene. In these
detection scenes, the vehicles are densely distributed, providing a good opportunity to
test the object detection performance of the employed algorithms. Comparative analysis
showed that our method greatly outperforms the baseline YOLOv4-tiny in the detection of
vehicle taillights. Meanwhile, its ability to detect large objects (vehicles) is improved to a
certain extent as well.

6. Conclusions

This study developed an improved real-time vehicle taillight intention detection
approach. The proposed real-time detection method combines YOLOv4-tiny with a multi-
scale detection strategy and integrates the SPPF and PANet modules. Multi-scale detection
and multi-cross feature fusion are utilized to improve the detection precision of detection
objects, especially for small objects. An expanded dataset consisting of selected images of
BDD100K with collected images in real scenes was established. Based on the established
real-scene dataset, experimental results showed that the overall detection precision reached
86.83%, a 24.63% improvement compared to the original YOLOv4-tiny. The proposed
method improved the detection precision of vehicle, brake, left-turn, and right-turn lights
by 1.81, 15.16, 40.04, and 41.53%, respectively, verifying the effectiveness of employing
additional refined detection layers. Meanwhile, the ablation experimental results illustrate
the advantages of the PANet over FPN in multi-cross feature fusion and small objects de-
tection in vehicle taillight intention detection. Compared with other detectors, our method
shows good real-time detection performance with relatively high precision, demonstrating
its application potential in vehicle taillight intention detection.
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