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Abstract: Since most of the cable-driven parallel manipulators (CDPMs) are small in dimension or
low in speed, the self-weight or inertia of the cable is neglected when dealing with the problems of
kinematics, dynamics and workspace. The cable is treated as a massless straight line, and the inertia
of the cable is not discussed. However, the camera robot is a large-span high-speed CDPM. Thus, the
self-weight and inertia of the cable cannot be negligible. The curved cable due to the self-weight is
modeled as a catenary to accurately account for its sagging effect. Moreover, the dynamic model of
the camera robot is derived by decomposing the motion of the cable into an in-plane motion and an
out-plane motion, based on which an iterative-based tension distribution algorithm and a workspace
generation algorithm are presented. An optimization model is presented to simultaneously improve
the workspace volume, anti-wind disturbance ability and impulse of tensions on the camera and
pan–tilt device system (CPTDS) by selecting the proper optimal variables under the linear and
nonlinear constraints. An improved genetic algorithm (GA) is proposed, and the simulation results
demonstrate that the improved GA offers a stronger ability in global optimization compared to
the standard genetic algorithm (SGA). The ideal-point method is employed to avoid the subjective
influence of the designer when performing the multi-objective optimization, and a remarkable
improvement of the performance is obtained through the optimization. Furthermore, the distribution
characteristics of the optimization objects are studied, and some valuable conclusions are summarized,
which will provide some valuable references in designing large-span high-speed CDPMs.

Keywords: cable-driven parallel manipulator (CDPM); high-speed manipulator; large-span structure;
structural optimization; genetic algorithm (GA); ideal-point method

1. Introduction

The cable-driven parallel camera robot (camera robot for short, see Figure 1) is a type
of CDPM (cable-driven parallel manipulator) consisting of four computer-driven servo
motors that enable the controlled release of four cables that act in parallel on an end-effector,
i.e., the CPTDS (camera and pan–tilt device system). The camera robot can take pictures and
videos with an aerial view that conventional cameras would have difficulty in realizing [1],
making it the best candidate for aerial panoramic photographing in big venues, such as
stadiums, football fields, theaters, etc.

There have existed some commercial camera robots, e.g., Skycam, Spidiercam and
Cablecam [2], which can also be applied in agricultural remote sensing [3] and traffic
monitoring [4] and film production [5]. A camera robot is a typical of large-span high-speed
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CDPM with redundant actuation [6], whose performance is largely determined by its
structural parameters [7,8].

The essence of structural optimization is to establish the mapping relationships be-
tween optimal variables and optimization objects. Determining an optimal structure of
a CDPM meeting a set of optimization objectives is generally challenging, which can be
solved by formulating a constrained optimization problem. There has been plenty of prior
work in the structural optimization of CDPMs, which employ various optimization objects,
such as workspace size [9], condition number of Jacobian matrix [10], tension factor [11,12],
stiffness [13–15], avoiding collision of cables [16,17], manipulability [18] and the maximum
acceptable horizontal distance [19].

cable
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device system

(CPTDS) 3#pulley

central

controller

 communication 
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3#servo

motor
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motor
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Figure 1. Schematic of a camera robot configuration.

However, most of the above optimization methods belong to traditional optimization
methods, such as the simplex method, interval analysis, Dynamic-Q, grouped coordinate
descent and enumeration method, which are sensitive to initial values and easily fall into
local optimums, leading to a failure to obtain a global optimal solution. Until now, many
optimal methods have been developed to overcome this difficulty. Genetic algorithms (GA)
are an intelligent optimization method offering a powerful global search ability and can
effectively escape from local optimums compared to the traditional optimization method,
causing it to be a mainstream structural optimization approach of CDPMs.

Li et al. proposed a GA-based multi-objective optimization method to obtain the best
global dexterity index and overall stiffness index of a planar three degrees of freedom
(DOF) CDPM [20]. Jamwal et al. developed a GA-based multi-objective optimization
method to conduct the optimal design of a cable-driven ankle rehabilitation robot using
the minimum global condition number, the maximum workspace utilization index and
the minimum cable tension norm as optimal objectives [21]. Arsenault et al. used GA to
optimize the geometry of planar CDPMs with four cables with the objective of reaching a
desired pre-stress stable wrench-closure workspace [22].

Bahrami et al. optimized the workspace volume, kinematic performance indices and
actuating energy of a spatial CDPM by means of GA, [23]. Amine and Hamida investigated
the structural optimization of a cable-driven upper limb rehabilitation robot (LAWEX)
based on GA, where the objectives were the simultaneous minimization of the robot size
and the tensions in the cables [24,25]. Nevertheless, cables in these studies were all treated
as massless straight lines without considering the self-weights, which are only suited to
small-dimensional CDPMs.

There are two aspects that require attention in the structural optimization of the camera
robots: large-span and high-speed motion. For the large-span CDPMs, the sagging effect
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due to the self-weight of the cable cannot be neglected [26,27], as the profile of the cable is
no longer a straight line but a curve. Generally, the deformed curve under self-weight can
be described as a catenary or a parabola [28,29].

Jiang et al. optimized the dimensional parameters of a under-restrained six-DOF
CDPM (URPM4-3R3T) with workspace size as the objective function [30]. Yao et al.
obtained the better dimension parameters for a CDPM with four cables used for the feed
supporting system of the five-hundred-meter aperture spherical radio telescope (FAST) to
meet the workspace requirements [31]. Tang et al. optimized dimensional parameters for
constructing a CDPM with six cables for FAST based on the sensitivity design method and
three tension performance evaluating functions [32].

Du determined the structural parameters to simultaneously improve the stiffness and
dexterity of large workspace CDPMs [33]. Wei presented an approach on the stability
analysis of cable-driven parallel robots considering cable mass based on cable tensions
and stiffness matrix condition numbers [34]. However the motions of manipulators are
low-speed or quasi-static, and thus the dynamics of the manipulators were not considered.

The highest speed of the camera robot that is known currently is up to 9 m/s [35].
Hence, the maneuverability of the camera robot due to the high-speed motions must be
considered. Barrette et al. proposed a notion of a dynamic workspace of CDPMs on the
conditions of the dynamic and tension for a planar CDPM [36]. Kawamura et al. developed
a high-speed manipulation (FALCON-7) by using a CDPM and studied its dynamics based
on the vector closure condition [37].

Gagliardini et al. proposed an improved dynamic feasible workspace considering
the inertia of a moving platform, external wrenches applied on the moving platform and
the Coriolis forces corresponding to a constant moving platform twist concurrently [38].
Yu et al. determined the dynamic workspace of a camera robot by taking the intersection
of workspaces with accelerations at different directions [35] and studied the relationships
between the reachable area of the workspace bottom and heights of masts. Kieu et al.
developed a modified kinematic equation considering cable nonlinear tension and analyzed
the wrench-feasible workspace at various motion accelerations [39]. However, the self-
weights of the cables in these studies were all negligible. In our preliminary work, the
dynamic modeling and cable tension distribution considering the self-weight and inertia
of the cable were simultaneously investigated [1,40], which could provide a theoretical
basis for the structural optimization of the camera robot. However, the essence of the
tension distribution algorithm in our preliminary work is a multi-dimensional parameter
optimization problem, which is time-consuming and has the risk of failure in determining
the optimization parameters.

Thus, the algorithm is not fit for CDPMs whose number of cables is much greater
than the DOF of the end-effector, which limits the scope of applications. In this paper,
the dynamical model of the camera robot is established considering the self-weight and
inertia of the cable simultaneously. Furthermore, the tension distribution algorithm is
simplified based on the iterative idea to reduce the computing time and computational
complexity. Based on the dynamical model, a dynamic workspace generating approach
is presented. On the basis of the dynamic workspace, the structural optimization of the
camera robot is studied applying a GA, and the ideal-point method is used to deal with
multi-objective problems.

The organization of the rest of the paper is as follows: Section 2 establishes the dynamic
model of the camera robot by employing the catenary model of the cable and considering
the inertia of the cable. Section 3 proposes an iterative-based optimization algorithm
based on the dynamic model to determine the tension distribution. Section 4 develops a
workspace generation algorithm based on the judging conditions of the dynamic force-
feasible workspace. Section 5 presents an optimization model aiming at achieving the
maximum workspace volume, anti-wind disturbance and impulse of tensions on CPTDS.
Section 6 employs the ideal point method to deal with the multi-objective optimization
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based on an improved genetic algorithm and studies the distribution characteristics of the
optimization objects. Section 7 summarizes our conclusions.

2. Dynamic Model of the Camera Robot
2.1. Description of the Camera Robot

The structure of the camera robot is showed in Figure 1, consisting of a CPTDS driven
by four cables in parallel. One end of the cable is connected to the CPTDS, and the other
end is wound on the pulley and extends to connect to the cable winch and servo motor. The
CPTDS can fly freely in every direction because the cables can be shortened and lengthened
through winding driven by four servo motors mounted on the ground, which receive
control commands from the central controller.

As shown in Figure 1, the four cables intersect at a common point, and therefore the
cables are only responsible for translation. The camera is mounted on a pan–tilt device,
which resembles a composite hinge structure. By means of the pan–tilt device, the camera
realizes pan (yawing) and tilt (pitching) motion. As a result, the CPTDS can be looked as
an ideal mass point P with three translational DOFs, at which the four cables meet. Thus,
the position vector P = [x y z]T of the point P is expressed in the global fixed frame
{oxyz}, and it also denotes the end point of the cable. The camera robot can be categorized
to completely restrained positioning mechanisms (CRPMs) [41]—namely, the number of
the cables m is equal to DOF of the CPTDS n plus one (m = n + 1).

2.2. Catenary Equation of the Cable

In order to guarantee the stability of the camera robot, the cables must be inextensible
and offer high strength. A previous study indicated that a cable can be seen as a catenary
under the sag influence. As a consequence, the profile of the cable i ({i = 1, 2, 3, 4})
is a catenary within a vertical plane, noted oi

sxi
szi

s, is shown in Figure 2. For analysis,
the symbols used in Figure 2 are defined as follows: Bi = [Bi,x Bi,y Bi,z]

T denotes the
position vector of cable drawing point Bi on the pulley in {oxyz}. {oi

sxi
szi

s} is the local
moving frame with the origin oi

s attached to Bi, and the direction of zi
s is straight down.

ti is the tension in the cable i at the end point P, hi is the horizontal component of ti,
and vi is the vertical component of ti. Li is the horizontal length of the span of cable i, and
Ci is the vertical length of the span of cable i. ρ is linear density of the inextensible cable,
and mp is the mass of the CPTDS. Si is the length of the cable i, and fi is the sag of cable i at
the center of the horizontal span. The catenary equation can be written as follows [42]:

zs
i =

hi
ρg

[
cosh αi − cosh

(
2βixs

i
li
− αi

)]
(1)

where g is the gravitational acceleration, and

αi = sinh−1
[

βi(Ci/Li)

sinh βi

]
+ βi (2a)

βi =
ρLi
2hi

(2b)

Equation (1) represents mathematically a family of catenaries. The whole catenary can
be determined being given coordinates of arbitrary points on the catenary. Consequently,
the length Si of the cable i can be calculated as follows:

Si = Li −
hiβi
ρli

[
Li

16βi

(
e4βi−2αi − e−4βi+2αi

)
+

1
2

]
(3)
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According to Equation (3), the length of the cable is closely interrelated with the
tension. When xs

i = Li/2, the sag fi can be obtained as follows:

fi =
8hi sinh βisinh−1

(
ρgCi/2hi

sinh βi

)
− ρCig

2ρg
(4)

Bi

iS
ih

di

s

ix

s

iz
chord

iv

P

Li

it

fi iC

( )sio

 

Figure 2. Catenary model of the cable in the vertical plane.

2.3. Inertia of the Rapidly Varying-Length Cable

Due to the high-speed motions of the camera robot, the length of cable changes rapidly,
leading to the non-negligible inertia of the cable. As shown in Figure 3, qi is a node on
cable i with the time-varying curve length si away from Bi, whose position vector can be
denoted by qi(si, t) = [xi yi zi]

T in the global frame {oxyz}. The relationship qi and qs
i

can be calculated as follows:
qi = Qqs

i + Bi (5)

where qs
i = [xs

i zs
i ]

T in the local moving frame {oi
sxi

szi
s}, and Q =

cos θi 0
sin θi 0
0 − 1

 is the

rotation matrix from frame {oi
sxi

szi
s} to frame {oxyz}, and θi is the angle between xs

i
and x.

t

qi(t- t)

t  t

si(t) 

qi(t) 

out-plane motion 

in-plane motion 
{ }

i i
Bs !si i

oB

s

i
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i
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o

 !,
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Figure 3. In-plane and out-plane motions of the cable.

Since the motion of qi is decomposed to an out-plane motion between the vertical
planes and an in-plane motion along the cable as shown in Figure 3, the velocity and
acceleration of qi can be calculated by taking the first and second-derivative of qi(si, t) with
respect to si and time t, respectively, in the following expression [1]:

dqi
dt = ∂qi

∂t + ∂qi
∂si

ṡi
d2qi
dt2 = ∂2qi

∂t2 + 2 ∂2qi
∂si∂t +

∂2qi
∂s2

i
ṡi +

∂qi
∂si

s̈i
(6)
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where ∂2qi
∂t2 is yielded by the cable’s out-plane motion and ∂qi

∂si
s̈i by the the cable’s in-plane

motion; ∂2qi
∂si∂t and ∂2qi

∂s2
i

ṡi are yielded by the combination of cable’s in-plane motion and

out-plane motion. ṡi = dsi/dt, and s̈i = dṡi/dt.
Since the cable drawing point Bi on the pulley i is attached to the mast, Ḃi = 0. Noting

that ∂qs
i =

ds
i

Si
∂si and ∂qi

∂t = Ṗ = [ẋ ẏ ż]T. Thus, the derivatives of qi(si, t) with respect to
the curve length coordinate si can be obtained as follows:

∂qi
∂si

= ∂
∂si

(
qs

i
)
= Q ∂qs

i
∂si

= Q ds
i

Si
= di

Si
∂qi

∂si∂t = ∂
∂si

(
∂qi
∂t

)
= ∂

∂si
Ṗ

∂2qi
∂s2

i
= ∂

∂si

(
∂qi
∂si

)
= Q ∂

∂si

(
ds

i
Si

)
= ∂

∂si

(
di
Si

) (7)

Moreover, ∂2qi
∂t2 = P̈ = [ẍ ÿ z̈]T, which is the acceleration of the CPTDS. Substituting

Equation (7) into (6), the inertia of the cable i can be found by integrating the whole cable:

Ii = ρ
∫ Si

0

d2qi
dt2 ∂si = ρ

(
P̈Si + 2Ṗṡi +

di
Si

ṡ2
i + di s̈i

)
(8)

2.4. Dynamic Equation of the Camera Robot

As illustrated in Figure 4, the cable tension ti of the cable i is along the tangential
direction of the catenary at the cable end node P. As a consequence, ti can be decomposed
into the components that are along the directions of the x, y and z axes, respectively, which
can be written in terms of

[
hicosθi hisinθi hitanγi

]T, where hi is the horizontal compo-
nent of ti as described in Equation (1) and γi is the angle between hi and ti. The inertia
Ii =

[
Ii,x Ii,x Ii,x

]T is a 3× 1 vector. W =
[
Wx Wy Wz

]T is the external force on the
CPTDS. The tangent tan γi at P can be computed as the following equation:

tan γi =
dzs

i
dxs

i

∣∣∣∣
xs

i =Li

= − sinh(2βi − αi) (9)

Thus, the dynamic equilibrium equation can be written as follows:

mP ẍ +
4
∑

i=1
Ii,x =

4
∑

i=1
hi cos θi + Wx

mPÿ +
4
∑

i=1
Ii,y =

4
∑

i=1
hi sin θi + Wy

mP z̈ +
4
∑

i=1
Ii,z =

4
∑

i=1
hi tan γi −

4
∑

i=1
ρgSi −mg + Wz

(10)

ih Bi

i 
cable i

zi
s

t i
iv

P

oi
s

i 

cosi ih  

sini ih  

 Sig
pm g

xi
s

y

o x

z

Figure 4. Catenary model of the cable in a vertical plane.
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Equation (10) can be further transferred to the following matrix form:

MP̈ + Ïcab = JH + W + G + Gcab (11)

where M =

mp 0 0
0 mp 0
0 0 mp

 and mp is the mass of the CPTDS. Icab =
[ 4

∑
i=1

Ii,x
4
∑

i=1
Ii,y

4
∑

i=1
Ii,z

]T

and H =
[
h1 h2 h3 h4

]T. J =

cos θ1 cos θ2 cos θ3 cos θ4
sin θ1 sin θ2 sin θ3 sin θ4
tan γ1 tan γ2 tan γ3 tan γ4

 is the Jacobian ma-

trix of the camera robot. G =
[
0 0 −mpg

]T denotes the gravity vector of the CPTDS,

Gcab =

[
0 0

4
∑

i=1
ρgSi

]T

is the total gravity vector of the four cables.

3. Iterative-Based Tension Distribution Algorithm

Equation (11) can be further simplified to the following formulation:

JH = F (12)

where F = MP̈ + Icab −W −G−Gcab is the generalized external force. As Figure 4 shows,
the vertical component of the tension vi = hi tan γi. Thus, the cable tension ti of cable i can
be calculated through the following equation:

ti = hi

√
1 + tan2γi (13)

The horizontal component hi of ti should subject to the following restraint condition:

hi,min ≤ hi ≤ hi,max (14)

where the lower bound of the cable tension hi,min is required to keep cable i tight; the upper
bound of the cable tension hi,max is defined to account for the the output torque of the servo
motor i and the maximum tension that the cable i can withstand without breaking. In this
paper, hi,min = hmin and hi,max = hmax.

According to Equation (12), it is a non-linear transcendental equation because J and F
are associated with H. In this paper, we propose an iterative-based algorithm to determine
H, which is different from the algorithm in our previous paper. The algorithm termination
condition is when the difference of two sags obtained from adjacent steps is small enough,
which could meet after several iterative steps. As a result, although the algorithm in this
manuscript does not meet an optimization goal, and the computing time and computational
complexity are greatly reduced.

After obtaining H, the cable tension T =
[
t1 t2 t3 t4

]T can be calculated according
to Equation (13). It is well-known that the initial values have a significant impact on the
iterative method. After several trails, the tensions and lengths of the cables obtained by the
massless straight line model of the cable are used as the initial values. Since the profile of
the cable is a straight line, the initial sag f0 =

[
0 0 0 0

]T. ε is a small value and to be
used as the threshold of the iterative-based algorithm. Thus, the iterative-based tension
distribution algorithm can be summarized as Algorithm 1:
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Algorithm 1: Distribution of tensions

Input: Bi, P, Ṗ, P̈, ρ, ∆t
Output: H

1 f lag = 1;
2 S0,i = ‖di‖2 %Initial cable length;
3 tan γ0,i = Ci/Li %Initial tangent;

4 Ĵ0,i = [cos θ0,i sin θ0,i tan γ0,i]
T;

5 J0 = [ Ĵ0,1 Ĵ0,2 Ĵ0,3 Ĵ0,4]
T %Initial Jacobian matrix;

6 I0,cab =
4
∑

i=1
ρ

(
P̈S0,i + 2Ṗṡi + di

ṡ2
i

S0,i
+ di s̈i

)
;

7 G0,cab = ρ
4
∑

i=1
S0,i %Initial cable mass;

8 F0 = MP̈ + I0,cab −W −G−G0,cab;
9 H0 = J0F0 %Initial H;

10 while f lag 6= 0 do
11 αi = sinh−1

[
βi(Ci/Li)

sinh βi

]
+ βi , βi =

ρgLi
2h0,i

;

12 Si = Li −
h0,i βi
qLi

[
Li

16βi

(
e4βi−2αi − e−4βi+2αi

)
+ 1

2

]
;

13 tan γi = − sinh(2βi − αi) % Compute tangent ;
14 H = J+F % Compute H;

15 fi =
8hi sinh βisinh−1

(
ρgCi/2hi

sinh βi

)
−ρgCi

2ρg ;

16 if all (| fi − f0,i| > ε) then
17 J0 = J %Update J;
18 f0 = f %Update f ;
19

20 else
21 f lag = 0;
22

23 end
24 end
25 if all (hmin ≤ hi ≤ hmax) then
26 H = H0 %Final output;
27 else
28 H=Null % H is empty;
29 end

4. Workspace Analysis
4.1. Dynamic Force-Feasible Workspace

There are many workspace criteria proposed to tackle with the influence on the
workspace of the unilateral nature of the wrenches (combination of force and moment) ap-
plied on the end-effector by cables, among which the wrench-closure workspace (WCW) [43]
and wrench-feasible workspace (WFW) [44] are of particular interest. In fact, the WFW is
of more practical significance because the cable tensions must be limited within a reason-
able range.

There is no moment applied on the CPTDS because this is a mass point. Thus, the
camera robot only has a force-feasible workspace (FFW). A position of the end-effector
of the CDPM is said to be force-feasible in a particular structure and for a specified set of
forces, if the tensions in the cables can counteract any external force of the specified set
applied to CPTDS. Liu proposed the generalized determining conditions of WFW/FFW [45]
as follows:
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(1) The Jacobian matrix J is full rank.
(2) The tensions in the cables are all positive and in a definite range.
(3) The magnitude and direction of the projections of column vectors arbitrarily chosen

from the Jacobian matrix J and the external force J are both balanced on a normal
vector of the hyperplane determined by J.

In this paper, the dynamic force feasible workspace (DFFW) was applied based on the
FFW. For the camera robot, the Jacobian matrix J and generalized external force F have
some unique features. On the one hand, the Jacobian matrix J depends not only upon the
geometry configuration of the manipulator but also on the tensions and self-weights of
cables. On the other hand, the generalized external force F should consist of the inertias of
the cables and CPTDS.

Based on the proposed generalized determining conditions of FFW, we can summarize
the judging conditions of DFFW, including the direction balance condition (DBC) and
magnitude balance condition (MBC). The DBC, which is also the force-closure condition, is
given as follows: {

qTF > 0∃k : qT Ĵk < 0
qTF < 0∃j : qT Ĵj > 0

(15)

where q = Ĵa × Ĵb is a unit normal vector of a hyperplane determined by the column
vectors of J and pointing towards the exterior of the zonotope as shown in Figure 5.
Ĵi =

[
cos θi sin θi tan γi

]T is the column vector of J. a and b are the subscripts of two
linearly independent column vectors arbitrarily chosen from J with a, b ∈ {1, 2, 3, 4}; j and
k are the subscripts of the rest column vectors with j, k ∈ {1, 2, 3, 4} − {a, b}.

ˆ ˆ= a b q J J P

ˆ
bJ

ˆ
jJ

ˆ
kJ

F
 !, 1, 2, 3, 4a b  

! " ! ", 1, 2,3,4 ,j k a b !

ˆ
aJ

ˆ
k ktJ
ˆ
j jtJ

Figure 5. Normal vector of the hyperplane and the generalized external force.

As displayed in Figure 6a, the projections of the tension Ĵjhj (or Ĵkhk) and the general-
ized external force F on q are both scalars. Consequently, there always exists a tension Ĵjhj

(or Ĵkhk) to resist the the generalized external force F as long as the signs of qT Ĵj (or qT ˆbmJk)
and qTF are different. However, H ranges from hmin to hmax. Hence, the components of H
Ĵjhj and Ĵkhk are bound with

[
Ĵjhmin, Ĵjhmax

]
and

[
Ĵkhmin, Ĵkhmax

]
as shown in Figure 6b.

Therefore, the MBC is given as follows:

Γ−min ≤ Γ+
max +

∣∣∣qTF
∣∣∣⋂ Γ+

min +
∣∣∣qTF

∣∣∣ ≤ Γ−max (16)

where Γ+
min and Γ+

max are the lower and upper limit of the sum of projections of the rest
column vectors on the positive direction of q, respectively; Γ−min and Γ−max are the lower and
upper limit of the sum of projections of the rest column vectors on the negative direction of
q, respectively. They can be computed as follows:
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Γ+
min = ∑

qT Ĵj>0

(
qT Ĵj

)
hmin, Γ+

max = ∑
qT Ĵj>0

(
qT Ĵj

)
hmax (17a)

Γ−min = ∑
qT Ĵk<0

(
qT Ĵk

)
hmin, Γ−max = ∑

qT Ĵk<0

(
qT Ĵk

)
hmax (17b)

The pre-condition to determine DBC or MBC is the Jacobian matrix J is full rank. Thus,
the DFFW can be described as the following set:

{
P : (rank(J) = 3)

⋂ ∀(q ∈ R3, qTF > 0
)
, ∃k : qT Ĵk < 0

⋂∣∣Γ−min

∣∣ ≤ Γ+
max + qTF

⋂
Γ+

min + qTF ≤ |Γ−max|
}⋃{

P : (rank(J) = 3)
⋂ ∀(q ∈ R3, qTF < 0

)
, ∃j : qT Ĵj > 0

⋂∣∣Γ−min

∣∣ ≤ Γ+
max +

∣∣qTF
∣∣⋂ Γ+

min +
∣∣qTF

∣∣ ≤ Γ−max
} (18)

+

0
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(a) (b)

Figure 6. The projections of the tension and generalized external force in DBC and MBC. (a) The
projections in DBC. (b) The projections in MBC.

4.2. Procedure of Generating DFFW

The DFFW can be generated by judging whether a position X meets the conditions
demonstrating in Equation (18) or not. The search space of X is decided by the position
of the pulleys and the ground, which is a cuboid for the camera robot. Before generating
DFFW, the generalized external force F and the Jacobian matrix J must be calculated
according to Algorithm 1. To calculate the generalized external force F, it is required to
determine the CPTDS’s velocity Ẋ and acceleration Ẍ.

V =
{

v+x , v−x , v+y , v−y , v+z , v−z
}

is defined as the maximal allowable velocity set of the

CPTDS, in which v+x , v−x , v+y , v−y , v+z and v−z denote the maximum translation speeds
along the positive and negative directions of the x-axis, y-axis and z-axis, respectively.
A =

{
a+x , a−x , a+y , a−y , a+z , a−z

}
is defined as the maximal allowable acceleration set of the

CPTDS, in which a+x , a−x ,a+y ,a−y ,a+z and a−z denote the maximum translation accelerations
along the positive and negative directions of the x-axis, y-axis and z-axis, respectively.

Thus, a set $, named a velocity–acceleration pair is constituted by choosing an element
from the set V and A separately while setting the other elements of V and A equal to zero.
For example, the velocity–acceleration pair $ = {v+x , a+x } represents the CPTDS’s velocity
and acceleration along the x-axis positive direction.

Since there are six possibilities for selecting two column vectors randomly from four
column vectors of the Jacobian matrix J, the inner for-loop of Algorithm 2 will execute six
times. The search space refers to SearchCube, which is a cube. After every inner for-loop,
the position should move to the new position P + ∆P. Consequently, the algorithm of
generating the subspace of DFFW can be summarized as Algorithm 2.

For a selected velocity–acceleration pair $l (l = 1, 2, · · · 6), a subspace of DFFW
referred to as DSSl will be generated through implementing Algorithm 2 correspondingly.
By repeatedly performing Algorithm 2 six times and taking the intersection of the subspaces
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DSSl , the DFFW DS will be generated. Mathematically, the relationship between DSSl and
DS can be described as follows:

$l → DSSl ⊆ DS

DS =
⋂

l=1,2,···6
DSSl

(19)

Algorithm 2: Generate the subspace of DFFW
Input: input parameters P, $l , J, F
Output: DSSl , {l = 1, 2, · · · 6}

1 a, b ∈ {1, 2, 3, 4} ;
2 j, k ∈ {1, 2, 3, 4} − {a, b} ;
3 while P ∈ SearchCube do
4 if rank(J) = 3 then
5 for i← 1 to 6 do
6 if qTF > 0&∃k : qT Ĵk < 0 then
7 Judgei = 1 %Direction balance;
8 else if qTF < 0&∃j : qT Ĵj > 0 then
9 Judgei = 1 %Direction balance;

10 else
11 Judgei = 0 %Direction imbalance;
12 end
13 if ∏

i=1,2···6
Judgei = 1 &

∣∣Γ−min

∣∣ ≤ Γ+
max +

∣∣qTF
∣∣⋂ Γ+

min +
∣∣qTF

∣∣ ≤ |Γ−max|

then
14 P ∈ DSSl %Magnitude balance;
15 else
16 P /∈ DSSl
17 end
18 end
19 else
20 P /∈ DSSl ;
21 end
22 P = P + ∆P % Move to the new position;
23 end

5. Optimization Model Establishment
5.1. Optimization Variables

The pulleys of the camera robot can be easily mounted on top of masts or the surface
of buildings according to the characteristics of the shooting place, whose positions have a
strong influence on the workspace, kinematics and dynamics. Therefore, it is reasonable to
employ the positions of the pulleys as the optimization variables for structural optimization.
Since the horizontal projection of the four pulleys on the ground is a rectangle, the global
frame {oxyz} can be established with the origin fixed on the projection point of the #1
pulley. As Figure 7 displayed, we can use three dimensional parameters to describe the
positions of four pulleys in {oxyz}, i.e., the length of the rectangle len, width of the rectangle
wid and the pulley height hei. Thus, the position of #1 pulley is B1 = [0, 0, hei]T, #2 pulley
B2 = [len, 0, hei]T, #3 pulley B3 = [len, wid, hei]T and #4 pulley B4 = [0, wid, hei]T.



Machines 2022, 10, 565 12 of 31

z

1#pulley

wid

len

hei

4#pulley 3#pulley

2#pulley

o

y

x

z pm

CPTDS

Figure 7. Optimization variables of the camera robot.

In addition to the positions of the pulleys, the mass of the CPTDS also can be adjusted.
Underweight or overweight CPTDS may affect the performance of the camera robot. Thus,
the performance of the camera robot can be improved by choosing a suitable mass of
the CPTDS. Hence, it is necessary to use the mass of the CPTDS mp as the optimization
variables for structural optimization.

The optimization variables of structural optimization of the camera robot can be
written in the following vector form:

D =
[
len, wid, hei, mp

]T
= [d1,d2,d3,d4]

T, (20)

and the physical significance and unit of each optimization variable are shown in Table 1.

Table 1. The physical significance and unit of each optimization variable.

Element Symbol Physical Significance Unit

d1 len length of the rectangle m
d2 wid width of the rectangle m
d3 hei height of the pulley m
d4 mp mass of the CPTDS kg

5.2. Optimization Objects

The camera robot is a high-speed and high-maneuverable manipulator, which will
bring great challenges to take real-time video pictures. In order to find the video images
with a sufficient scope and high-resolution ratio, a sufficiently large workspace and a stable
enough camera are needed. In this paper, we attempt to enlarge the workspace and enhance
the shooting stability through the structural optimization.

5.2.1. Workspace Volume

In order to satisfy the shooting requirements, it is desired to enable the camera robot to
achieve as high ability of tracking photography as possible. The volume of the workspace
is directly related to the tracking photography ability of the camera robot. The larger the
workspace, the more areas the camera robot can capture. Naturally, the workspace volume
can be integrated into the optimization model of the camera robot as the optimization
object. Given the large-span and high-speed characteristics of the camera robot, the DFFW
presented in the previous section is employed in this paper. As shown in Figure 8a, the
rectangle determined by four pulleys forms the upper surface of the cube, which is the
theoretical maximum workspace, referred to as the maximum shooting workspace (MSW).
However, the shape of the actual workspace (DFFW) is similar to a reversed quadrilateral
prism with a smaller bottom and a larger top as a result of restrictions on the tensions
in cables.

As illustrated in Figure 8b, the horizontal section of the DFFW is a rectangle, which
is analogous to the rectangle formed by four pulleys. In order to guarantee the shooting
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effect, a cube named the minimum shooting task-space (MSTS) is defined within MSW and
is required to be included within the DFFW.

(a) (b)

Figure 8. The DFFW, MSTS and MSW of the camera robot. (a) Top view. (b) Main view.

In this paper, we discretize the MSW, yielding the total number of point within the
MSW Ntotal . Then, we scan the every point within the MSW and record the number of points
meeting the dynamic force-feasible condition NDFFW described in Equations (19) and (20).
Finally, the volume of DFFW vol can be obtained by computing the ratio of NDFFW to Ntotal .
The larger volume of DFFW, the stronger the ability of the tracking photography. Thus, the
optimization objective for the workspace volume is as follows:

f1(D)= max vol(d1, d2, d3, d4) (21)

5.2.2. Anti-Wind Disturbance Ability

Camera robots often function in high-rise cable support structures, which are inevitably
disturbed by wind due to the frequent outdoor operations. Thus, enhancing the ability of
anti-wind disturbance is crucial for maintaining the stability of the camera when taking
videos and pictures. There are two kinds of wind forces acting on buildings, i.e., steady
wind pressure and fluctuating wind pressure [46]. Since the period of the stable wind
pressure is much larger than the natural vibration period of the general structure, its force
can be regarded as a static force [47]. However, the high-frequency pulsation components
of the fluctuating wind pressure lead to vibration responses of the camera robot, which
have an influence on the camera robot’s normal operations.

The frequency characteristics of fluctuating wind can be expressed by its power spec-
trum, which is related to the surface roughness and geomorphic conditions. Considering
that the camera robot mainly works in the open areas of urban spaces, the correction
coefficient to the basic wind pressure w0 is caused by the surface roughness µw0 = 0.731.
Given the air density ρa = 1.225 kg/m3 and the basic wind pressure w0 = 0.35 KN/m2,
the maximum 10-minute average wind speed V̄max with a 30-year return period can be
calculated as follows [47]:

V̄max =

√
2µw0k0w0

ρa
(22)

where k0 is the return period coefficient and k0 = 1 is when the return period is 30 years.
Since the frequently used Davenport spectrum overestimates the turbulence energy at high
frequencies, these frequencies are of great significance for flexible tall structures. Therefore,
this paper employs the modified Davenport wind speed spectrum—namely, the Maier
spectrum, which can be written as follows [47]:
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where z is the height of the CPTDS above the ground, L∗v = 1200 m is the overall scale of
the turbulence, and V̄10 is average wind speed at 10 m. As the camera robot works under
the common wind speed, the power spectrum of fluctuating wind can be obtained, which
is shown in Figure 9.
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Figure 9. Power spectrum of the pulsating wind (wind speed is the half of the maximum 30-year
wind speed).

On the one hand, as the height z changes from 5 to 25 m (the main working range of
the camera robot), the power spectrum varies accordingly. It can be seen from Figure 10
that the maximal value of the power spectrum increases with the increasing pulley height.
However, the values of five curves mainly exist in the range of 0.01–0.12 Hz, which is
also the most-concentrated region of the energy of the pulsating wind. The maximum
values of the five power spectrum curves both emerge at 0.02 Hz and then fall quickly;
when the frequency is more than 0.12 Hz, the power spectrum is less than 0.05. Hence,
we define 0.12 Hz as the energy cut-off frequency. In the study of anti-wind disturbance,
we focused on the energy concentrated region, i.e., the frequency region of the pulsating
wind between 0.01 and 0.12 Hz. On the other hand, we obtained the minimum first-order
natural frequencies on the horizontal sections of the dynamic feasible workspace at different
heights. As shown in Figure 10 , the minimum first-order nature frequency is 0.13 Hz when
z = 10 m. Therefore, the CPTDS will produce a vibration as the result of the wind-excitation
at certain areas within the workspace (such as the workspace boundaries). Therefore, in
order to improve the ability of the camera robot to resist wind disturbance, it is necessary
to increase its first-order natural frequency to keep away from the range of 0.01–0.12 Hz.
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Figure 10. The minimum first-order natural frequency on the horizontal section of the workspace at
different heights (Design variables: len = 90 m, wid = 80 m, hei = 25 m and mp = 50 kg).

The transverse and longitudinal vibrations of the cable may occur in the vertical
plane when the cable is disturbed by the wind. For the cable, the influence of longitudinal
vibration on the end-effector is much greater than that of transverse vibration. Diao et al.
indicated that the influence of transverse vibration on the end-effector is only 1.4%, while
that of longitudinal vibration on the end-effector is 98.4% [48]. Liu et al. suggested that
the longitudinal vibration of the cable has a greater influence on the feed cabin supported
in parallel by six cables [49]. As seen in Figures 9 and 10, the lower the frequency of the
camera robot, the more likely the camera robot was excited. As the first-order vibration has
the most important effects in structural response, it is necessary to calculate the first-order
natural frequency of the camera robot in the following form:

ωi =
1√

eig
{[

(J+)TM J+
]
diag(S1, S2, S3, S4)/EA

} i = 1, 2, 3
(24)

where J+ is the Moore–Penrose generalized inverse of the Jacobin matrix J. eig is an
eigenfunction to solve the eigenvalues. For the camera robot, there are three eigenvalues

as the result of its three translational DOF. diag(S1, S2, S3, S4) =


S1 0 0 0
0 S2 0 0
0 0 S3 0
0 0 0 S4

 is

a diagonal matrix. E and A are the elastic modulus and cross-section area of the cable
separately. The first-order natural frequency ω1 is the minimum of Equation (24):

ω1 = min{ωi} (25)

GFNF =
1

Ntotal

Ntotal

∑
i=1

ω1(D) (26)

The GFNF should be as large as possible to improve the ability to resist the wind
disturbance of the camera robot in the whole workspace. Therefore, the optimization
objective of anti-wind disturbance performance is as follows:

f2(D) = max
1

Ntotal

Ntotal

∑
i=1

ω1(d1, d2, d3, d4) (27)
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5.2.3. Impulse of Tensions on CPTDS

When the camera robot works normally, the cables remain tight, and hence the cable
tension will exert a tractive force on the CPTDS. Due to the high maneuverable, the tension
changes quickly in a tiny period of time, causing an impulse on the CPTDS exerted by the
cables, which will clearly have a great influence on the camera robot, such as vibration of
the camera or blurred shooting video pictures. The impact should be reduced as much as
possible to ensure the normal operation of the camera robot. If the external force applied
on the CPTDS and locus of the CPTDS are known, the equivalent force Feq of the tensions
in the four cables can be computed according to Algorithm 1.

Feq =
4

∑
i=1

ti (28)

As shown in Figure 11, four sampling points, P1, P2, P3 and P4, were selected. P1, P2,
P3 and P4 are located in the upper, left, lower and right surfaces of the MSTS, respectively.
Thus, the sampling locus of the cable tension impact function is P1 → P2 → P3 → P4 → P1.
As the four sampling points are evenly distributed in MSTS and the acceleration varies
dramatically at the points that the direction of locus changes, the impulse of tensions on
the CPTDS will be great. Therefore, the selection of such a sampling locus can truly reflect
the impact of the tensions on the CPTDS. The sum of impulse imp along the sampling locus
can be calculated by computing the impulse at every time point, which can be used as the
evaluating function of impulse of tensions on the CPTDS.

imp =

∥∥∥∥∫ T

0
Feqdt

∥∥∥∥
2

(29)

where T is duration of the locus. In order to ensure that the impulse of CPTDS is as slight
as possible, the impulse sum imp should be kept as small as possible:

f3(D)= min imp(d1, d2, d3, d4) (30)

Figure 11. Sampling locus of cable tension impulse function.

5.3. Constraints
5.3.1. Linear Constraints

Considering the installation and site conditions, the optimization variable vector D
should meet the following linear constraints to ensure that the camera robot has feasibility
of structure.

lb ≤ D ≤ ub (31)

where lb = [lb1 lb2 lb3 lb4]
T is the lower bound; ub = [ub1 ub2 ub3 ub4]

T is the
upper bound.
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5.3.2. Nonlinear Constraints

As described in the previous sections, the horizontal components of tensions have
upper bound hmax and lower bound hmin. Furthermore, in order to ensure that the CPTDS
has sufficient tracking and shooting abilities in the workspace, the workspace volume
vol(D) determined by the optimization variable vector D must be larger than the volume
of MSTS Ω. To ensure that the camera robot has a strong ability of anti-wind disturbance, it
is necessary to guarantee that the GFNF determined by D must be larger than the energy
cut-off frequency ωp = 0.12 Hz. To sum up, the nonlinear constraints of camera robot
structural optimization can be summarized as follows:

g1(D) = hmin(D)− hmax ≤ 0
g2(D) = −hmax(D) + hmin ≤ 0

g3(D) = −V(D) + Ω ≤ 0

g4(D) = −ω(D) + ωp ≤ 0

(32)

where hmin and hmax are the minimum and maximum values of the horizontal components
of tensions with regard to the optimization variable vector D, respectively.

6. GA-Based Structural Optimization
6.1. Information Entropy-Based Adaptive Multi-Island GA

Structure optimization of a camera robot is intrinsically a highly nonlinear optimiza-
tion problem. Moreover, it is difficult to obtain a continuous and derivable analytical
expression of the workspace of the camera robot. Therefore, it is difficult to deal with this
problem for the traditional optimization methods. However, SGA is subject to premature
convergence, thereby, falling into local minimum easily. GA is an intelligent optimization
method that simulates the evolution of organisms in nature and genetic laws. It was first
proposed by Professor Holland in 1975 in the book Adaptation in Natural and Artistic Systems.

Multi-island GA divides each population into several sub populations—named
islands—which can be viewed as a niche. As only the excellent individuals migrate
between the islands, it can mean that excellent individuals spread to the whole population
and improve the evolution level of the whole population [50]. In this paper, we propose a
improved genetic algorithm incorporating into three improvements, namely fitness calibra-
tion, sub-population division and adaptive changes of crossover probability and mutation
probability.

6.1.1. Fitness Degree Calibration

There may be special individuals with abnormal fitness in the initial population,
leading to the dominance of the whole population possibly. At the end of the genetic
process, the fitness of individuals tends to be consistent and the solution will swing around
the optimal solution so that the optimal solution can not be searched. The selection ability
of the population can be improved through enlarging fitness degree appropriately, which
is the principle of fitness degree calibration and can be expressed as follows:

˜f it=
f it0 + | f itmin|

| f itmin|+ f itmax + δ
(33)

where f it0 is the original fitness degree; f itmin and f itmax are the lower and upper bound
of fitness degree, respectively; and δ ∈ (0, 1) is a positive real number to avoid the zero
denominator. The purpose of | f itmin| is to guarantee the fitness degree is always positive
after calibration.

6.1.2. Sub-Population Division

The mechanism of sub-population division and migration arises from the idea of multi-
island GA, whose group is divided into several sub-populations referred to as islands. The
selection, crossover and mutation operations of GA are performed on each island, and
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the migration operation is performed between different islands periodically. The steps of
multi-island GA are shown in Figure 12, where t is the current generation, n f is the number
of sub-population, q is positive integer, and m f is the migration interval.

GOs represents a genetic operation, such as selection, crossover, or mutation. Only
when the number of generations reaches the integral multiple of the migration interval m f ,
will the individuals be transferred according to the migration rate i f between the islands;
otherwise, the migrations will not occur but instead GOs. Through the sub-population
division and migration, the diversity of solution to GA is improved to thus improve the
ability to search the global optimal solution [51].

island 1

migration

 

 

GOs

t=qmf
no yes

t

t+1

GOs

island nf

island 2

island 3 island 4

island 5

not

migration migration

migration individual

Figure 12. Algorithm steps of the multi-island GA.

6.1.3. Adaptive Changes of Crossover Probability and Mutation Probability

When GA evolves to a certain generation, the fitness of the population will converge,
and the population diversity will decline, allowing the algorithm to easily fall into the
local optimal solution. In this paper, we regulate the crossover probability pc and mutation
probability pm adaptively based on the information entropy of the population. Information
entropy is a concept proposed by Shannon indicating the disorder degree of the system [52].
At the early stage of evolution, the diversity of the population and the disorder degree is
high, and thus the information entropy is high. As the evolution process of the superior
winning and the bad eliminated, the disorder degree of the population decreases, and then
the information entropy decreases, which conforms to the law of biological development.
The information entropy of the population can be defined as follows:

I(t) = −
np

∑
i=1

(p(t)i � log2 p(t)i)

p(t)i =
f it(t)i

np

∑
i=1

f it(t)i

(34)

where nP is the total number of individuals in the population, and f it(t)i is the fitness
degree of the ith individual in the population of the tth generation. Thus, the adaptive
operators of crossover rate Pc(t) and mutation Pm(t) rate of the population of the tth
generation are as follows:
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Pc(t) =
1 +

(
eI(t)/eImax

)
2

Pc0 (35a)

Pm(t) =
1 +

(
eI(t)/eImax

)
2

Pm0 (35b)

Imax is the maximum information entropy and Imax = log2np. Pc0 and Pm0 are the initial val-
ues of crossover rate and mutation rate. According to GA theory, crossover rate ranges from
0.4 to 0.9, and the mutation rate ranges from 0.01 to 0.1 [51]. Therefore, Pc0 and Pm0 should
be calculated several times according to the value range to obtain the appropriate value.

6.1.4. Population Information Entropy-Based Adaptive Multi-Island GA

Based on the three improvements, we propose an improved GA, i.e., the population
information entropy-based adaptive multi-island Genetic Algorithm (PIEAMIGA) as il-
lustrated in Figure 13. Compared to the standard genetic algorithm (SGA), PIEAMIGA
adds three modules, namely sub-groups division, fitness calibration and migration, whose
crossover rate and mutation rate vary according to the information entropy of the popula-
tion. The optimization variable vector D = [d1, d2, d3, d4]

T is the chromosome of PIEAMIGA
that is coded by real values, and the selection is based on stochastic universal sampling.
The entire process will stop when t = G, and the current optimization parameters will be
exported; otherwise, it will re-generate a population and proceed to the next iteration.

adaptively

 change

initial, t=0

population generation

individual fitness degree calculation

Real coded

 

t=qmf

selcetion

adaptively crossover

adaptively mutation
yes

 

island 1

migration

individual 

t<G

end
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no no

sub-population

division

t=t+1

fitness degree calibraition
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island 2
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island 5

island np

island 1 island 2 island np

Figure 13. Flowchart of PIEAMIGA.
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6.2. Multi-Objective Structural Optimization

The main method to deal with the multi-objective structural optimization problem of
CDPM is the weighted coefficient method [33,53,54]. However, the weighted coefficient
method has three shortcomings: first, the weight coefficients are determined according to
the designer’s subjective intention; second, the weight coefficients are difficult to quantify
accurately; third, a single weight coefficient is difficult to represent all design intents due
to the infinite selections of weight coefficients. In addition to the weighted coefficient
method, there are some other multi-objective structural optimization methods for CDPMs,
such as the enumeration method [55] and tabular method [56]. However, these methods
are not objective, because the optimal criteria are determined by designers subjectively.
Accordingly, we apply the ideal-point method to tackle the multi-objective structural
optimization problem.

Process of the ideal-point method: first, three optimization objectives are conducted
to obtain the optimal solution with regard to each objective; secondly, the solution spaces
of the three objectives are normalized to the interval [0, 1], and the optimal value of each
objective is normalized to “0”; finally, the minimum sum of the distances between the
three optimization objectives and “0” is taken as the optimization objective, namely the
“ideal point”. The PIEAMIGA was implemented with MATLAB programming language
and executed on a notebook computer with a 2.2 GHz Intel Core I5-5200U CPU and a
12 G RAM.

6.2.1. The Optimal Value and Worst Value of Single-Objective Optimization

Since the GA itself does not have the ability to deal with constraints, it is necessary to
transform the constrained optimization problem into unconstrained optimization problem,
which can be realized through the penalty function method. Thus, the fitness function of
the optimization object fi(D) with regard to design variable vector D is as follows:

F̃i(D) = f it{sgn(i) � Tra[ fi(D)] + Pun
4

∑
j=1

[
gj
(

Dj
)
+
∣∣gj(D)

∣∣]} (36)

where f it() is the fitness degree function, and {i = 1, 2, 3}. Tra is a transfer function. Pun
is a large positive number and is used as the penalty factor.

The parameters of SGA and PIEAMIGA are listed in Table 2. The simulation parame-
ters of the optimization model are shown in Table 3. According to the site and installation
conditions, the range of the length len and width wid of the horizontal projection rectangle
of pulleys are [80, 90] m and [70, 80] m, respectively; the range of the height of the pulleys’
points is [25, 30] m. The range of the mass of the CPTDS is [20, 50] kg. The MSTS is a
70 m × 60 m × 22 m cuboid, whose volume Ω is 92,400 m3. Based on the parameters listed
in Tables 2 and 3, PIEAMIGA and SGA are programmed by MATLAB to find the optimal
solution and value with regard to three optimization objects separately, which are listed in
Table 4. The worst values with regard to the single optimization object are also listed in
Table 4.

It can be seen from Table 4 that the optimal solution obtained by PIEAMIGA is better
than that obtained by SGA. Workspace volume increases by 8.52%, the first-order natural
frequency increases by 9.73%, and the impulse exerted by tensions on the CPTDS to CPTDS
is reduced by 10.08%. Although three modules are added into PIEAMIGA based on SGA,
the computing time of PIEAMIGA increases by 4.48% compared with that of SGA because
the multi-island GA adopts the parallel mechanism, and operations in each island are
performed in parallel. It also can be seen from Table 4 that PIEAMIGA has a stronger global
search ability as the result of the adaptive crossover and mutation rate.
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Table 2. Parameters of PIEAMIGA and SGA.

PIEAMIGA SGA

total evolutionary generations 200 total evolutionary generations 200
population size np 40 population size np 40
penalty factor Pun 107 penalty factor Pun 107

initial of crossover rate Pc0 0.01 fixed crossover rate Pc 0.6
initial of mutation rate Pm0 0.85 fixed mutation rate Pm 0.008

correction for fitness degree δ 3
number of sub-population n f 8

migration interval m f 5
migration rate i f 0.5

Table 3. Simulation parameters of the optimization.

Parameter Value Parameter Value

lower bound of design variable L {80, 70, 25, 20}T gravitational acceleration g 9.8 m/s2

upper bound of design variable U {90, 80, 30, 50}T impulse sampling time ∆t/s 0.1
volume of MSTS Ω/m3 92400 position of sampling point P2/m [45, 40, 24]T

maximum allowable velocity set V/m/s {9, −9, 9, −9, 9, −9} position of sampling point P2/m [15, 40, 15]T

maximum allowable acceleration set A/m/s2 {3.5, −3.5, 3.5, −3.5, 3.5, −3.5} position of sampling point P3/m [45, 40, 6]T

lower limit of horizontal component hmin/N 55 position of sampling point P4/m [75, 40, 15]T

upper limit of horizontal component hmax/N 4000 time of P1 → P2/s 7.5
elastic modulus of the cables E/Gpa 28 time of P2 → P3/s 7.5

cross sectional area of the cable A/mm2 20.34 time of P3 → P4/s 7.5
linear density of the cable ρ/Kg/m 0.188 time of P4 → P1/s 7.5

Table 4. Comparison between PIEAMIGA and SGA.

Algorithm PIEAMIGA SGA

D∗1 [89.89, 79.92, 27, 99, 49.97] [90.00, 80.00, 29.89, 40.03]
optimal solution D∗2 [80.00, 70.00, 30.00, 20.00] [80.00, 70.00, 29.50, 24.85]

D∗3 [83.77, 80.00, 26.57, 20.00] [85.74, 79.25, 25.72, 20.35]
f ∗1 /m3 183,750 169,325

optimal value f ∗2 /Hz 0.3100 0.2875
f ∗3 /N·s 24,907 27,699

computing time t/min 70 67

the worst value of IEPAMIGA

f ′1 = 84, 875 m3 f ′2 = 0.1042 Hz f ′3 = 63,027 N·s

The convergence processes of each objective by the PIEAMIGA and SGA are shown
in Figure 14. In the early stage of evaluation, the optimal solution changes rapidly due
to the randomness of population and great differences between individuals, which is a
sharply changed line in Figure 14a. With the progress of evolution, the number of excellent
individuals in the population gradually increases; thus, the change of optimal solution
slows down, and the local convergence appears, which is a horizontal line in Figure 14.
Furthermore, the process of local convergence is prolonged gradually as the result of the
increasing proportion of excellent individuals in the population.

Thus, the change of the optimal solution is not as violent as in the initial stage, and the
length of the horizontal line is gradually longer with the increase in generation of evolution.
There exist a jump after the local convergence process on the curve because the optimal
solution jumps out of a local optimal solution and evolves towards a better optimal solution.
It is inevitable that the performance of the offspring will be degraded compared with the
parent because the new individuals are not always better than the parent individuals, which
is a fluctuating line in Figure 14a. It can also be seen from Figure 14 that PIEAMIGA shows



Machines 2022, 10, 565 22 of 31

the better “climbing” (downhill) ability with the progress of evolution, and thus the gap
between the two curves becomes increasingly larger. Finally, PIEAMIGA converges to the
global optimal solution while SGA can only converge to the sub-optimal solution.
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Figure 14. Comparison of the convergence process between IEPAMIGA and SGA. (a) Convergence
of f1(D); (b) convergence of f2(D); and (c) convergence of f3(D).

Figure 15a shows that the workspace boundary extends outwards after using
PIEAMIGA and that the volume increases by 14,425 m3 compared to SGA. Figure 15b
shows that the first-order natural frequency on the horizontal section of workspace that the
height z is 6 m has significantly increased after using PIEAMIGA, and the GFNF is increased
by 0.0452 Hz compared to SGA. Figure 15c shows that the impulse sum to the CPTDS
has decreased significantly after using PIEAMIGA, and the impulse sum is decreased by
2792 N·s compared to SGA.
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Figure 15. Comparison of the workspace, the first-order natural frequency and the impulse on CPTDS
between PIEAMIGA and SGA. (a) Comparison of workspace; (b) comparison of the first-order natural
frequency; and (c) comparison of the impulse on the CPTDS.

6.2.2. Multi-Objective Optimization Based on the Ideal Point Approach

In the previous sections, we performed structural optimization with regard to the three
optimization objectives, respectively. However, we want to optimize the three optimiza-
tion objectives simultaneously, i.e., the largest workspace, the highest first-order nature
frequency and the smallest impulse on CPTDS exerted by tensions. Mathematically, it is a
multi-objective optimization problem and will be solved by using the ideal-point method.

Since the physical meaning of the three optimization objectives is different, it is neces-
sary to normalize the three optimization objectives f1(D), f2(D) and f3(D), respectively.
Thus, the three optimization objects become continuous functions in the [0,1] interval, and
the multi-objective function is uniform in dimension. The maximum and minimum values
of each optimization objective need to be normalized.

As shown in Table 4, for f1(D), f1,min = f ′1 = 84, 875 m3, f1,max = f ∗1 = 183, 750 m3;
for f2(D), f2,min = f ′2 = 0.1042 Hz, f2,max = f ∗2 = 0.3100 Hz; for f3(D), f3,min = f ∗3 =
24, 907 N·s, f3,max = f ′3 = 63, 207 N·s. Thus, we can find three objectives after normaliza-
tion:
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f̄1(D) =

f1,max− f1(D)
f1,max− f1,min

f̄2(D) =
f2,max− f2(D)
f2,max− f2,min

f̄3(D) =
f3(D)− f3,min
f3,max− f3,min

(37)

According to the definition of the ideal-point method, the minimum sum of the
distances between the three objective function and the three ideal points is taken as the
optimization objective, and the linear and nonlinear constraints proposed in previous are
taken as the optimization constraints:

min W(D) =
3
∑

i=1

∣∣ f̄i(D)
∣∣

s.t. L ≤ D ≤ U
g1(D) = Hmin(D)− hmax ≤ 0
g2(D) = −Hmax(D) + hmin ≤ 0

g3(D) = −V(D) + Ω ≤ 0

g4(D) = −ω(D) + ωp ≤ 0

(38)

6.3. Results and Discussion of Multi-Objective Structural Optimization

According to the simulation parameters listed in Tables 3 and 4, the multi-objective
structural optimization is conducted by real-coded PIEAMIGA in the MATLAB environ-
ment. The results are listed in Table 5. It can be seen that the three optimization results are
balanced, none of which is dominant, while others perform poorly.

Table 5. The results of multi-objective structural optimization.

Optimal Solution D* [83.27, 77.93, 27.46, 25.39]T

optimization objective ideal point optimization result
f1(D)/m3 183,750 140,750
f2(D)/Hz 0.3100 0.2371
f3(D)/N·s 24,907 30,653

Figure 16 shows the DFFW corresponding to the optimal solution D∗, which com-
pletely contains the MSTS, and thus the filming work can be successfully completed.

Figure 16. DFFW and MSTS with regard to the optimal solution D∗, i.e., len = 83.27 m, wid = 77.93 m,
hei = 27.46 m and mP = 25.39 kg.

Figure 17 and Table 6 illustrate the relationship of the workspace volume vol with the
pulley point height hei and the mass of CPTDS mp when the optimization variables d1 and
d2 are fixed. In this case, len = d∗1 and wid = d∗2 . The pulley height hei is not positively
correlated with volume of workspace vol. It can be known from the curved surface that
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the volume is small at both ends and large in the middle. It can be seen from Table 6 that
the workspace volumes are about the same when the pulley height is equal to 27 and 28 m,
and thus the maximum value is near hei = 27.5 m.

Generally speaking, the higher the pulley height hei is, the larger the volume is.
However, the tension range is also a decisive factor of workspace. With the increase in
height hei, the angle between the tangent line at the cable end and the direction of gravity
decreases; thus, the cable tension must be increased to balance the gravity. The increase in
height hei will cause an increase in the length and weight of the cable, and thus an increase
in the cable tension. Thus, it is possible that the tensions exceed the upper limit hmax,
leading to a decrease in the workspace that is mainly located in the area near the pulley
point close to the upper surface of the workspace.

Relatively speaking, the relationship between the mass of CPTDS and the workspace
volume is obvious, which has two characteristics: (1) Positive correlation. The light mass of
CPTDS may give rise to the decrease in cable tension, or even less than the lower limit hmin.
The reduced volume of workspace is mainly located at the boundaries of the workspace,
where the area of the cable tension is relatively small. (2) At the beginning of the curve, the
increase is obvious; however, at the end of the curve, the change is small.

When the mass mp is small, increasing the mass of CPTDS will significantly enhance
the cable tension so that many position points that originally do not meet the lower limit
hmin satisfy the lower limit hmin again. Therefore, the volume of workspace increases.
However, when the mass mp increases to a certain extent, the minimum tension at most of
the mp points have been greater than hmin. Therefore, the increase in the workspace volume
vol is limited.

Figure 18 shows the spatial distribution of the first-order natural frequency corre-
sponding to the “ideal point” on three horizontal sections of the workspaces at different
heights, i.e., z = 5 m, z = 15 m and z = 25 m. Clearly, the higher the height along the z axis
is, the higher the natural frequency is. Since the camera robot belongs to the suspended
CDPM, the four pulley points are all above the CPTDS. Therefore, the higher the height
along z axis is, the shorter the cable length is. According to Equation (25), the shorter
the cable length, the higher the natural frequency of the camera robot. Similarly, there is
always a long cable when the CPTDS at one of the four corners of the workspace; hence, the
first-order natural frequency of the camera robot will be smaller, leading to a downward
sharp corner.

Figure 17. Relationship of the workspace volume vol with the pulley point height hei and the mass
of CPTDS mp when len = d∗1 = 83.27 m and wid = d∗2 = 77.93 m.
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Figure 18. Distribution of first-order natural frequency on the horizontal sections of the workspaces
at different heights hei for the optimal solution D∗, i.e., len = 83.27 m, wid = 77.93 m, hei = 27.46 m
and mp = 25.39 kg.

Table 6. The workspace volume when the pulley point height hei and the mass of CPTDS mp vary
(unit m3).

Height
Mass

20/kg 30/kg 40/kg 50/kg

25/m 138,570 132,200 132,000 139,300
26/m 136,754 134,200 134,200 137,000
27/m 165,300 159,700 160,000 153,700
28/m 159,700 160,000 159,800 158,000
29/m 137,000 133,660 132,800 137,000
30/m 135,300 132,200 132,200 139,300

Figure 19 shows the minimum value of the first-order natural frequency on the dif-
ferent horizontal sections of the workspace with different heights, which are significantly
improved compared with those shown in Figure 10. The minimum first-order natural fre-
quency on each horizontal section all exceeds 0.12 Hz. At z = 5 m, the minimum first-order
natural frequency is equal to 0.13 Hz. Although it has been improved, it is still close to
the energy truncation frequency ωp = 0.12 Hz. Therefore, it is still vulnerable to wind
disturbance. Thus, some measures are essential to enhance the first-order natural frequency
of the camera robot, such as the stiffness improvement and tension regulation.

Figure 20 and Table 7 show the relationship of GFNF with the pulley point height hei
and the mass of CPTDS mP when the optimization variables d1 and d2 are fixed. In this case,
len = d∗1 and wid = d∗2 . The relationship between GFNF and hei is not proportional, but
exhibits the characteristics of “high at both ends, low in the middle”. It can be concluded
from Equation (21) that the critical factor of determining the GFNF is the length of the
cable. On the one hand, the smaller the height hei is, the smaller the length of the cable is.
Thus, the frequency is larger when hei = 25 m; However, on the other hand, the decrease in
height hei will lead to the decrease in the height of workspace, lead to losing some points
in workspace.

Since the cable length at these “losing point” is shorter, the first-order natural frequency
is larger. Therefore, the whole level of the natural frequency in the workspace will decrease
after losing these points. Hence, the contradiction between them determines that the value
of GFNF is larger when hei is equal to the maximum or minimum height and smaller when
hei is in the middle height. The relationship between the mass of CPTDS mp and GFNF
is very obvious. The greater the mass is, the lower the frequency is. We can observed
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that the GFNFs are the same when the pulley height at 27 m and 28 m. We can also draw
the conclusion that the GFNF is more sensitive to the pulley height than the mass of the
CPTDS.
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Figure 19. The minimum first-order natural frequency on the horizontal planes of workspace at
different heights with regard to the optimal solution D∗, i.e., len = d∗1 = 83.27 m, wid = d∗2 = 77.93 m,
hei = d∗3 = 27.46 m and mp = d∗1 = 25.39 kg.

Figure 20. Relationship of GFNF with the pulley height hei and the mass of CPTDS mp when
len = d∗1 = 83.27 m and wid = d∗2 = 77.93 m.

Table 7. The frequency when the pulley point height hei and the mass of CPTDS mp vary (unit Hz).

Height
Mass

20/kg 30/kg 40/kg 50/kg

25/m 0.4461 0.4313 0.4313 0.4461
26/m 0.4398 0.4241 0.4241 0.4398
27/m 0.4479 0.4422 0.4422 0.4479
28/m 0.4479 0.4422 0.4422 0.4479
29/m 0.4398 0.4241 0.4241 0.4398
30/m 0.4455 0.4313 0.4313 0.4461
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Figure 21 shows the impulse applied on the CPTDS and the accelerations of the
CPTDS corresponding to the optimization solution following the sampling locus shown in
Figure 11. Since every straight line segment of the locus is planned by a quintic polynomial,
the acceleration curve is a cubic curve, and the value of acceleration at each point change
motion direction of the locus is 0. It can be seen that the impulse is larger in the time point
with larger acceleration, reflecting the tensions exert a large impulse on the CPTDS at this
time point. The maximum value appears at t = 15 s, when the CPTDS moves near the point
P3 and is close to the lower surface of the workspace.

Therefore, the cable length and tension are larger than those at the rest points and thus
the impulse. It can be observed that the curve is not completely symmetrical on both sides
with P3 as the center. However, the left side is larger and the right side is smaller. As the
segment P2 → P3 is on the left side of P3 and the motion direction is consistent with the
direction of gravity, the tension is larger; the motion direction of the segment P3 → P4 on
the right side of P3 is contrary to the gravity direction, and therefore the tension is smaller.
Thus, the impulse on the segment P2 → P3 is larger than that on the segment P3 → P4.
Similarly, the impulse applied on the CPTDS on the segment P1 → P2 is larger than that on
the segment P4 → P1.
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Figure 21. The impulse applied on the CPTDS and acceleration of the CPTDS corresponding to
the optimization solution following the sampling locus with regard to the optimal solution D∗, i.e.,
len = d∗1 = 83.27 m, wid = d∗2 = 77.93 m, hei = d∗3 = 27.46 m, mP = d∗1 = 25.39 kg.

Figure 22 and Table 8 show the relationship of the impulse sum on the CPTDS along
the sampling locus with the pulley point height hei and the mass of CPTDS mp when the
optimization variables d1 and d2 are fixed. In this case, len = d∗1 and wid = d∗2 . There is
a positive correlation of the impulse sum with the pulley point height hei and the mass
of CPTDS mp. The higher the pulley point height hei and the greater the mass mp of the
CPTDS are, the greater the impulse sum will be. In addition, it can be observed from
Table 8 that the impulse sum linearly increases with increasing of the pulley point height
and the mass of the CPTDS.
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Figure 22. Relationship of impulse sum on the CPTDS along the sampling locus with the pulley
point height hei and the mass of CPTDS mp when len = d∗1 = 83.27 m and wid = d∗2 = 77.93 m.

Table 8. The impulse sum on the CPTDS when the pulley point height hei and the mass of CPTDS
mp vary (unit N·s).

Height
Mass

20/kg 30/kg 40/kg 50/kg

25/m 26,450 32,330 38,220 44,110
26/m 26,740 32,780 38,820 44,860
27/m 27,080 33,300 39,520 45,750
28/m 27,460 33,880 40,310 46,750
29/m 27,930 34,590 41,270 47,940
30/m 28,430 35,370 42,220 49,260

7. Conclusions

In this paper, the dynamic modeling of the camera robot was presented considering the
self-weight and inertia of the cable simultaneously, which was also fit to other large-span
and high-speed manipulators, and a tension distribution algorithm was developed based
on the iteration method. According to the dynamical model, an approach of generating a
dynamic feasible workspace was proposed. In order to improve the shooting ability of the
camera robot, the structure of the camera was optimized by optimizing the three objectives
separately and then mixed together using the ideal point method through a modified GA.
Furthermore, the characteristics of the objectives were analyzed by varying the design
parameters. The main contributions of this study include the following:

First, the dynamic model of the large-span high-speed camera robot with redundant
actuation combining with the cable mass and inertia is established. Based on this model,
an iterative-based tension distribution algorithm (Algorithm 1) was proposed to determine
the tensions in cables given the position of the CPTDS. In addition, a dynamic force-
feasible workspace (DFFW) generation algorithm (Algorithm 2) was proposed according
to the characteristics of the camera robot based on the judging conditions of DFFW that
contain the direction balance condition (DBC) and the magnitude balance condition (MBC)
simultaneously. In this study, the three-DOF four-cable-driven camera robot was considered
for illustrative case-studies. The presented algorithms were applicable to any cable-driven
parallel manipulators while modifying the Jacobian matrix J, the generalized external force
M, the unit normal vector q and the velocity–acceleration pair $.

Secondly, an optimization model of the camera robot was set up aiming to achieve the
best workspace volume of DFFW, anti-wind disturbance ability and impulse exerted by
tensions on CPTDS, where the anti-wind disturbance ability can be evaluated through the
GFNF (global first-order nature frequency).

Thirdly, the multi-island and information entropy ideas were used to improve the
SGA. Thus, an improved genetic algorithm was created in order to optimize the structure
of the camera robot, namely the population information entropy-based adaptive genetic
algorithm (PIEAMIGA). It can be seen from Figures 14 and 15 that PIEAMIGA offered the



Machines 2022, 10, 565 29 of 31

stronger global search capability and the better optimization results compared with SGA
with regard to each optimization objective while the computing time increased slightly as
shown in Table 4.

Fourthly, the ideal-point method was employed to deal with the multi-objective
structural optimization to avoid the influence of the subjective intention of the designer.
The ideal point of each optimization objective was obtained by conducting single-objective
structural optimization through PIEAMIGA. The optimization results with regard to the
optimal solution D∗ by using PIEAMIGA are shown in Table 5 and demonstrate that the
three optimization results were balanced. Figures 16, 18, 19 and 21 illustrate the workspace
shape, spatial distribution of first-order natural frequency, the minimum first-order natural
frequency on different horizontal planes of workspace and the impulse on the CPTDS when
the optimization variables are equal to the optimal solution D∗.

Moreover, the relationship of the three optimization objectives with the pulley height
hei and the mass of CPTDS mp were studied as illustrated in Figures 17, 20 and 22 as well
as Tables 6–8. Moreover, some laws were summarized, and these will be valuable for the
design of camera robots. Furthermore, the design methodology presented in this paper
can be extended to other classes of large-span high-speed CDPMs as well. Apart from
the camera robot, the dynamic workspace generation approach and design methodology
presented in this paper can be extended to other classes of large-span high-speed CDPMs as
well. The next steps involve dynamic modeling for the complex spatial robot architectures
and finally practical testing. Our future research will be focused on the motion control
issue based on the dynamical model in this paper.
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