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Abstract: Thermal errors significantly affect the accurate performance of computer numerical control
(CNC) machine tools. In this paper, an improved robust thermal error prediction approach is proposed
for CNC machine tools based on the adaptive Least Absolute Shrinkage and Selection Operator
(LASSO) and eXtreme Gradient Boosting (XGBoost) algorithms. Specifically, the adaptive LASSO
method enjoys the oracle property of selecting temperature-sensitive variables. After the temperature-
sensitive variable selection, the XGBoost algorithm is further adopted to model and predict thermal
errors. Since the XGBoost algorithm is decision tree based, it has natural advantages to address the
multicollinearity and provide interpretable results. Furthermore, based on the experimental data
from the Vcenter-55 type 3-axis vertical machining center, the proposed algorithm is compared with
benchmark methods to demonstrate its superior performance on prediction accuracy with 7.05 µm
(over 14.5% improvement), robustness with 5.61 µm (over 12.9% improvement), worst-case scenario
predictions with 16.49 µm (over 25.0% improvement), and percentage errors with 13.33% (over 10.7%
improvement). Finally, the real-world applicability of the proposed model is verified through thermal
error compensation experiments.

Keywords: adaptive LASSO; CNC machine tools; thermal errors; robustness; variable selection;
XGBoost

1. Introduction

Due to changes in heat sources internally and externally in a machining process,
thermal deformation of machine tools occurs and thus changes the relative position between
the tool and workpiece, which is known as thermal errors or thermally induced errors [1,2].
Thermal errors have become one of the most important factors affecting the accuracy of
computer numerical control (CNC) machine tools, which account for up to 75% of the
overall geometrical errors of machined workpieces [3]. Therefore, it is important and
imperative to reduce thermal errors to improve the accuracy of CNC machine tools.

To reduce thermal errors, in general, there are two main research directions. The
first direction is the numerical analysis, which establishes the analytical model and then
simulates and analyzes thermal error law. For example, Creighton et al. [4] proposed a
thermal error compensation model using the finite element analysis in a high-speed micro-
milling spindle. Xu et al. [5] established thermal behavior models using the finite element
method (FEM) for an air-cooling ball screw system to predict and compensate for thermal
errors. Li et al. [6] proposed an explicit analytical thermal error model for compensation
considering ambient temperature fluctuations and the model was verified by both FEM and
an experiment on the machine tool. Xaver et al. [7] proposed a structural model using FEM
for the ball screw axes of the machine such that up to 87% of the maximal thermo-elastic
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error is reduced and compensated. Naumann et al. [8] compared different basis functions
based on regression analysis for thermal error compensation using FEM simulation data
from a machine tool demonstrator. More recently, Naumann and Herzog [9] considered
a coupled thermo-elastic FEM of a simplified machine tool for optimal sensor placement.
Świć et al. [10] proposed a thermo-mechanical method based on the thermal deformation
mechanism to improve the accuracy and stability of long low-rigidity shafts. While the
numerical analysis provides promising compensation results, in practice, it is extremely
difficult for the numerical method to build an exact structural model and simulate the
thermal deformation of machine tools due to complex deformation processes.

Alternatively, the second direction, based on statistical prediction models, has attracted
increasing attention to compensate for thermal errors because it is cost-effective and easy to
use. To establish a statistical prediction model, sensors are first installed at various locations
of CNC machines to measure temperature changes, which are considered input variables.
Then, thermal errors become the output variable of the model. By measuring the relation-
ship between thermal errors and temperature measurements through statistical models,
thermal errors are predicted in real time based on the observed temperature measurements.
Therefore, thermal errors are compensated, and the accuracy of CNC machine tools is
significantly improved. Along this line of research, enormous efforts have been made
to establish statistical prediction models [11], such as multiple linear regression (MLR),
support vector machine (SVM) methods, and neural networks. In addition, it is a common
practice to select temperature-sensitive variables to alleviate the strong multicollinearity
among input variables [12,13]. For example, Yang et al. [14] proposed to group temperature
variables according to the correlation among the input variables to reduce multicollinearity.
Further, Yan and Yang [15] proposed to first group temperature variables according to
the integrated gray correlation between temperature variables and thermal errors, and
then pick one temperature variable from each group that has the maximum integrated
gray correlation as the selected temperature-sensitive variables. Abdulshahed et al. [16]
proposed a combination of fuzzy c-means clustering and the gray correlation methods
to select temperature-sensitive variables with an adaptive neuro-fuzzy inference system
to establish a thermal error prediction model. A similar variable selection method has
been utilized in recent literature [17,18]. For example, Zhang et al. [19] combined fuzzy
clustering with correlation coefficient methods to select temperature-sensitive variables
and used the sliced inverse regression method to establish a thermal error model. Miao
et al. [20] proposed the principal component regression method to reduce the influence
of the variability of temperature-sensitive variables on the model robustness. Further,
Liu et al. [21] proposed a thermal error model based on the ridge regression algorithm
to alleviate multicollinearity, where they used the correlation-coefficient method to select
temperature-sensitive variables. Tan et al. [22] utilized the least absolute shrinkage and
selection operator (LASSO) method to select temperature-sensitive variables and estab-
lished the least-square SVM-based thermal error model. Specifically, the LASSO method
is adopted to select temperature-sensitive variables by penalizing all coefficients in the
regression model with the same penalty term call L1-norm. While the LASSO method is
simple to implement in practice, it does not have the oracle property [23]. As a side note, a
variable selection procedure with the oracle property means that the procedure can identify
the right subset of true variables. Here, the LASSO procedure does not have the oracle
property, which means that the selected variables by the LASSO method are not consistent
with the underlying true variables. To address this issue, by adding different weights to
different coefficients, the adaptive LASSO method [24] has been theoretically proved to
enjoy the oracle property with the consistent variable selection. In addition, this is the
first work that the adaptive LASSO method has been adopted in the field of thermal error
modeling.

Due to the rapid development of machine learning techniques, more advanced thermal
error models have been proposed in the literature [25–28]. For example, Liang et al. [29]
proposed a thermal error prediction model for heavy-duty CNC machines with long short-
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term memory networks. More recently, Liu et al. [30] utilized the long short-term memory
to compensate for thermal errors in a spindle system. Unfortunately, these models require a
large amount of data to train for adequate prediction accuracy and more severely function
as a black box and fail to provide interpretable results. To address this issue, Zhu et al. [24]
proposed a thermal error model based on the random forest (RF) algorithm. Although
the RF model requires less training data and provides interpretable results, it has a severe
limitation that a small change in the hyperparameter will affect almost all trees in the forest
and then affect the performance of prediction accuracy. With pre-trained hyperparameters
for the whole forest, the RF approach degrades significantly and becomes less robust when
test data have more variations than training data. In summary, the existing literature
still lacks a more robust thermal error prediction model that has the oracle property of
temperature-sensitive variable selection and provides interpretable results. To fill this
research gap, in this paper, an improved robust thermal error prediction model is proposed
based on the adaptive LASSO and eXtreme Gradient Boosting (XGBoost) algorithms, and
the proposed Adaptive LASSO Integrated with Xgboost algorithm is abbreviated as the
ALIX method. In particular, the adaptive LASSO method, which enjoys the oracle property
by penalizing coefficients of variables with different weights, is first used to select the
temperature-sensitive variables, and then the XGBoost algorithm is built based on decision
trees is adopted to model thermal errors for CNC machines. As a result, the proposed ALIX
method for thermal error modeling and prediction has several unique advantages:

(1) The adaptive LASSO method enjoys the oracle property for selecting temperature-
sensitive variables consistently; namely, it performs as well as if the true underlying
model is given in advance. In addition, the adaptive LASSO method can be solved
efficiently and achieves superior performance on variable selection in various applica-
tions.

(2) The XGBoost algorithm is robust to multicollinearity in nature while the multicollinear-
ity is commonly seen in thermal error modeling of CNC machines, and the embedded
regularization in the XGBoost algorithm helps avoid over-fitting. In addition, differ-
ent from existing neural network models which function as a black box and fail to
interpret, the XGBoost method can provide desirable interpretable results and identify
which variables have the most effects on thermal errors.

(3) Both the adaptive LASSO and XGBoost algorithms are first-ever adopted in the litera-
ture to predict thermal errors for CNC machines. Our proposed method contributes
to the practice of precision engineering by illustrating how practitioners can utilize
the proposed method for accurate and robust thermal error predictions. Based on
our experimental data from the Vcenter-55 type 3-axis vertical machining center, com-
pared with several benchmark methods, the proposed ALIX algorithm demonstrates
its superior performance in prediction accuracy, robustness, and worst-case scenario
prediction.

The remainder of this paper is organized as follows. In Section 2, the thermal error
experiment on the Vcenter-55 type 3-axis vertical machining center is introduced. Section 3
provides the technical details of the ALIX algorithm. In Section 4, the ALIX algorithm is
compared with benchmark methods based on the experimental data. Section 5 conducts
the experimental verification to demonstrate the real-world applicability of the proposed
ALIX algorithm on thermal error compensation. Finally, Section 6 draws conclusions and
discusses future research.

2. Thermal Error Experiment

A total of 23 batches of thermal error measurement experiments with different ambient
temperatures and spindle speeds were conducted. Experimental data with a wide range of
ambient temperatures were used to investigate the prediction accuracy and robustness of
thermal error models. In the following, the experimental object is introduced in Section 2.1
and the exploratory data analysis of the experimental data is provided in Section 2.2.
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2.1. Experiment Object

The experimental object was a Vcenter-55 type 3-axis vertical machining center, as
shown in Figure 1. The five-point measurement method was used to measure thermal
errors with reference to ISO 230-3: 2020 [31]. Five displacement sensors were installed
on the experimental object with two sensors in each of the X and Y directions and one
sensor in the Z direction. The displacement sensor is a MicroSense 5810 (MicroSense,
LLC, Lowell, MA, USA) type capacitive sensor with a measurement accuracy of 1 µm
after calibration. In addition, twenty temperature sensors, referred to as T1–T20, were
installed to measure temperature changes at specific locations of the experimental object.
The temperature sensors are PT100 platinum resistors with an accuracy of 0.1 degrees
Celsius after calibration.
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Figure 1. Experimental object.

The layout of the displacement and temperature sensors in the experimental object is
shown in Figure 2, and the detailed locations of T1–T20 are listed in Table 1. It is noteworthy
that T10 and T20 are not displayed in Figure 2 as T10 is placed on the machine housing to
measure the ambient temperature and the installment location of T20 is blocked in Figure 2.
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Table 1. Detailed installment location of sensors.

Temperature Sensors Installment Location

T1–T5 Front bearing of the spindle
T6, T9 Spindle box
T7, T8 Spindle motor

T10 Machine housing
T11 Support base on X direction

T12, T13 Screw nut on X direction
T14, T15 Motor on X direction
T16, T17 Motor on Y direction
T18, T19 Screw nut on Y direction

T20 Support base on Y direction

2.2. Exploratory Data Analysis

A total of 23 batches of experiments were conducted in total, and the experimen-
tal batches are arranged in ascending order of the initial environment temperature and
recorded as K1–K23. Note that K1–K23 is the notation for the 23 batches. Each batch of
experiments was conducted under two varying parameters: ambient temperatures and
spindle speeds. Furthermore, the data for each batch include both temperature signals and
the measured thermal errors. The experimental conditions, including both spindle speed
and initial ambient temperature, for each batch of experiments are tabulated in Table 2.
From Table 2, two spindle speeds are considered, and initial ambient temperature, which is
defined as the ambient temperature naturally measured by T10 at the beginning of each
experiment, varies significantly as experiments were performed at different seasons over a
year. In each batch of the experiments, the machine spindle was idling, and the spindle
speed was constant. The worktable was run back and forth along the X and Y axes at a
constant feed rate of 1500 mm·min–1 with reference to ISO 230-3: 2020 [26]. The temperature
and thermal errors were collected every 5 min, and each batch of the experiment lasted
more than 6 h.

Table 2. Experimental conditions for each batch of experiments.

Batch Spindle Speed
(rpm)

Initial Ambient Temperature
(Degree Celsius) Batch Spindle Speed

(rpm)
Initial Ambient Temperature

(Degree Celsius)

K1 4000 4.38 K13 6000 10.88
K2 4000 4.50 K14 4000 12.94
K3 4000 5.31 K15 4000 14.44
K4 6000 5.75 K16 6000 14.63
K5 6000 6.19 K17 6000 21.69
K6 4000 6.69 K18 6000 24.50
K7 6000 7.06 K19 4000 25.06
K8 4000 9.19 K20 6000 25.63
K9 4000 9.25 K21 6000 25.69
K10 4000 9.63 K22 6000 27.75
K11 6000 9.81 K23 6000 33.13
K12 6000 10.50

Based on the experimental data, the following exploratory data analysis is conducted.
First, the initial environment temperature range is 4.38–33.13 degrees Celsius according
to T10 of K1–K23. Figure 3 further shows the temperature curves of T1–T20 for the K1
(lowest initial environment temperature) and K23 (highest initial environment temperature).
Based on Figure 3, for both K1 and K23, some sensors have linear relationships over time
whereas other sensors have different slopes at different measurement times. Comparing
the curves between K1 and K23, the curves in K1 are much steeper than those in K23 when
the machines start, which is expected due to the warm-up with the low environmental
temperature. It is noteworthy that since the ambient temperature is measured by T10, the
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plot of T10 in Figure 3 shows the change of ambient temperature over time for both K1 and
K23. In addition, the initial ambient temperature is revealed by the starting point of the
T10 line when the measurement time is 0 in Figure 3.
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Second, as thermal errors caused by the axial thermal expansion of the machine tool
spindle account for the main part of the total thermal errors [32], thermal errors in the
Z direction are the focus of this study. Figure 4 shows the thermal error curves in the Z
direction of all 23 batches. It can be observed that the thermal errors rise quickly from the
beginning to around the 100th minute and then the curves become flat after 100 min. Next,
the proposed methodology is presented to first select temperature-sensitive variables and
then model the relationship between thermal errors and temperature sensors.
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3. Methodology

As mentioned before, the existing literature lacks a robust thermal error model that
enjoys the oracle property of the variable selection and provides desirable interpretable
results. To fill this research gap, the ALIX algorithm is the first-ever proposed in the field of
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thermal error modeling and prediction by combining the adaptive LASSO method with
the XGBoost algorithm. A flowchart of the proposed methodology is presented in Figure 5
to systematically illustrate our ALIX algorithm. Specifically, during the modeling stage,
the adaptive LASSO method [28] is first used, which will be presented in Section 3.1, to
select temperature-sensitive variables among all installed sensors. Then, the XGBoost
algorithm [29] using the selected temperature-sensitive variables is adopted for thermal
error modeling, which will be provided in Section 3.2. During the real-time compensation
stage, the established ALIX method is deployed to predict and compensate for the thermal
error based on the selected temperature signals.
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3.1. Temperature-Sensitive Variable Selection

Suppose that y = (y1, . . . , yn)
T is the response vector of thermal errors, and xj =(

x1,j, . . . , xn,j
)T are temperature measurements from sensor j, j = 1, . . . , p, after deducting

from the initial environment temperature. Note that n is the number of observations
and p is the number of temperature sensors in total. Without loss of generality, the data
are assumed to be centered, so the intercept is not included in the model. Assume that
y = Xθ + ε, where X =

[
x1, . . . , xp

]
is the predictor matrix, θ =

(
θ1, . . . , θp

)T is the true
parameter of the model, and ε = (ε1, . . . , εn)

T are independent identically distributed
random variables with mean 0 and variance σ2. Further, denote that θ̂ (δ) =

(
θ̂1, . . . , θ̂p

)T

are the coefficient estimators produced by a fitting method δ. For example, when δ is ordinary
least square (OLS), the objective function is to minimize the least squared error, namely
argmin

θ

||y−Xθ ||2, and the unbiased estimators θ̂ (OLS) can be easily obtained in (1):

θ̂(OLS) = XTX−1XTy (1)

While the OLS is easy to implement, it gives non-zero values to all coefficients. How-
ever, in practice, not all variables are significant, especially when there is strong collinearity
among temperature variables in the thermal error modeling of CNC machines. Such strong
collinearity would severely deteriorate the model prediction accuracy and robustness [16].
Thus, it is commonly used to select temperature-sensitive variables before establishing a
thermal error model.

As reviewed in Section 1, many existing methods of selecting temperature-sensitive
variables are heuristic and they cannot guarantee consistent selection. To address this issue,
the adaptive LASSO method has been proposed by Zou [33] that enjoys the oracle property
and guarantees the optimal variable selection. More importantly, the adaptive LASSO
method has shown superior performance on variable selection in various applications.
Therefore, the adaptive LASSO method is adopted here to select temperature-sensitive
variables for our thermal error modeling and predictions. The coefficient estimators of
the adaptive LASSO method, denoted as θ̂(aLASSO), can be obtained by optimizing the
following objective function:

θ̂ (aLASSO) = argmin
θ

||y−Xθ ||2 + λ
p

∑
j=1

ŵj
∣∣θj
∣∣ (2)
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As shown in (2), unlike the LASSO method that selects variables by penalizing all
coefficients with the same penalty term [22], the adaptive LASSO method performs different
penalizations for each coefficient through ŵj. As a result, if a variable is important, ŵj is
small and the variable remains in the model. In contrast, if a variable is not important, ŵj is
large and the variable is more likely to be eliminated. In theory, there are multiple ways
to construct ŵj [33]. Here, we choose the following commonly used method to obtain ŵj.
First, the traditional LASSO model is built by solving the following equation:

θ̂ (LASSO) = argmin
θ

||y−Xθ ||2 + λ
p

∑
j=1

∣∣θj
∣∣ (3)

To determine the value of λ in (3), 10-fold cross-validation is used and the loss func-
tion is mean squared error (MSE), which is defined as

(
y−Xθ̂

)2. To solve (3), the glmnet
function can be used in the R language [34], which adopts the cyclical coordinate descent
algorithm [35]. Specifically, the cyclical coordinate descent algorithm successively opti-
mizes the objective function over each parameter with other parameters fixed, and cycles
repeatedly until the algorithm converges. Since the coordinate descent method is widely
used and embedded in the glmnet function, we do not present details here. Then, ŵj can be
further obtained by the following equation:

ŵj =
1∣∣θ̂j (LASSO)

∣∣ (4)

Plugging (4) into (2), the adaptive LASSO model can be written as follows:

θ̂(aLASSO) = argmin
θ

||y−Xθ ||2 + λ
p

∑
j=1

∣∣θj
∣∣∣∣θ̂j (LASSO)

∣∣ (5)

Similarly, λ in (5) can be determined using 10-fold cross-validation and the loss
function is also set as MSE. After obtaining θ̂ (aLASSO) using the same glmnet function
with different parameters, the set of temperature-sensitive variables O (TS) can be selected
as follows:

O (TS) =
{

j : θ̂j (aLASSO) 6= 0 where j = 1, . . . , p
}

(6)

It is noteworthy that in this article, we only use one batch of data as training data
to fit the model, and then use the trained model to predict the remaining batches of data.
Therefore, for each batch as training data, different O (TS) are generated via the adaptive
LASSO method.

3.2. Thermal Error Modeling

With the temperature-sensitive variables selected by the adaptive LASSO method,
the XGBoost algorithm is further used to fit the data. The XGBoost algorithm is a scalable
tree boosting system [36]. Different from the existing algorithms which assume the linear
relationship between thermal errors and temperature from sensors, the decision-tree-based
XGBoost algorithm is nonparametric for regression and is robust to multicollinearity by na-
ture. Furthermore, compared with the RF method that builds decision trees independently
and heavily depends on hyperparameters to optimize the model, the XGBoost algorithm
originates from the gradient boosting model, which combines many weak learners into a
stronger learner in an iterative fashion [37]. In this way, the XGBoost method only applies
hyperparameters to one tree at the beginning. Mathematically, the XGBoost algorithm
predicts thermal errors, i.e., ŷi, using the input variables xi,j, where i = 1, . . . , n, j ∈ O(TS)
and L additive functions:

ŷi =
L
∑
`=1

f`(xi), f` ∈ F , (7)
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where xi =
(

xi,1, . . . , xi,|O(TS)|

)
and |O (TS)| is the cardinality of the O (TS). Here, f`

represents an independent decision tree structure v with leaf scores ω, and F is the space
of trees. In practice, it is impossible to enumerate all the possible tree structures. Instead,
a greedy algorithm is used that starts from a single leaf and iteratively adds branches to
the tree. The objective function J at t time iteration, as shown in (8), consists of both the
training loss function and the regularization term:

J(t) =
n
∑

i=1
L(yi, ŷi) +

t
∑
`=1

Ω( f`) (8)

where L is a differentiable convex loss function, such as square loss, which measures how
well the model fits on the training data. In addition, Ω is the regularization term, such as
L1 norm or L2 norm, which penalizes the complexity of the model. As a side note, the
time iteration t represents the t-th iteration during the training process, rather than the
measurement time during the data collection. Then, the predicted thermal errors at time
iteration t are obtained based on (9):

ŷi(t) =
t

∑
`=1

f`(xi) = ŷi(t− 1) + ft(xi). (9)

Furthermore, as defined in [36], Ω for a decision tree f` can be calculated by the
following equation:

Ω( f`) = γT +
1
2

λ
T

∑
q=1

ω2
q (10)

where γ is the complexity of each leaf, T is the number of leaves in the decision tree, λ is a
parameter to scale the penalty, and ωq is the score of the q-th leaf. Then, the second-order
Taylor expansion, instead of the first-order in the gradient boosting decision tree, is used to
approximate the training loss function in the XGBoost algorithm. In this paper, we adopt
the MSE as the loss function, and the objective function can be finalized after removing the
constant as below:

J(t) ≈
n

∑
i=1

[
gi ft(xi) +

1
2

hi f 2
t (xi)

]
+ Ω( ft) (11)

where gi and hi are the first and second derivatives of the MSE loss function, respectively.
Since each data sample xi corresponds to only one leaf node, the loss function can be
expressed by the sum of loss values of each leaf node. Then, plugging (10) into (11), the
objective function can be rewritten as follows:

J(t) ≈
n
∑

i=1

[
gi ft(xi) +

1
2 hi f 2

t (xi)
]
+ γT + 1

2 λ
T
∑

q=1
ω2

q

=
T
∑

q=1

[(
∑

i∈Iq

gi

)
ωq +

1
2

(
∑

i∈Iq

hi + λ

)
ω2

q

]
+ γT

(12)

where Iq =
{

i
∣∣∣v (xk

i

)
= q

}
represents all the data samples at leaf q. Therefore, the opti-

mization of the objective function in (12) can be transformed into a problem of finding the
minimum of a quadratic function. After a certain node split in the decision tree, the model
performance is evaluated based on the objective function. If the model performance is
improved, then the split is adopted, otherwise, the split will be stopped. More importantly,
since the regularization term Ω ( f`) is added into the objective function, the XGBoost model
is able to alleviate the problem of overfitting. Further, as a decision-tree-based algorithm,
the XGBoost algorithm is robust to multicollinearity. To implement the XGBoost algorithm,
the ‘xgbTree’ method is adopted in the ‘caret’ package for the R language [38].
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4. Performance Evaluation

In this section, the performance of the proposed ALIX algorithm is evaluated based
on the experimental data introduced in Section 2. As mentioned before, each batch of
data is used as training data for the temperature-sensitive variable selection and XGBoost
thermal error model training. Then, the trained model is evaluated to predict based on the
remaining batches of data that are not involved in the model training. In the following,
the temperature-sensitive variable selection results by the adaptive LASSO method are
presented in Section 4.1, the hyperparameter setting and interpretable results involved in
the XGBoost algorithm are detailed in Section 4.2, and the performance comparison of the
ALIX method with existing algorithms is provided in Section 4.3.

4.1. Temperature-Sensitive Variable Selection

In the adaptive LASSO method, the parameter λ in (3) and (5) is tuned based on the
10-fold cross-validation. Specifically, a sequence of different values of λ is first generated,
and for each value of λ, the 10-fold cross-validation is applied and the MSE can be obtained
accordingly. Then, the optimal value of λ is selected with the minimum MSE. For example,
the parameter of λ in (5) is tuned based on data from K2. Figure 6 plots the MSE for each
value of λ. The optimal value of λ can be found as 0.17567, where the log (λ) is −1.739,
with the minimum MSE of 0.544. Then, based on the optimal value of λ, the coefficients in
(5) can be estimated with θ̂1 (aLASSO) = 4.72, θ̂11 (aLASSO) = −13.16 and the remaining
coefficients are zero. Thus, sensors T1 and T11 are selected as temperature-sensitive
variables with training data K2.
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The temperature-sensitive variable selection results based on each batch are summa-
rized in Table 3. Note that Table 3 presents the indices of selected temperature sensors,
and the real location of these sensors can be correspondingly found in Figure 2. From
Table 3, the selection of temperature-sensitive variables varies based on different batches of
training data. For example, for K2, K7 and K8, only two temperature-sensitive variables are
selected for XGBoost modeling and predictions. In contrast, for K1 and K19, more than 10
temperature-sensitive variables are selected. In addition, since the adaptive LASSO method
is data-driven, the selection of temperature-sensitive variables highly depends on the train-
ing data. The large variability of the temperature-sensitive variables for different batches
results from the fact that each batch of data was collected under various experimental
conditions. It is noteworthy that Table 3 only shows the selection results when each batch is
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considered as training data separately. The reason why one single batch of data is used for
training is to mimic more challenging situations when only a limited amount of training
data are available in real-world applications. If the training data contain multiple batches,
then multiple batches of data will be utilized together to select the temperature-sensitive
variables for prediction. Next, these selected temperature-sensitive variables are used for
thermal error modeling and predictions in the XGBoost algorithm.

Table 3. Selected temperature-sensitive variables for each batch by the adaptive LASSO method.

Batch Selected Temperature Sensors Batch Selected Temperature Sensors

K1 1, 3, 7, 11, 12, 13, 14, 16, 18, 19, 20 K13 1, 2, 3, 7, 13, 14, 20
K2 1, 11 K14 1, 11, 20
K3 1, 11, 14 K15 2, 5, 7, 11, 20
K4 1, 10, 12 K16 2, 3, 5, 7, 11, 16, 20
K5 1, 7, 10, 11, 17, 20 K17 2, 3, 7, 11, 12, 13, 20
K6 1, 10, 20 K18 1, 3, 11, 19
K7 1, 11 K19 2, 6, 7, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20
K8 1, 11 K20 1, 8, 11
K9 1, 3, 7, 10, 11, 17 K21 1, 6, 7, 8, 10, 11, 16, 18, 20
K10 1, 7, 11, 13 K22 1, 3, 11, 12, 20
K11 1, 10, 12, 13, 20 K23 1, 8, 11
K12 5, 12, 13, 14, 20

4.2. Hyperparameter Setting and Interpretable Results

In the XGBoost algorithm, several hyperparameters need to be tuned to maximize
the model performance. The number of iterations is the number of trees that are fitted into
the model. The maximum depth is the maximum number of splits. The eta (also known as
learning rate) is used to shrink the weights of each step to make the model more robust.
The minimum child weight defines the minimum sum of weights of the smallest leaf nodes
to reduce overfitting. The subsample defines the sampling rate of all training samples. The
colsample bytree is the sampling rate for input variables when constructing each tree. A node
is split only when the resultant split improves the loss function. The gamma specifies the
minimum loss function reduction required to make a split. Since the amount of data in each
batch is not large, the subsample and colsample bytree are set as 1. For tuning the remaining
hyperparameters, the details are summarized in Table 4.

Table 4. Detailed hyperparameters configuration.

Hyperparameters Search Space

number of iterations {500, 1000}
maximum depth {4, 6}

eta {0.01, 0.05}
minimum child weight {0, 20}

gamma {0, 50}

The grid search technique, which is one of the most used methods for hyperparameter
optimization, is used to find the optimal parameters based on Table 4. Specifically, we
search through the manually defined subset, which is Table 4 here, of hyperparameters for
the XGBoost model. As a result, the search space is defined, and the goal is to optimize
the MSE of the XGBoost method given this search space. During the training process,
10-fold cross-validation is adopted. Taking the batch K23 as training data, for example, the
XGBoost model is established based onO (TS) = {1, 8, 11} from Table 3. Figure 7 shows the
RMSE of the XGBoost method over iterations with two different values of eta when other
hyperparameters are fixed. As expected, with a larger learning rate, the RMSE converges
faster. After the grid searching, the optimal parameters are obtained with the minimum
MSE: the number of iterations is 500, maximum depth is 4, eta is 0.05, gamma is 0, and
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minimum child weight is 0. As expected, the thermal error model based on each batch may
differ from each other in terms of the optimal parameters. In other words, when working
conditions change or training data change, these selected parameters need to be re-tuned.
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In addition, different from existing machine learning algorithms that function as a
black box, the XGBoost algorithm has the advantage to provide desirable interpretable
results by ranking the importance of input variables. Take the batch K5 as training data
for example. After selecting temperature-sensitive variables by the adaptive LASSO and
training the XGBoost model, the importance of each temperature-sensitive variable can be
ranked as follows: T1 > T7 > T11 > T20 > T10 > T17. Such interpretable ranking information
can help practitioners gain more insights into understanding the relationship between the
temperature-sensitive variables and thermal errors, and potentially guide the design of
sensor installment in their future experiments.

4.3. Performance Comparison

To evaluate the ALIX method and compare performance with different algorithms,
four evaluation metrics are used including prediction accuracy, prediction robustness,
worst-case scenario prediction, and percentage errors. The prediction accuracy for a model
that is trained based on data from the batch k (k = 1, . . . , 23) is denoted as Sk, which is
calculated as follows:

Sk =

√
∑N

i=1(yi − ŷi)
2

N
(13)

where N is the number of all experimental observations except the training data from the
batch k, yi is the ith actual thermal error measurement, and ŷi is the ith predicted thermal
error. Second, the prediction robustness for a model that is trained based on data from the
batch k is denoted as Rk, which is calculated as follows:

Rk =

√
∑N

i=1(ri − ri)
2

N − 1
(14)

where ri = yi − ŷi and ri = 1
N ∑N

i=1 ri. Based on (14), the prediction robustness is the
standard deviation of the residuals between the actual and predicted thermal errors [39].
Third, the worst-case scenario prediction for a model that is trained based on data from the
batch k is denoted as Wk, which is calculated as follows:

Wk = max
i=1,...,N

|yi − ŷi| (15)
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Based on (15), the worst-case scenario prediction is the maximum absolute deviation
between the actual and predicted thermal errors. Last, the percentage error for a model that
is trained based on data from the batch k is denoted as Pk, which is calculated as follows:

Pk =
∑N

i=1
|yi − ŷi |

yi

N
× 100%. (16)

From (16), the percentage error for a model is the average percentage of the predicted
thermal errors deviated from the actual thermal errors. Here, we abuse the notation
N by excluding cases where yi = 0. Please note that all four evaluation metrics are
calculated based on the unseen data, which are not involved in the model training. Thus,
the evaluation results are credible in practice.

For the performance comparison, three existing methods are selected including the
OLS, the SVM combined with the LASSO (LASSO-SVM), and the RF algorithms. Specifi-
cally, for the SVM method, the radial basis function is used as the kernel function and the
parameters are tuned based on 10-fold cross-validation. Furthermore, the RF algorithm,
which is a decision-tree-based ensemble learning method, is considered to ensure a fair
comparison in terms of computational complexity. In the RF algorithm, the number of
variables randomly sampled as candidates at each split (ranges from 1 to 20 with the
step size of 1), the minimal size of terminal nodes (ranges from 3 to 9 with the step size
of 2), and the number of trees (selected from 100, 500, 1000) are tuned based on 10-fold
cross-validation.

The comparison results are summarized as follows. First, the results of Sk for each
model that is trained on batch k are plotted in Figure 8. From Figure 8, it can be seen
that the ALIX method performs better than the other three methods with the highest
prediction accuracy (i.e., smallest Sk) in most cases. In particular, the OLS method fluctuates
significantly ranging from less than 5 µm to over 20 µm. The LASSO-SVM method also has
large variations over different batches and has the highest Sk for batches 19–21, compared
with the other three methods. On the contrary, both RF and ALIX methods, which are
decision-tree-based methods, are more stable as they are more likely to avoid overfitting.
More importantly, the ALIX method consistently performs better than the RF method,
although Sk of the ALIX method is slightly higher than that of the RF method in batches 1
and 3.
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Next, the results of robustness Rk for each model that is trained on batch k are plotted
in Figure 9. From Figure 9, similar observations can be drawn. Both OLS and LASSO-SVM
methods have large variations whereas the RF and ALIX methods are more stable. Overall,
the ALIX method is more robust than the other three compared methods with smaller Rk.
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Further, the results of worst-case scenario prediction Wk for each model that is trained
on batch k are plotted in Figure 10, from which we can see that the proposed ALIX method
has the best performance with the smallest Wk.
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Moreover, the results of the percentage error Pk for each model that is trained on batch
k are plotted in Figure 11, from which we can see similar trends that the proposed ALIX
method has better performance than other methods in general.
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As a side note, the performance of the proposed method is the best compared with
benchmark methods in most cases in Figures 8–11. However, there are still a few cases
where the performance of the proposed method is not the best. Since our proposed
method is data-driven, the performance of the ALIX method heavily depends on the
training data. The 23 batches of experimental data in this study were carried out under
different experimental conditions (ambient temperature and spindle speed), so the thermal
errors in each batch of data have different laws. This may result in a certain algorithm
having good performance in a certain batch of data. However, in practical applications,
we need to comprehensively consider different situations. That is why we consider the
overall performance over all 23 batches and leverage the statistical analysis to test that
our proposed ALIX is statistically significantly better than other methods, which will be
described in the following.

Finally, the average values of Sk, Rk, Wk, and Pk over all 23 models (denoted as S, R, W,
and P, respectively) that are trained on each batch are summarized in Table 5. From Table 5,
the ALIX performs better than the OLS, LASSO-SVM, and RF methods in terms of all four
metrics: prediction accuracy (Sk), prediction robustness (Rk), worst-case scenario prediction
(Wk), and percentage error (Pk). Specifically, compared with the RF method, the proposed
ALIX method improves the prediction accuracy by 14.5%, the prediction robustness by
12.9%, the worst-case scenario prediction by 27.6%, and the percentage error by 10.7%.
Please note that to establish a model for each batch of data, there are 240 combinations
(20 by 4 by 3) of hyperparameters to tune for the RF algorithm whereas there are only
32 combinations for our ALIX method. This shows that the ALIX method can achieve
better results while keeping the computational cost of tuning hyperparameters low. In
addition, as mentioned before, the nonparametric Mann–Whitney U tests are conducted to
test whether the ALIX method is statistically significantly better than benchmark methods.
For each evaluation metric, the Mann–Whitney U test returns a p-value that is less than 0.05,
indicating that our proposed ALIX method is statistically better than benchmark methods
at the significance level of 0.05.

Table 5. Average values of Sk, Rk, Wk, and Pk over all 23 models for each method.

Method OLS LASSO-SVM RF ALIX

S (unit: µm) 9.37 9.42 8.25 7.05
R (unit: µm) 7.02 7.07 6.44 5.61
W (unit: µm) 26.29 22.00 22.78 16.49

P (unit: %) 17.39 17.86 14.94 13.33
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5. Experimental Verification

In this section, the experimental verification was conducted to demonstrate the real-
world applicability of the proposed ALIX method on thermal error compensation of the
CNC system of a machine. The machine tool coordinate origin offset function was adopted
as the principle for thermal error compensation [40]. Specifically, during thermal error
compensation, the temperature measurements were obtained from temperature sensors
(T1–T20), and the thermal error was predicted in real time using the proposed ALIX model.
Then, the origin of the workpiece coordinate system was modified based on the predicted
thermal error. As a result, the thermal error was offset by corresponding shifts in the origin
of the coordinate system. Accordingly, the thermal error compensation was achieved in real
time. The compensation function was achieved by a thermal error compensator, which can
communicate with the CNC system of the machine tool in real time. The coordinate origin
offset function of machine tool was realized by programming the internal programmable
logic controller of the machine tool.

To verify the practicability of the proposed ALIX method, the ALIX method was first
established based on the experimental data K5 (note that K5 was chosen here only for the
purpose of demonstration). Then, three other batches of experimental data with different
spindle speeds were selected, denoted as E1–E3. The spindle speeds were controlled at
4000 rpm, 6000 rpm, and 6000 rpm, respectively, and the initial ambient temperatures of
E1–E3 were 10.5, 9.8, and 33.1 degrees Celsius, respectively. The worktable feed rate was
set at 1500 mm·min–1. For each batch of the experiment, the thermal error compensation
function was set in the sequence “off-on-off-on”, and each state (on or off) lasted for 1 h.
The measurement results of thermal errors in the Z direction are plotted in Figure 12, which
shows that the thermal errors predicted by the ALIX model were effectively compensated
under different spindle speeds and initial ambient temperatures. Specifically, when the
compensation function was turned on, thermal errors of the machine tool were well
controlled within 10 µm. On the contrary, when the compensation function was turned
off, thermal errors were significantly increased. Thus, the real-time applicability of the
proposed ALIX algorithm was verified.
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6. Conclusions

In this paper, an improved robust thermal error prediction model, namely the ALIX
method, is proposed based on the adaptive LASSO and XGBoost algorithms. Specifically,
the adaptive LASSO method is adopted to select the temperature-sensitive variables,
which enjoys the oracle property of variable selection. Further, the XGBoost algorithm
is used to provide interpretable results and predict thermal errors based on the selected
temperature-sensitive variables. Since the XGBoost algorithm is built based on decision
trees, it is immune to multicollinearity and robust to outliers. Based on our experimental
data, the ALIX method performs statistically significantly better than the other three
existing benchmark methods, in terms of the prediction accuracy with 7.05 µm (over
14.5% improvement than benchmark methods), robustness with 5.61 µm (over 12.9%
improvement), worst-case scenario predictions with 16.49 µm (over 25.0% improvement),
and percentage error with 13.33% (over 10.7% improvement). The experiment verification
indicates that the proposed method can be effectively implemented for the practical thermal
error compensation.

Several important directions need future research. First, the exhausted grid search
is used for parameter tuning in this paper. However, it is worth studying to introduce
more advanced parameter optimization methods, such as particle swarm optimization and
genetic algorithm. More importantly, transfer-learning techniques can be incorporated into
the current framework to obtain more accurate predictions when only a few measured data
points are available under the new working condition. In addition, the spatial correlation
on the placement of temperature sensors is not considered in the thermal error modeling. It
would be interesting to investigate how the spatial correlation can be leveraged to improve
thermal error predictions in the future. Last but not least, the proposed method was only
verified on a machine tool in the idle state, and the prediction performance of the proposed
method in a real cutting scenario needs future verification.
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