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Abstract: Used in many industrial applications, centrifugal pumps have optimal operating criteria
specified at design. These criteria may not be precisely adhered to during operation which will
ultimately reduce the life of the asset. Operators would therefore benefit from anticipating how often
the design point is deviated from and hence how much asset degradation results. For centrifugal
pumps, a novel set of covariates were proposed in this paper which formally partition observed
operating zones with an Empirical Bivariate Quantile Partitioned distribution. This captured the
dependency relation between operating parameters across plant configurations to predict the compo-
nent wear that results from particular settings. The effectiveness of this was demonstrated through
an operational case study in civil nuclear generation feedwater pumps where corroboration with
bearing movements provides an indicator of plant wear. Such a technique is envisaged to inform
operators of optimal plant configuration from multiple possibilities in advance of undertaking them.

Keywords: rotating plant; vibration monitoring; thermal generation; probabilistic modelling

1. Introduction

Generation margins in conventional thermal power stations can be threatened by
unexpected plant outages caused by sudden equipment failure. This has motivated more
intensive monitoring of critical plant assets to forestall this, however, in many cases plant
configuration plays a role in the rate of plant aging or performance deterioration. For
rotating plant assets in nuclear stations, extensive monitoring is routine [1] and generally
involves quantifying deviations from expected sensor values and their thresholds for alarm
and halt limits. With many civil nuclear generation facilities now passing their original
operational lifetimes, ref. [2] notes that lifetime extension could be justified on the basis of
greater situational awareness of critical plant assets and the degradation processes they
face. While design stage knowledge may inform hard limits for observed sensor values, the
operational consequence may not always be apparent. While design stage knowledge may
inform hard limits for observed sensor values, the operational consequence may not always
be apparent, motivating a means of relating the plant operating regime to the operational
consequence to show how the physical system responds [3,4]. The term inferential sensing
refers to the case whereby quantities of interest in a system can be inferred from other
correlated or dependence measurements from sensors [5]. These dependent operating
values can be anticipated in a number of ways [6]: via detailed physics models, models
driven through high-level knowledge in the form of rules or heuristics, and data-driven
models. However, the required inputs and modelling assumptions that would drive these
predictions are not always going to be clear to the plant operators, which necessitates a
data-centric approach. Recovering relations between operating conditions and expected
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asset response from monitoring data would amount to model inversion, commonly used
for anomaly detection [7,8], but a key drawback is that a poorly specified model may
produce incorrect outputs for inputs in certain ranges or perturbations, which in turn
would misinform how the plant should be operated [9]. Additionally, [10] identified that
condition monitoring data may not exist in large enough volumes or with extensive plant
coverage, meaning a universal approximation approach, such as Deep Learning, may not
be practical. To mitigate the problem of model misspecification, predictions from a number
of diverse models may need to be taken into account in a principled manner [11,12].

Commonly used in many industries [13] and the focus of this paper, centrifugal
pumps are specialized cases of rotating plant in that the working fluids’ characteristics can
change with the operating parameters of the plant, which in turn can affect its condition.
Centrifugal or rotodynamic pumps are key components in nuclear generation station
designs [14], being used to provide coolant or feed water to boilers and in many cases have
bespoke design refinements optimizing their performance to a particular site. This can
make constructing physics-based models time-consuming through the lack of opportunity
for generalization across assets.

The purpose of this paper was to present a data-driven approach to quantify the
impact of operational decisions that place a rotodynamic pump outside its preferred zone
of operation. The challenge in undertaking this is in correctly identifying a measure
of instantaneous plant health and forming the relation between this and the operating
parameters of the plant. To address this, the contribution of this paper is to produce a novel
set of covariates by formally partitioning observed operating zones using an Empirical
Bivariate Quantile Partitioned distribution [15], which captures the dependency relation
between the pump operating parameters across all regions of normal operation and then
uses these as regressors to predict the component wear that results from particular operating
settings. The complex form of the relation is addressed with an ensemble machine learning
approach to provide accurate prediction through the complete range of operational settings.
The benefit of this contribution to the plant operator is twofold: prospective operating
scenarios can be tested with the relational model to anticipate the consequence incurred
in plant health; previous operational decisions can be retrospectively assessed in terms of
their consequence. Both benefits allow plant operators to identify operational schedules
that are optimal for minimizing component wear and therefore extending plant service
intervals and lifetime.

The paper is organized as follows: Section 2 provides an overview of the operation
and application of centrifugal pumps with a specific example of boiler feeds in a nuclear
generation; Section 3 reviews the concept of the pump curve in pump design and op-
eration, how this relates to condition monitoring data gathered by operators and how
its characteristics may be generalized through analytical tools and used in this paper as
model covariate inputs; Section 4 sets up the protocol for using covariate generalizations as
inputs to a variety of predictive models of plant degradation. Section 5 applies this novel
concept against real operational data and benchmark model inputs. Finally, in Section 6
the authors outline the main operational use case envisaged for an industry deployment of
the contribution.

2. Centrifugal Pumps: Principles of Operation and Industrial Application

Rotodynamic or centrifugal pumps have applications across a number of industries
including conventional thermal generation, pumped storage, mining, marine, and domestic
utility [13,16]. While each of these applications will utilize a pump with an operating
range designed for their respective application, there will still be best efficiency points in
this range that will minimize losses through vibration. Centrifugal pumps are generally
operated according to a pump curve [16]—a relation between head and flow that captures
its full operational range and specifies the most efficient operating point(s). The relation
between the head and flow pairings that result in optimal pump operation vary according
to the rotating speed of the pump. Combinations of these pairings can also be detrimental
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to the plant’s useful life, so plant operators have a particular approach to operating pumps
with regions being visited according to operational settings. Figure 1 highlights examples
of what these broadly might be.
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Figure 1. Example schematic for the pump curve associated with an Advanced Gas Cooled Reactor
(AGR) boiler feedpump, marked up to show regions of preferred and non-preferred operation.
Regions F and J denote preferred regions that are dependent on operating speed. Regions D and G
are to be avoided.

Throttling the flow (through closing an inlet valve for example) results in a reduction in
flow for a constant operating speed—various Best Efficiency flow (BEQ) values are shown
in Figure 1. Similarly, reducing the speed will reduce both flow and head. Although optimal
operation pump curve locations are specified by the Original Equipment Manufacturer
(OEM), operators may not always adhere exactly to this guidance, and remaining on, or
finding operational settings that attain the exact duty point may be difficult, so in practice,
a close neighborhood is sought instead. This relative deviation will affect the pump’s health
and how it performs.

Case Study: AGR Main Boiler Feed Pumps

Boiler feed pumps provide the pressure difference and resultant flow required to trans-
late water from condensers to the shell side of the primary heat exchanger or boiler in many
power stations [14]. There is often a booster pump located upstream of the boiler pumps
to overcome the negative gauge pressure in the condensers during normal operation [17].
Also, there are often heating stages downstream of the boiler pumps between the boiler
pumps and the boiler—the pressure increase produced by the boiler pumps must therefore
also overcome any pressure restriction realized by these components/restrictions which
can be an additional contributing factor to their performance and health.

In the UK, the Advanced Gas-cooled Reactor (AGR) design dominates civil nuclear
generation and features two turbine-driven Main Boiler Feed Pumps (MBFP—Figure 2) [14].
As the continued flow of fluid in the water-steam cycle of a power station is critical to its
continued operation and electrical generation [18] it is imperative that boiler pumps are
monitored for any abnormal behavior or phenomenon that may contribute to accelerated
plant degradation or to tripping the plant which would result in reduced or zero power
generation. Monitoring of various parameters is accounted for during station design and
construction and hence can generally be monitored independently and without causing
obstruction to generation. Ref. [19] (Table 1) gives a high-level overview of some critical
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rotating machines (and component parts) that are monitored, why they are monitored
and the techniques and algorithms that are commonly adopted to conduct diagnostic and
prognostics tasks.
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3. Pump Curve Quantile Characterization

The rotating plant operating regime plays a dominant role in its vibration and per-
formance indicators; often movement between these regimes is when changes in these
indicators occur. One of the challenges of accommodating expected operational state
changes is identifying the associated signatures and bounds of these regimes and obtaining
markers of where they begin and end. Producing a useful representation of non-stationary
rotodynamic pump operation requires exemplar data to be treated according to the plant’s
operating state. Failure to do this will result in behavior from two or more operating states
being merged into a single unrepresentative state that offers no guidance to the operator as
to the positioning and variation of operational bounds. The following sections document
the proposed approach to identifying this data automatically, defining the space over which
it is modelled, proposing a means of accurately capturing its variability, and, with these in
place, defining a measure of how far from the optimal operation the plant has moved.

3.1. Automatic Operating Zone Delineation

For an MBFP in an AGR, the following station regimes result in a change in perfor-
mance that has been seen to influence vibration and performance measurements [1,20]:
Refueling, Offline, and Online/Normal Operation. A feature of the AGR design is that it
can be refueled while still generating, albeit on reduced power. A measurement that is a
reliable indicator for these operating regimes or states is the MBFP rotational speed. The
normal operating state value for this is station specific while the offline value is zero. While
simple rules could be used to segment the operational regimes, the transitional behavior,
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operational noise and operational artefacts (such as those that occur during refueling) can
make it difficult to define robust bounds.

Figure 3 shows the frequency of occurrence of the different rotational speeds a pump
experiences over the course of a year. Although modes are evident in Figure 3, it is not clear
where their bounds lie. Segmentation driven by operational data provides an alternative to
this: a model can identify dominant modes of operation within indicator variables (pump
speed or a feature vector derived from pump speed) and then use this as a measure of
‘soft evidence’ of a change in regime [21,22]. Although based on time series data, this
process is not dissimilar to clustering. Since the plant’s operational state is never actually
observed, the process is a hidden one—a hidden first-order Markov model or chain. A
Hidden Markov Model (HMM) can be learned from a set of noisy observations and the
resulting model can be used to recover a state sequence best representative of the stochastic
process that generated it. In our case, we assume that the HMM can be in one of M
unobserved states with transitions between states specified by a mixing matrix A in RMxM.
In the ith state, the observations are assumed to be independent and follow a Gaussian
distribution N(µi, σ2

i). The emission model parameters must also be inferred from the data
and the size of M, or the number of modes, can be estimated via a formal model order
selection criteria such as AIC or BIC [23].
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Figure 3. Pump speeds recorded over the course of a year of operation taken at 8 h intervals. Several
modes are evidently indicating the different operating regimes the pump is subjected to.

The challenge associated with fitting such an HMM to data is threefold. (i) Given
the model parameters and observed data, estimate the optimal sequence of hidden states;
(ii) given the model parameters and observed data, calculate the model likelihood;
(iii) given the observed data, estimate the emission parameters. The first two challenges
can be addressed using the Viterbi algorithm [24], while the last problem is typically solved
using Expectation Maximization, known in this context as the Baum-Welch algorithm [25].

This model is functionally equivalent to fitting a Gaussian mixture model with
M components and mixing weights pi. Employing this model selection strategy to a full
year of MBFP rotational speed data identifies five distinct operating modes corresponding
to the states in the Gaussian Mixture Model as shown in Figure 4.
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Figure 4. Modes of operational pump speed recovered as Gaussian distributions by a Hidden Markov
Model. The five states were determined to be the optimal parameterization by formal model selection
methods. States #1 and #2 are normal operations. State #3 is low power refueling.

Using the trained model on an out-of-sample rotational speed data set is shown in
Figure 5. From Figures 4 and 5, it is clear that offline states have been identified as State #5
while refueling is State #3 and normal operation is State #1 and #2. With the state of the
station identifiable for every time step, this latent indicator can be used to segment the
condition monitoring data stream allowing each operating state to be considered separately.
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Figure 5. Operating speed regimes for an MBFP over the course of a year against HMM state.
States 1 and 2, from the right y-axis, are of interest for normal operation.
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3.2. Empirical Bivariate Quantile Partition: Quantification of Preferred Operation Adherence

The consequence of operation at the extremes of the pump curve is known to cause
particular modes of performance deterioration, so the hypothesis behind this model is that
occurrences of operation within these regions (captured as counts) will result in a particular
rate of performance deterioration. Figure 6 shows the flow and head relations for a year
of pump operation after the non-normal operational states have been removed using the
HMM approach described in Section 3.1.
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Figure 6. Operational pump curve data for only the station’s normal operating state. Dashed lines
represent the 5th, 25th, 50th, 75th, and 95th percentiles of flow and head. The level of variation
for normal operation is notable as is the movement between different quantile regions with some
pairings never occupied.

While normal operation requires a constant rotational speed, there is clear variation
evident within this plant state from Figure 6. What is not evident is the duration spent in
each region. To provide a quantitative measure, it is proposed that an Empirical Bivariate
Quantile Partitioned (EBQP) distribution [15] be used, where empirical quantiles of the
marginal distributions form partitions in a contingency table-like dependency structure [26].
This is useful in this case as it does not enforce an assumption of correlation between flow
and head variables in the various pump curve regions, and permits tails to behave in a
different manner to those around the joint median. In an EBQP for this application there
will be a bivariate sample of flow Q and head P at time t:

(Qt, Pt) t = 1 · · · T (1)

The joint cumulative distribution F(q, p) has marginal distributions G(q) and H(p) and
can be estimated as

F̂(q, p) =
1
T

T

∑
t=1

I{Qt ≤ q, Pt ≤ p} (2)
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and Ĝ and Ĥ defined analogously. The marginal distributions Q and P are discretized
along a mesh 0 = γ0 < γ1 < · · · < γr = 1 and 0 = η1 < η2 · · · < ηc = 1, respectively. Here, the
following set is used to capture more detail at the extremities:

γ = η = {0, 0.05, 0.25, 0.5, 0.75, 0.95, 1} (3)

with
γ0 = η0 = 0 (4)

γr = ηc = 1 (5)

The marginal counts will be determined by the inverse empirical CDFs for Q
and P respectively:

ui = inf
{

u : γi ≤ Ĝ(u)
}

(6)

vi = inf
{

v : ηi ≤ Ĥ(v)
}

(7)

for i = 1, . . . , r and j = 1, . . . , c. Together, this gives a joint count of

λij = F̂
(
ui, vj

)
− F̂

(
ui−1, vj

)
− F̂

(
ui, vj−1

)
+ F̂

(
ui−1, vj−1

)
(8)

From (8), a vector Λ, counting how long the pump spends in each region will give an
analogous measure to the wear that would be experienced in an equivalent region of the
pump curve—a representation of this is shown in Figure 7.
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Figure 7. Thirty-six quantile regions after 1 year of operation on a single pump—as Figure 6
implied—some regions are never visited by the pump and some (non-adjacent) regions are
visited frequently.

Looking at how the 36 counts grow in each region individually shows the regions that
are never visited and those that are visited only at certain times of year—this is shown in
Figure 8 which takes the same count data shown in Figure 7 and presents it as it accumulates
over time.
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Figure 8. Alternative time series representation of Figure 7 showing each of the 36 quantile cells
growth rates. Some cells go through periods of no growth, others are only visited at certain times
of year.

Figure 8 highlights that some regions are not revisited for months on end while some
rise continually throughout the year of operation. Domain expertise (captured generally
in [13]) notes that lengthy periods spent in particular regions are harmful to the pump
asset, so increasing counts reflecting operating in these specific regions will in turn have an
impact on the condition of the pump.

3.3. Measuring Operational Consequence: Choice of Degradation Metric

Having proposed a means of articulating a chosen operational strategy, the remaining
part of the contribution is to select an observation that quantifies the consequence of this
strategy. Component wear is synonymous with plant degradation, which will ultimately
manifest in the statistical characteristics of operational data [8]. A thrust bearing is a
standard component in pump design, which prevents axial movement along the length
of the shaft during operation. If the pump experiences an excessive axial force this will
lead to the thrust bearing pads deteriorating faster than expected and can lead to failure
(via shaft seizure) without a maintenance intervention [27]. Axial forces result in both
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directions during both normal and abnormal pump operational conditions thus motivating
the choice of the thrust bearing movement as the degradation metric for the MBFP with
consequence being in proportion to bearing movement. Vibration levels cannot reliably be
used owing to multiple operating states resulting in differing rotational speeds, which may
not necessarily lead to a consistent indicator of wear. To provide an element of memory of
operational extreme, the thrust bearing movement median observed over an hourly basis
and a daily basis are considered, albeit separately, in order to identify the ideal resolution
of model operation.

4. Pump Performance Response Quantification

The high dimensional multivariate input and the potentially nonlinear relation with
the observed plant degradation make this challenging for many regression models [28],
particularly when there are multiple operating regimes [29]. This section will therefore
highlight the strategy used for constructing this functional form and its corresponding
inputs, for maximally accurate performance estimates.

4.1. Relational Model—Operation/Thrust Bearing Movement

A number of different Machine Learning regression models are employed to capture
the relation between the pump operational characteristics and the condition variable, the
thrust bearing movement. The models used were chosen so that the limitations of the
regression method and its underlying optimization of parameters would not obscure the
predictive quality of the input features. These have been selected as:

• Ordinary Least Squares linear regression (Models 1–3)
• Least Squares and Absolute Shrinkage Selection Operator (LASSO) (Models 4–6)
• Random Forest Regression, learning rate 1.0, LSBoost, 100 tree learners, (Models 7–9)
• Tree Regression with pruning and leaf merging (Models 10–12)
• Support Vector Regression with linear kernel (Models 13–15)
• Gaussian Process Regression with a squared exponential kernel with parameters set to

be the lengthscale and the standard deviation of the training data (Models 16–18)

Employing these regression models with their parameters estimated from an exemplar
6 months of data allows the thrust bearing movement for the subsequent periods of time to
be estimated for a given operating strategy.

4.2. Candidate Inputs

For the purposes of comparison of the input feature predictive power with the simplest
base case, the raw pump measurements, three sets of model inputs have been chosen as
listed in Table 1.

Three sets of covariates are utilized: the first comprises the flow and head-direct
observations from the pump curve. The second supplants the pump curve observations
with cumulative hit counts obtained from each of the 36 regions of the EBQP. This second
set of covariates is intended to capture the known consequences of operating with par-
ticular head/flow combinations as the dependency expressed through the EBQP. Several
regression models will now be utilized to relate the movement of the thrust bearing to
particular operating settings.

4.3. Ensemble Predictions

Given the dynamics and the operational extremes of pump operation, it is inevitable
that no single regressor will provide high performance over the whole operating range
of a pump. The need to avoid the as yet unknown performance limitations of any given
regression model motivates the use of an ensemble for model predictions.

Figure 9 shows the complete model with the three covariate sets and the six predictive
models, resulting in an 18-input ensemble. Two strategies are used for combining these
18 model outputs into a single optimal prediction: simple averaging of the constituent N
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model predictions and Pseudo Bayesian Averaging [30]. The prediction from the simple
ensemble of N predictors amounts to

Ŷ =
1
N

N

∑
i=1

ŷi (9)
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Figure 9. Data pipeline through the ensemble predictive model. Eighteen candidate models are
drawn from six predictive models and three sets of covariates.

The Pseudo Bayesian approach uses the following weighting of the constituent predictions

Ŷ =
N

∑
i=1

ŵi ŷi (10)

where the weights w are found from model prediction errors ε over sample size T:

wk =
exp

(
−∑T

t=0 εkt

)
∑N

i=1 exp
(
−∑T

t=0 εit

) (11)

The weights are found from the in-sample data used to learn how much the constituent
predictive models should contribute to the predictions out-of-sample.

4.4. Performance Measures

Considering how this model would be used in practice, there are two perspectives on
model prediction accuracy: A binary one where the thrust bearing is predicted to move or
not; and a real valued one where the magnitude and direction of the bearing movement
are predicted. The latter is considered by plant operators to be more important as it offers
not just the immediate consequence of plant maloperation but also a measure of wear on
components [27].
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5. Evaluation of Proposed Operations by Predicting Resultant Degradation

In order to test the predictive effectiveness of the pump operation features with respect
to plant bearing wear, one year of operational data for a single unit was selected. This data
comprised 5 min sampled bearing movements as well as pump speed, flow, and inlet and
outlet pressure measurements that permitted the calculation of head. These performance
parameters were sampled at 10 min intervals. The pump speed was used to obtain the
regimes for the pump operation as outlined in Section 3 and separate normal operation
from refueling operations or shutdowns.

Two investigations were carried out to understand the sustained effect of maloperation
of the pump which resulted in the formation of two data sets: aggregated measurements
over a 1 h period which comprised averaged pump performance parameters and cumu-
lative quantile region counts being related to a maximum thrust bearing movement. The
same observations were used for the second test only at day-level aggregation. A six-month
period of operation was used to learn the relation between the pump curve and the thrust
bearing movement and then tested on another 6 months of sample data. This is motivated
by the need to keep training data requirements to a minimum. Each of the 18 (combinations
of the six models and three input sets) predictors were then learned for both the hourly
and daily aggregations.

Tables 2 and 3 summarize the overall errors in terms of Mean Absolute Error (MAE).
All models except the OLS regression utilize some kind of parameter selection meaning that
uninformative inputs are minimally weighted. This rules out certain quantile hit counts to
the detriment of some models (e.g., Random Forrest on all covariates) and to the benefit of
others (e.g., tree on the proposed quantile counts). For the daily predictions, this has a knock-
on effect for the ensembles with many individual models outperforming the averaged and
weighted averaged predictions. In all four cases, the overall performance benefit is from the
covariate set proposed rather than from the model. For hourly aggregations, the Ensemble
models have the lowest MAE using the combined covariate sets. For daily operation, the
hit counts alone offer a better prediction of consequence with an error of only 0.003 µm.

Table 2. Predictive accuracy for hourly aggregations-mae–lowest error underlined in bold.

Model Benchmark Quantile Combined

OLS 0.014 0.008 0.010
Elastic Net 0.013 0.014 0.008

SVM 0.073 0.009 0.015
RF 0.008 0.019 0.009

Tree 0.008 0.009 0.008
GP 0.024 0.006 0.024

Ensemble 0.011 0.011 0.004
PB Ensemble 0.005 0.011 0.004

Stacking 0.007 0.007 0.011

Table 3. Predictive accuracy for daily aggregations-mae–lowest error underlined in bold.

Model Benchmark Quantile Combined

OLS 0.013 0.020 0.010
Elastic Net 0.015 0.019 0.004

SVM 0.013 0.028 0.010
RF 0.006 0.022 0.011

Tree 0.008 0.003 0.008
GP 0.020 0.008 0.007

Ensemble 0.005 0.015 0.007
PB Ensemble 0.005 0.014 0.007

Stacking 0.007 0.027 0.008
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6. Operational Use Case

Where this modelling strategy is expected to provide value operationally is in the
prediction of harmful operating regimes ahead of them actually being entered. To this
end, a basic maloperation prediction model is embedded within a user interface to allow
operators to plan operational trajectories within the confines of the pump curve. Figure 10
shows a schematic of where this tool would fit within the workflow of a plant operator.
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Figure 10. Work flow for planning pump operation and managing operating parameters in transitions
between operating states.

Ahead of starting the pump or transitioning between operating regimes, the operator
could plan several flow control settings as indicated in Figure 10. The proposed model
allows a translation of these flow settings (with appropriate durations) into plant health
consequence predictions.

For practical station deployment, this functionality would need to be driven by a
graphical interface for use with plant operating personnel. Such a decision support system
can allow the prediction of operational consequences as described, but also enables retro-
spective analysis of past operations which will grow supporting domain knowledge on the
configuration preference of the plant being operated.

Figures 11–14 show this user interface. In Figure 11 the operator draws a trajectory
through the pump curve representing the flow and head levels obtained from a particular
operational setting. Figure 12 shows how these three trajectories translate into flow and
head time series, which in turn are used to predict the operational consequence in terms
of thrust bearing movement time series in Figure 13. The table in Figure 14 highlights
the cumulative bearing movement and hence the lowest operational consequence. It
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would be anticipated that the operator referenced this before carrying out the chosen
operating strategy.
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7. Conclusions

Generation plant reliability will continue to require the attention of asset owners
and power industry stakeholders as the run-down of thermal type generation plant chal-
lenges the security of supply concerns at national scales. Operating plant optimally has
the potential to increase service intervals and extend asset lifetimes. This paper has pre-
sented a means of automatically quantifying the asset health benefit of remaining within
manufacturer-specified operating bounds based on well-understood performance measures.
While this could be undertaken through a digital twin type approach, the efforts required
in gathering understanding and devising a physics-based model for the replication of all
possible behaviors are beyond the practical and resource constraints of most generation
operators. For a unique generation asset, like the pumps used in the given case study,
the operational benefit would be questionable. Instead, identifying general consequence
has been achieved through the application of diverse predictors, combined with ensemble
regression without the need for complex physics models or unrealistic high-resolution data.
For operators, it is envisaged that pump set point planning would be an initial application
of the proposes approach with movement through the curve chosen on a schedule then
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run through the model to identify a consequence ahead of application. Multiple candidate
operating strategies can be trialed and ranked to find the optimal, although longer term
this could form criteria for automated scheduling.
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