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Abstract: Usually, the order of active disturbance rejection control (ADRC) is equal to the relative
order of the plant. To improve the control performance, a robust reduced-order method for ADRC is
investigated in this paper. Firstly, frequency domain analysis shows that the lower-order extended
state observer (ESO) has a smaller disturbance estimation error, so disturbance attenuation capability
can be improved by reducing the order of ADRC. However, using only reduced-order ADRC will
worsen the robustness of closed-loop systems. Therefore, a robust ADRC method based on a modified
noise reduction disturbance observer (MNRDOB) is proposed. The main role of the MNRDOB is
to improve the control performance of the closed-loop system by modifying the structure of the
controlled object. In addition, the robust stability of the closed-loop control system based on the
MNRDOB is discussed. Moreover, some simulations are used to demonstrate the robustness and
noise suppression effects of the compound control method reduced-order ADRC with MNRDOB,
and the parameter tuning method for the MNRDOB to improve the robustness of the system is
given. Finally, some experiments on speed control of a one-dimensional gimbal are performed,
and the results show that the proposed method is excellent in overshoot, tracking accuracy, and
disturbance attenuation.

Keywords: reduced-order control; active disturbance rejection control (ADRC); disturbance observer
(DOB); robust stability; one-dimensional gimbal

1. Introduction

Active disturbance rejection control (ADRC) as a robust control method can effectively
overcome nonlinear dynamics, model uncertainty, and external disturbances [1,2]. ADRC
control technology was first proposed by Prof. Han [3,4]. Its central idea is to use an
extended state observer (ESO) to estimate the total disturbance including internal and
external disturbances of the system, and then the estimation is used in feedback to com-
pensate for disturbances. Gao proposed the linear ADRC for the purpose of simplifying
parameter tuning and system performance analysis [5]. As a practical control solution,
ADRC is applied to many engineering systems, such as motor drivers [6–8], underwater
gliders [9,10], power systems [11], and the Piezoelectric Actuator System [12], etc.

The design process of the ADRC does not require detailed model information of
the plant, except for the model order and control gain. Generally, the order of ADRC is
required to be equal to the order of the plant to meet the need of disturbance estimation and
compensation. However, in some cases, the coefficients of the high-frequency components
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of the system are very small, and the plant model is usually simplified to a lower order
to simplify controller design and performance analysis [13]. This simplification is very
common in multi-closed-loop control systems in series, such as the three-loop servo control
of the motor [14,15]. On the other hand, for some systems with complex dynamics, the real
model order is difficult to obtain or may even be time-varying. In addition, a simplified
model is also desirable for controller design and performance analysis. It is clear the ADRC
designed by the simplified model is a reduced-order control scheme. However, there is no
description of the advantages and disadvantages of this reduced-order control scheme in
the existing literature. Three problems may limit the proposal of order-reduction schemes.
One is that classical ADRC design methods usually show superior control performance.
Secondly, the simplification of the controlled object model is very common in engineering
applications, and this simplification is usually based on experience but very effective. Third,
the reduced-order scheme will indeed reduce the robustness of the system. Although the
reduced-order ESO has been widely studied [16,17], it is essentially a simplification based
on the output differential of the system, and the order of ADRC composed of the reduced-
order ESO remains unchanged. Although the reduced-order ESO has been widely studied,
its essence is the simplification of ESO by means of a system output differential, and the
order of the ADRC composed of the reduced-order ESO does not change. Therefore, the
existing reduced-order ESO is irrelevant to the reduced-order ADRC scheme studied in
this paper.

In this paper, the conditions of the reduced-order ADRC control scheme to stabilize
the closed-loop system are clearly stated. In addition, the frequency domain analysis
shows that the lower-order ESO has stronger disturbance estimation ability, which means
that using a reduced-order ADRC can improve the anti-disturbance performance of the
system. However, the reduced-order ADRC will reduce the system’s robustness. It is
also considered that sensor noise suppression is a constant subject for control systems.
Therefore, a modified noise reduction disturbance observer (MNRDOB) is proposed to
form the compound control strategy of reduced-order ADRC + MNRDOB. Note that the
noise reduction disturbance observer (NRDOB) was first developed by [18]; however, two
limitations lead to the fact that the NRDOB in [18] cannot be used to deal with defects in
the reduced-order ADRC. On the one hand, the anti-disturbance capability of the NRDOB
control system in [18] is determined only by the NRDOB and is independent of the nominal
controller of the outer loop. Therefore, applying this NRDOB will offset the ADRC’s
advantage in disturbance rejection. On the other hand, the use of a reduced-order nominal
model for NRDOB in [18] may destabilize the closed-loop system. In addition, Ref. [19]
proposed a simplified NRDOB (SNRDOB), but the SNRDOB does not change the controlled
object of the outer loop nominal controller in robust stability conditions, so it cannot
improve the robustness of the reduced-order ADRC system. The MNRDOB proposed in
this paper avoids these defects.

The objective of this paper is to clarify the significance and rationality of the reduced-
order ADRC scheme that is common in engineering applications and to propose a robust
control scheme to overcome the shortcomings of this reduced-order scheme. The sim-
ulations demonstrate the superiority of the proposed method in robustness and noise
reduction. In addition, the proposed method is used for speed control of a one-dimensional
gimbal to verify its effectiveness. The rest of the paper is arranged as follows. Section 2 in-
troduces the ADRC algorithm and describes the conditions under which the reduced-order
ADRC can stabilize the closed-loop system. In addition, the frequency domain analysis is
utilized to show that the lower-order ESO has stronger perturbation estimation ability. In
Section 3, an MNRDOB is proposed to improve system robustness and suppress sensor
noise. The robust stability conditions of closed-loop systems are also discussed. In Section 4,
the simulation analysis is carried out and the tuning method of MNRDOB parameters is
given. Some experimental results are shown in Section 5. Section 6 concludes this paper.
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2. ADRC Algorithm
2.1. Classical ADRC Algorithm

Consider the following single input single output linear system with disturbance

.
x1 = x2.
x2 = x3
...
.
xn = α1x1 + α2x2 + · · ·+ αnxn + bnur + fn
y = x1

(1)

where xi(i = 1, 2, · · · , n) are the system states, αi, i = 1, 2, . . . , n are constants, ur is the
control input, fn(t) is the total disturbance including unmodeled dynamics and external
disturbance, bn > 0 is the nominal control gain, and let gn(x) = α1x1 + α2x2 + · · ·+ αnxn.
By defining xn+1 = fn(t) as the total disturbance and letting hn(t) =

.
f n(t), the dynamic

system (1) can be rewritten as an extended model:

.
x1 = x2.
x2 = x3
...
.
xn = xn+1 + gn(x) + bnur.
xn+1 = hn
y = x1

(2)

The compact form of (2) can be described as

.
xe = Aexe + Be[g(x) + bnur] + Bhh
y = Cexe

(3)

where xe = [x1, x2, · · · , xn+1]
T ∈ Rn+1, Be = [0, 0, · · · , 1, 0]T ∈ Rn+1, and

Bh = [0, 0, · · · , 1]T ∈ Rn+1, Ce = [1, 0, · · · , 0] ∈ Rn+1.
According to (3) an n + 1st-order ESO is designed as

.
ze = Aeze + Bebnur + βe1 (4)

where ze = [z1, z2, · · · , zn+1]
T ∈ Rn+1 is the output vector of ESO, e1 = x1 − z1, and

β = [β1, β2, · · · , βn+1]
T ∈ Rn+1 is observer gain vector and βi =

(2+1)!
i!(3−i+1)! ω

i
o, i = 1, 2, . . . , n

as suggested by [5], ωo > 0 is the observer bandwidth to be designed. The corresponding
n + 1st-order state error feedback (SEF) is

ur = (K(v− z)− zn+1)/bn (5)

where v = [v1, v2, · · · , vn]
T ∈ Rn is the output vector of the nth-order tracking differentiator

(TD) [4], z = [z1, z2, · · · , zn]
T ∈ Rn, and K = [k1, k2, · · · , kn] ∈ Rn is controller gain vector.

The n + 1st-order ESO, the nth-order SEF, and the nth order TD constitute an nth-order
ADRC. Subtract (4) from (3) and let e = xe − ze, and then the following error dynamics can
be obtained.

.
e = (Ae − βCe)e + Bhhn (6)

Lemma 1. For ωo > 0, the state e of (6) converges into a ball centered in the origin, if matrix
Ae − βCe is Hurwitz and if there exists a constant L > 0 such that |hn| ≤ L.

The detailed proof process of Lemma 1 can be seen in [20], which will not be described
in detail here.
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Writing (1) as compact form

.
x = Ax + Bur + B f fn (7)

where x = [x1, x2, · · · , xn]
T ∈ Rn is the state vector, B = [0, 0, · · · , bn]

T ∈ Rn, and B f =

[0, 0, · · · , 1]T ∈ Rn, it is easy to check that, for |hn| ≤ L, if Ae − βC and A− BK/b are both
stable, the closed loop system consisting of (5) and (7) is stable.

2.2. Reduced-Order ADRC Algorithm

It can be seen from the above derivation that, in the traditional design, the order of
ADRC is equal to the order of the target plant. However, from Lemma 1, it is noted that the
premise of the stability of the closed-loop system is |hn| ≤ L rather than directly related
to the order. Therefore, as long as |hn| ≤ L is satisfied, it is feasible to design a low-order
ADRC to control a high-order plant. The following assumptions are put forward.

Assumption 1. The control input ur and its derivative are bounded by

|ur| ≤ U < +∞,
∣∣ .
ur
∣∣ ≤ ∆U < +∞ (8)

Assumption 2. The total disturbance fn(t) is bounded by

fn(t) ≤ F < +∞ (9)

Note that Assumption 2 may be somewhat conservative, because it may lead to
non-convergence under state-dependent uncertainty shown in [21,22]. To overcome this
conservatism, modeling and analysis of state-dependent uncertainty can be carried out by
referring to the method in [21,22], which will not be described in detail here. In fact, one
of the conditions established by ordinary ADRC is that the first derivative of the total per-
turbation is bounded, which is also conservative for state-dependent model uncertainties.
Therefore, the analysis method on the uncertainty of the state-dependent model in [21,22]
is of great significance to study the stability of ADRC.

The reduced-order model of the nth-order system (1) is as follows:

.
x1 = x2.
x2 = x3
...
.
xn−1 = − 1

αn

(
α1x1 + α2x2 + · · ·+ αn−1xn−1 + fn −

.
xn
)
+ bn−1ur

y = x1

(10)

where bn−1 = − bn
αn

. Equation (10) can be simplified as

.
x1 = x2.
x2 = x3
...
.
xn−1 = [xn − Γ(x)− bn−1ur] + Γ(x) + bn−1ur
y = x1

(11)

where
.
Γ(x) =

dΓ(x)
dt

=

{
gx , i f Assumption 1 holds
gx + bnur − bn−1

.
ur , else

By defining Xn = fn−1 = xn − Γ(x)− bn−1ur as total disturbance of the reduced-order
system and when Assumption 1 holds hn−1(t) =

.
f n−1(t) = fn − bn−1

.
ur + bnur (when
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Assumption 1 does not hold hn−1(t) =
.
f n−1(t) = fn), the extended model (nth-order

model) of (11) is
.
x1 = x2.
x2 = x3
...
.
xn−1 = Γ(x) + bn−1ur.
Xn = hn−1
y = x1

(12)

Proposition 1. Based Assumption 2, according to the extended model (12) of the reduced-order
model (10), an observer such as (4) can be designed for system (1), and for ωo > 0, the observation
error converges in the ball centered at the origin.

Proof of Proposition 1. From Assumption 1 and Assumption 2, one has

|hn−1(t)| =
{ ∣∣ fn − bn−1

.
ur + bnur

∣∣ ≤ F + bn−1∆U + bnU, i f Assumption 1 holds
| fn| ≤ F , else (13)

�
Equation (13) means that the derivative of the total disturbance fn−1 is bounded. Then,

Proposition 1 is easily proved by Lemma 1.

Remark 1. It should be noted that it is necessary for bn−1 > 0, which means that αn is a negative
constant. It is worth emphasizing that the ESO designed according to the reduced-order model (10)
and the extended model (12) is nth order, while the ESO designed by the classical method is n + 1st
order. Therefore, the ESO designed according to Proposition 1 is of order reduced.

Remark 2. Proposition 1 implies that the condition of bounded estimation error of reduced-order
ESO is different from that of classical ESO. The reduced-order ESO requires Assumption 2 to hold,
while classical ESO requires bounded perturbation differentiation.

Remark 3. It is easy to check on the premise of satisfying Assumptions 1 and 2; the order of system
(10) can be further reduced in the way of (10)–(12) to obtain the n-ith-order (i≥ 1) model. According
to Proposition 1, n-i + 1st-order ESO can be designed. This result explains why the ADRC system
is still stable when a low-pass filter is connected in series.

As the core of ADRC, ESO directly determines the control performance of ADRC. The
lower-order ESO means smaller phase delay and more accurate disturbance estimation
performance. Let us take the second-order ESO and third-order ESO as examples. Defining
f̂ as the estimate of f by ESO and letting f̃ = f − f̂ , the transfer functions from f to f̃
for second- and third-order ESO, respectively, are obtained by the same method given
in [23,24].

f̃
f
=

s2 + β1s
s2 + β1s + β2

=
s2 + 2ωos

(s + ωo)
2 (14)

f̃
f
=

s3 + β1s2 + β2s
s3 + β1s2 + β2s + β3

=
s3 + 3ωos2 + 3ωo

2s

(s + ωo)
3 (15)

According to the tuning method in [5], the bandwidth of the detector is set to
ωo = 300rad/s. The amplitude-frequency characteristic plots of (9) and (10) are shown
in Figure 1. We can see that in the low-frequency range, the amplitude attenuation abil-
ity of the second-order ESO is stronger than the third-order one, resulting in a smaller
estimation error.
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Remark 4. The lower-order ESO has stronger disturbance estimation capability, which means the
reduced-order ADRC has stronger disturbance attenuation capability. However, a reduced-order
ADRC leads to a greater model error, i.e., a larger total disturbance. The larger the model error, the
larger the observer bandwidth required. However, the excessive observer bandwidth will amplify
the noise and cause the system performance to deteriorate. Thus, using reduced-order ADRC
may cause less robustness. Therefore, ensuring system robustness is the prerequisite for using
reduced-order ADRC.

3. MNRDOB-Based ADRC
3.1. Modified Noise Reduction Disturbance Observer

As described in Remark 4, the reduced-order ADRC may deteriorate the system
robustness, so an additional algorithm is needed to overcome this problem. On the other
hand, sensor noise in many control systems cannot be avoided, so it is an urgent problem to
filter sensor noise in ADRC systems. In this section, a modified noise reduction disturbance
observer (MNRDOB) is developed from [18] to suppress sensor noise and compensate for
modeling errors and external disturbances.

To reduce noise in high-precision control, the noise reduction disturbance observer
(NRDOB) was developed from the framework of the disturbance observer (DOB) [25],
which clearly solves the attenuation of sensor noise at high frequency. NRDOB has been
applied in series elastic actuator control, which significantly improves system stiffness [26].
The noise reduction of the NRDOB is achieved by transforming the actual system output
into a dynamic model by using a nominal model. The NRDOB closed-loop system is shown
in Figure 2.

Figure 2. Control system based on NRDOB from [18].
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Here P0 is the nominal model of P, u is the control inputs for the nominal model,
and signals r, d, and n represent the reference input, input disturbance, and sensor noise,
respectively. According to the above block diagram, it is easy to obtain the following
transfer function:

yl(s)
ur(s)

= P(s) (16)

Similarly, the transfer function from ur(s) to yl(s) is

yl(s)
ur(s)

=
2P

1 + PP0−1 (17)

MNRDOB’s feedback node is different from NRDOB, and its function is similar to
model reference adaptive control, that is, forcing the behavior of the controlled object to
follow the nominal model. Next, the characteristics of MNRDOB will be further elaborated.
Calculating the output y and the control input u

y(s) = Tyr(s)r(s) + Tyd(s)d(s) + Tyn(s)n(s)
u(s) = Tur(s)r(s) + Tud(s)d(s) + Tun(s)n(s)

(18)

where
Tur =

P0C(1+Q)
P0(1+C(P0+2PQ−P0Q))+PQ , Tyr = PTu,

Tud = −PQ(2P0C+1)
P0(1+C(P0+2PQ−P0Q))+PQ , Tyd = P0P(1+P0C−P0CQ)

P0(1+C(P0+2PQ−P0Q))+PQ ,

Tun = −Q(1+2P0C)
P0(1+C(P0+2PQ−P0Q))+PQ , Tyn = PTun.

Defining the low-pass filter (LPF) Q(s) as

Q(s) =
ch(τs)h + ch−1(τs)h−1 + · · ·+ c0

(τs)l + al−1(τs)l−1 + · · ·+ a1(τs) + a0
(19)

where h ≥ 0 and l ≥ 0 are integers, and τ > 0 is a constant. Let c0 = a0, r : deg(Q((s))) ≥
r : deg(Pn(s)), and Q(s) is stable.

Suppose that there exists an ωL > 0 such that the reference input r(jω) and disturbance
d(jω) are large enough in the low frequency range [0, ωL], the sensor is noisy n(jω) ≈ 0,
and there exists an ωH > ωL such that n(jω) is large enough in the high-frequency band
[ωL, ωH ] and that both r(jω) and d(jω) are approximately equal to zero. An appropriate
LPF Q(s) meets the following simple approximation:

|Q(jω)| ≈ 1, ω ∈ [0, ωL]
|Q(jω)| ≈ 0, ω ∈ [ωH , ∞]

(20)

If ω ∈ [0, ωL], from (18) one has

Tyr(jω) ≈ 2PP0C
P0 + 2PP0C + P

(jω) =
2PC

(1 + P/P0) + 2PC
(jω) (21)

Supposing that lim
ω→0

P/P0 = α is a positive constant, the MNRDOB control system can

accurately track the step reference, which is similar to the nominal control system without
the MNRDOB. Similarly, for low frequency disturbances

Tyd(jω) ≈ PP0

P0 + 2PP0C + P
(jω) =

P
(1 + P/P0) + 2PC

(jω) (22)
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For the nominal control system, the transfer function between the disturbance and the
output is

Tyd(jω) =
P

1 + PC
(jω) (23)

Remark 5. It can be seen from (22) and (23), for nominal controllers without an observer structure,
an appropriate P0 always guarantees that the disturbance rejection of the MNRDOB controller
is stronger than the nominal one. As far as ADRC is concerned, the ESO needs to estimate the
total disturbance from yl . However, the filtering effect of Q(s) will filter out some disturbance
information, resulting in the ESO’s disturbance estimation ability being limited. Therefore, the
anti-disturbance capability of the ADRC with NRDOB is weaker than that of ADRC alone. In
addition, the ADRC’s anti-disturbance capability is negatively correlated with τ of the Q-filter.

In the high-frequency range ω ∈ [ωH , ∞],

Tyn(jω) ≈ − PQ(1+2P0C)
P0(1+P0C) (jω) ≈ 0

Tun(jω) ≈ −Q(1+2P0C)
P0(1+P0C) (jω) ≈ 0

(24)

Therefore, with an appropriate LPF Q(s), the MNRDOB can effectively attenuate noise.

Remark 6. As can be seen from Figure 2, the MNRDOB compensates for disturbance by w and
suppresses sensor noise by ne. These two functions of MNRDOB are necessary for controlling
a high-order plant with a low-order ADRC. Ideally, P(s) is converted to a reference model P0(s)
by feedback w. For a low-order ADRC, a low-order P0(s) is expected. Of course, an excessive
modeling error may also lead to the loss of system stability.

3.2. Robust Stability Analysis

The robust stability of the MNRDOB closed-loop system will be discussed in this
section. First, considering the following uncertain system set ℘,

℘ =

{
P(s) =

b0

a0sn + a1sn−1 + a2sn−1 + . . . + an
: ai ∈ [ai, ai]

}
(25)

where n is a positive integer, and all ai and ai are known constants. We assume that both
the real uncertain plant P(s) and its nominal model P0(s) belong to ℘. Let P(s) = N(s)

D(s) ,

P0(s) =
N0(s)
D0(s)

, and 0 ≤ λ = deg(D(s))− deg(D0(s)) ≤ 1. It is worth noting that (1) and (25)

are equivalent, and bn = b0
a0

.

According to the structure of Figure 3, the nine transfer functions from [r, d, n]T to
[u, y, e]T in are given as follows:

1
∆(s)

 P0C(1 + Q) −PQ(2P0C + 1) −Q(1 + 2P0C)
P0PC(1 + Q) PnP(1 + P0C− P0CQ) −PQ(1 + 2P0C)

P0 + PQ −P0PQ −P0Q

 (26)

where ∆(s) = (1−Q)P0C + 1 + Q + 2PCQ. If the above nine transfer functions are stable,

the closed loop system is said to be internally stable. Let C(s) = NC(s)
DC(s)

and Q(s) = NQ(s)
DQ(s) ,

which are ratios of coprime polynomials. Then, (26) can be written as

1
δ(s, τ)

M11 M12 M13
M21 M22 M23
M31 M32 M33

 (27)
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where δ(s; τ) := (DD0DC N0 + DN0
2NC)DQ + (2D0NN0NC + D0

2DC N − DN0
2NC)NQ

and Mij are suitably defined from (19). Therefore, the NRDOB closed-loop system is inter-
nally stable if and only if δ(s; τ) in (27) is Hurwitz for P(s) ∈ ℘, defining
m := deg(DD0DC N0). Then, the equation δ(s; τ) = 0 has m + l roots, because all the
transfer functions P, P0, C, and Q are strictly proper.

Figure 3. Control system based on MNRDOB.

Lemma 2. Let
Ps(s) := D0(DDC N0 + 2NN0NC + D0DC N)

Pf (s) := DQ(s; 1) + lim
s→∞

P(s)
P0(s)

NQ(s; 1) (28)

There exist m and l roots for Ps(s) = 0 and Pf (s) = 0, respectively. Let s∗i (i =
1, . . . , m + l) be the roots of δ(s; τ) = 0. Then, we have

lim
s→∞

si(τ) = s∗i , i = 1, . . . , m

lim
s→∞

τsi(τ) = s∗i , i = m + 1, . . . , m + l
(29)

Proof of Lemma 2. Since DQ(s; 0)= NQ(s; 0) = a0 6= 0, it follows that δ(s; 0) =
D0(DDC N0 + 2NN0NC + D0DC N)= a0Ps(s). Therefore, m roots of δ(s; τ) = 0 converge to
those of Ps(s) = 0 as τ approaches zero. Considering the remaining l roots of δ(s; τ) = 0, let

δ(s; τ) := η1(s; τ)DQ(
s
τ

; τ) + η2(s; τ)NQ(
s
τ

; τ) (30)

where η1(s; τ) = τm(DD0DC N0 + DN0
2NC)|s=s/τ and η2(s; τ) = τm(2D0NN0NC +

D0
2DC N − DN0

2NC)|s=s/τ . Because P, P0, C, and Q are strictly proper and 0 ≤ λ =
deg(D(s))− deg(D0(s)) ≤ 1, we have lim

τ→0
η1(s; τ) = lim

τ→0
τmDD0DC N0|s=s/τ = η1sm and

lim
τ→0

η2(s; τ) = lim
τ→0

τm−λD0
2DC N|s=s/τ = η2sm−λ for all s with some constants η1 and

η2. Moreover, since DQ(s/τ; τ) = DQ(s; 1) and NQ(s/τ; τ) = NQ(s; 1), it follows that
δ(s; 0) = η1sm[DQ(s; 1) + η2

sλη1
NQ(s; 1)]= η1smPf (s). Thus, δ(s; τ) = 0 have m roots at

the origin and l roots at s∗m+1 · · · s∗m+l . According to Lemma 1 of [27], there exist l roots for
δ(s; τ) = 0, defining si(i = 1, . . . , m + l) such that lim

τ→0
si(τ) = s∗i . Since si(τ)/τ are the

roots of δ(s; τ) = 0, (29) is proved. �

Based on Lemma 2, a theory for robust stability of the MNRDOB closed-loop systems
is proposed as follows:

Theorem 1. For all 0 < τ ≤ τ∗ where τ∗ > 0, the MNRDOB closed-loop system is robustly
internally stable if the following three conditions hold:
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(a) P0(s) is stable; (b) 2PP0C
P0+2PP0C+P is stable for all P(s) ∈ ℘; (c) Pf (s) is Hurwitz.

Proof of Theorem 1. The denominators of 2PP0C
P0+2PP0C+P and Pn(s) are DDC N0 + 2NN0NC +

D0DC N and D0(s), respectively. Thus, (a) and (b) imply that Ps(s) is stable, so the proof
follows Lemma 2. �

Remark 7. For condition (b), the controlled object of the nominal controller C(s) is

P∗(s) =
yl(s)
ur(s)

=
2NN0

DN0 + D0N
(31)

For n ≤ 3, a proper P0 always guarantees that (31) is stable whether P is stable or not. A
stable control object is easy to control. In addition, for λ = 0, Pf (s) = DQ(s; 1)+ αNQ(s; 1) ,
whose stability needs further verification. In addition, for λ = 1, since the denominator
of Q(s) is the Hurwitz polynomial, Pf (s) = DQ(s; 1) is stable. Then, the three stability
conditions of the closed-loop system are reduced to two.

The compound control system of ADRC with MNRDOB is shown in Figure 4. It can
be seen that the disturbances observed by the MNRDOB are used to improve the structure
of the plant P(s) and to cancel the disturbance d. The ADRC’s controlled object is P∗(s)
modified by the MNRDOB. Therefore, the disturbances suppressed by ADRC are the model
errors with P∗(s) and the residual disturbances of d cancelled by the MNRDOB.

Figure 4. Control system based on ADRC with MNRDOB.

Remark 8. The NRDOB is first proposed by [18]. However, there are two reasons why the structure
of the NRDOB in [18] is not used in this paper. Firstly, the transfer function between disturbance d
and output y is

Tyd =
P0P(1−Q)

P0 + Q(P− P0)
(32)

Therefore, its anti-disturbance capability depends only on the NRDOB and has nothing
to do with C(s). If ADRC is combined with NRDOB in [18], its advantages in disturbance
rejection will be cancelled out. Secondly, for NRDOB in [18], one of the conditions for the
robust internal stability is

Pf (s) := DQ(s; 1) +
(

lim
s→∞

P(s)
P0(s)

− 1
)

NQ(s; 1) (33)

For the reduced-order ADRC, λ = 1 is expected. Obviously, if λ = 1, in (33), there will
be at least one root at the origin. Furthermore, the robustness of the NRDOB system will
not be determined.

Note that the design and stability proof of MNRDOB are based on affine system models
such as (25), so it cannot be applied to non-affine systems similar to those mentioned in [28].
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4. Simulation and Analysis

In this section, some simulation results are used to illustrate the effectiveness of the
proposed method. The simulated plant is derived from a speed plant of a one-dimensional
gimbal, which is driven directly by a brushless DC motor. Figure 5 shows the equivalent
schematic diagram of the one-dimensional gimbal.

Figure 5. The equivalent schematic diagram of the one-dimensional gimbal.

Here, ua is the ideal voltage, Ra is the resistance of the armature, La is inductance of
the armature, ia is the current of the armature, Mm is the output torque of the motor, ue is
counter electromotive force,

.
θm = ωm is the angular velocity of the motor, Jm is the inertia

of motor, JL is the inertia of load, and the total inertia of the system is J = Jm + JL. Since
the one-dimensional gimbal directly driven by the motor has high transmission stiffness,
assuming that only the influence of viscous damping friction is considered, the transfer
function from control voltage to angular velocity of the one-dimensional gimbal is

P(s) = ωm(s)
ua(s)/Kw

= KwCm
La Js2+(LaBm+JRa)s+(RaBm+CeCm)

= b0
a0s2+a1s+a2

(34)

where Cm is the moment coefficient, Ce is the back EMF coefficient, and Kw is the power
amplification ratio. The parameters of the one-dimensional gimbal are shown in Table 1.

Table 1. The parameters of the one-dimensional gimbal.

Parameters

Armature resistance Ra 2.25 (Ω)
Armature inductance La 0.0067 (H)

Total inertia J 0.011 (kg ×m2)
Back EMF coefficient Ce 2.67 (V/(rad/s))
Moment coefficient Cm 4.5 (N m/A)

Viscous damping coefficient Bm 0.002 (N m/(rad/s))
Power amplification ratio Kw 5.4

Let us consider some external disturbance d(t), and then the state space form of (34) is

.
x1 = x2.
x2 = 1

a0
(−a2x1 − a1x2) + b2ur + d (35)
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where x1 = ωm, b2 = b0
a0

. Let f3 = 1
a0
(−a2x1 − a1x2) + d be the total disturbance, and then

a second-order ADRC can be designed according to (4) and (5). Based on (11), (35) can be
reduced to

.
x1 = [x2 − b1ur] + b1ur (36)

where b1 = b0
a1

and the total disturbance f2 = x2 − b1ur. Similarly, according to (4) and (5),
a first-order ADRC can be obtained. It is worth noting that since (34) is stable, Assumptions
1 and 2 are easily satisfied as long as the reference signal and its derivatives are bounded.

According to the bandwidth tuning method given by [5], the parameters of the two
ADRC are set as follows: for the second-order ADRC (SOADRC) ωc = 488, ωo = 400,
and b = b2 = 329660; and for the first-order ADRC (FOADRC), ωc = 500, ωo = 400, and
b = b1 = 692. It should be noted that the observation bandwidth of the second-order ESO
and the third-order ESO is the same, and the gain of proportional control is also the same,
which ensures the fairness of the comparison experiment. In addition, the first-order ADRC
still needs TD to arrange the transition process to ensure that the derivative of control input
ur is bounded even if the reference signal is a step signal.

Figure 6 shows the simulation results of the step response, and the 5% sensor noise,
which is much more intense than it actually is, is added at t = 1s. As shown in Figure 6a,
one can see that the response speed of the FOADRC is faster than that of the second-order
ADRC, and the time to reach reference of the FOADRC is about 0.07 s, which is about 1/3
of the SOADRC’s. To suppress sensor noise, a low-pass filter (LPF) is connected in series
on two ADRC controllers, respectively, in Figure 6b, and the LPF is simply chosen as

GLPF =
1

τs + 1
=

1
0.02s + 1

(37)
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The simulation results show that, when the LPF is added, the FOADRC has significant
overshoot (about 45%) and oscillation, while SOADRC maintains good control performance.
Although FOADRC is superior in sensor noise suppression, its step response performance
and noise suppression capability are significantly reduced after adding LPF. Therefore,
FOADRC has lower robustness. These results not only demonstrate the performance
of the above methods but also confirm the analysis of the noise and robustness of the
reduced-order ADRC in Remark 4.
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In order to verify the superiority of reduced-order ADRC + MNRDOB in robustness
and noise suppression, the nominal model P0(s) is chosen as

P0(s) =
b0

a1s + a2
(38)

In addition, the Q-filter is simply chosen as (37). The simulation results are shown in
Figure 7. One can see that input noise and output noise are effectively suppressed after
adding the MNRDOB compared to using the FOADRC only. In addition, the response
speed of the system is the same as that without the MNDOB. The influence of noise on
the system output and control input of the above five control methods is shown in Table 2
in order to more intuitively show the advantages of reduced-order ADRC + MNRDOB
in noise suppression. As can be seen from Table 2, for the FOADRC with MNRDOB, the
noise in the control input is the smallest, and the noise in the system output is only slightly
greater than the SOADRC with LPF.

Figure 7. The simulation result of step response by FOADRC with MNRDOB. (a) Speed(deg/s);
(b) u(V).

Table 2. The impact of sensor noise on different control algorithms.

Control Methods Noise in System Output
(RMS/deg/s)

Noise in Control Input
(RMS/V)

SOADRC 0.4079 0.0305
SOADRC with LPF 0.0577 0.0012

FOADRC 0.2298 0.0059
FOADRC with LPF 0.1654 0.0015

FOADRC with MNRDOB 0.0848 0.0008

In order to further verify the enhancement of system robustness by the MNRDOB, the
simulation experiment is carried out by increasing and decreasing the inertia and keeping
the controller parameters constant. The simulation results of the step response are shown
in Figure 8, in which sensor noise is not considered. When a0 is 1/5 of the original, the step
response of the FOADRC and the FOADRC with MNRDOB remains excellent, while the
SOADRC oscillates violently. When a0 increases to five times of the original, the FOADRC
loses stability, the SOADRC remains excellent, and the FOADRC with MNRDOB has small
oscillation but stabilizes for 0.4 s. Therefore, the composite control strategy of the FOADRC
with MNRDOB has more outstanding performance in terms of robustness.
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Figure 8. Robustness comparison for three control methods. (a) a0/5; (b) 5a0.

Remark 9. Note that in practical engineering applications, the higher-order terms with minimal
coefficients in the transfer function are usually ignored to simplify the controlled object model. For
reduced-order ADRC, the smaller the coefficient of the higher-order term ignored, the better the
robustness of the system and vice versa. The simulation experiments in Figure 6 well confirm this
statement. The reasons for the improved robustness of FOADRC with MNRDOB can be found in
Figure 4 and by (31). The control object of FOADRC is converted from P to P∗ by the MNRDOB;
for P in (34), based on (31), P∗ restructured by the MNRDOB by using the nominal model in (38) is

P∗(s) =
2NN0

DN0 + D0N
=

b0

0.5a0s + a1s + a2
(39)

Obviously, the coefficient of the second-order term in P∗ is reduced by half compared
to P, so the compound control strategy of the ADRC with MNRDOB has strong robust-
ness. It should be emphasized that the coefficient of the second-order term in P∗ can be
reduced by decreasing the numerator of the nominal model P0, thus further improving
the robustness of the system. On the other hand, it can be seen from Equation (24) that
reducing the numerator of P0 can also improve the disturbance suppression ability of the
MNRDOB system.

5. Experimental Results

To verify the practicability and validity of the proposed scheme, some experiments are
carried out on the experimental setup shown in Figure 9. The control system for the one-
dimensional gimbal includes a DSP control board (the control chip is TMS320F283335), PC,
and power supply. The sampling frequency of the speed loop is 1 kHz. The main parameters
of the plant are consistent with those described in the simulation. The experimental device
used in this paper is for aerospace application, which is required to run at a low speed
to ensure the stability of spacecraft. Therefore, all the experiments in this paper test the
performance of the system at low speed.

In this section, the control performance of the three control methods, second-order
ARRC with LPF, FOADRC with NRDOB (from [18]), and FOADRC with MNRDOB, will be
compared. The control parameters used in the experiment are consistent with those in the
simulation. For NRDOB, since the first-order nominal model cannot guarantee its stability,
the nominal model is chosen as model (34), and the corresponding filter Q is selected as
a second-order low-pass filter Q(s) = 1

(0.02s+1)2 . Based on Remark 9, the nominal model

for the MNRDOB is designed as (40) to improve the robustness and disturbance rejection
ability of the MNRDOB system to improve the robustness and disturbance rejection ability
of the MNRDOB system

P0(s) =
b0/3

a1s + a2
(40)
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Figure 9. Experimental setup.

Figure 10 shows the step responses and sinusoidal disturbance suppression effects of
the three controllers, in which the sinusoidal control voltage disturbances of 0.1 sin(2πt)
and 0.05 sin(10πt) are added at t = 1s, respectively. One can see that the FOADRC with
MNRDOB has the strongest ability to suppress sinusoidal disturbances, the FOADRC with
NRDOB has the second, and the SOARRC with LPF has the weakest. In order to further
verify the disturbance inhibition of the proposed method, in the experiment shown in
Figure 11, a step control input disturbance d = 1V and a step disturbance d = 0.1 rad/s
were added at 1 s and 2.5 s, respectively. The results show that the proposed method can
force the system to reconverge faster to the reference trajectory under the same disturbance
conditions. In addition, the response speed of the SOADRC with LPF is slower than the
other two methods. Therefore, the proposed methods are outstanding in the step response
and disturbance inhibition.

Figure 10. Experimental results of the step response and sinusoidal disturbance. (a) 1 Hz disturbance;
(b) 5 Hz disturbance.
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Figure 11. Experimental results of step disturbance.

Figure 12 shows the tracking results of the three control methods at different speeds
(5 deg/s, 15 deg/s, and 25 deg/s). It can be seen that the step response performance of
the three control methods at different speeds is consistent with the results in Figure 11.
Therefore, the proposed method has good control performance at different speeds.

Figure 12. Experimental results of different speed references.

To verify the advantages of the proposed method in tracking performance and friction
suppression, a delay compensation of 0.027 s is added to eliminate the influence of phase
delay. The experimental results for the sine signal sin(πt) and mixed signal (composed by
2 sin(πt), 0.5 sin(4πt), and 0.05 sin(10πt)) are shown in Figures 13 and 14, where the track-
ing responses and tracking errors are all illustrated, to display the tracking performance
of the proposed method. As shown in Figures 13 and 14, the proposed method FOADRC
with MNRDOB can retain significantly superior tracking performance than the other two
methods in both cases, because the disturbance and the unknown dynamics are better
estimated and compensated by the proposed method. As can be seen from the tracking
errors in Figures 13 and 14, the proposed method can effectively inhibit the peak error
produced by friction compared with the other two methods. The more detailed comparison
results are shown in Table 3.
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Table 3. Performance comparison of three control methods.

Control Methods

Maximum Tracking Error (deg/s) Tracking Error (deg/s)

Sinusoidal Disturbance Sine Signal Mixed Signal

1 Hz 5 Hz Maximum RMS Maximum RMS

SOADRC with LPF 2.021 3.914 0.416 0.0897 0.594 0.1043
FOADRC with NRDOB 1.537 3.462 0.397 0.0739 0.539 0.0865

FOADRC with MNRDOB 0.531 1.169 0.254 0.0485 0.292 0.0560
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In recent years, many scholars have proposed many effective control methods for
motor speed control, such as model reference adaptive control [29], model predictive con-
trol [30], singular perturbation control [31], and neural network method [32], etc. However,
the design and algorithm complexity of these methods are high and difficult to implement
in engineering. The sliding mode observer (SMO) mentioned in [33] has attracted wide
attention due to its high robustness. To further demonstrate the control performance of the
proposed method, the results for mixed signal response by sliding mode ESO (SMESO) are
shown in Figure 15. The SMESO is the second-order ESO modified to the following form
according to SMO in literature [33]:

.
z1 = z2 − β1sign(e1)
.
z2 = z3 + b2ur − β2sign(e1)
.
z3 = −β3sign(e1)

(41)

where βi, i = 1, 2, 3 are the observer gains. For simplicity, the feedback control law and the
controller parameters are consistent with the SOADRC.
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Comparing Figure 14 with Figure 15, we can see that SMESO’s tracking performance
is better than that of SOADRC with LPF and FOADRC with NRDOB but still not as good
as the proposed method. The maximum tracking error of the SMESO method for mixed
signals is 0.449 deg/s, and the tracking error RMS is 0.0838 deg/s. In addition, the tracking
error of the SMESO method has more fluctuation, which may be caused by chattering of
the sliding mode.

6. Conclusions

This paper presents a robust reduced-order method for active disturbance rejection
control (ADRC) to achieve high control performance. Frequency domain analysis shows
that the lower-order extended state observer (ESO) has stronger disturbance estimation
ability. However, direct reduced-order control will reduce the robustness of the system. In
addition, the influence of sensor noise is unavoidable in many control systems. Therefore,
a modified noise reduction disturbance observer (MNRDOB) is proposed to improve the
robustness of the reduced-order ADRC and suppress the sensor noise. Simulation results
are presented to illustrate the superiority of the proposed method in robustness and noise
reduction. Finally, the effectiveness of the proposed method is verified by speed control of
a one-dimensional gimbal, and the results show that the proposed method is excellent in
overshoot, rapidity, and disturbance attenuation. Further robustness and stability of the
reduced-order ADRC method will be studied in future work.
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